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ABSTRACT
Management of daily stress can be greatly improved by de-
livering sensor-triggered just-in-time interventions (JITIs) on
mobile devices. The success of such JITIs critically depends
on being able to mine the time series of noisy sensor data to
find the most opportune moments. In this paper, we propose a
time series pattern mining method to detect significant stress
episodes in a time series of discontinuous and rapidly varying
stress data. We apply our model to 4 weeks of physiological,
GPS, and activity data collected from 38 users in their natu-
ral environment to discover patterns of stress in real-life. We
find that the duration of a prior stress episode predicts the du-
ration of the next stress episode and stress in mornings and
evenings is lower than during the day. We then analyze the
relationship between stress and objectively rated disorder in
the surrounding neighborhood and develop a model to predict
stressful episodes.
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INTRODUCTION
Recent advances in wearable sensors and computational mod-
eling have made it feasible to obtain continuous assessment of
stress in the natural environment [32, 34, 52]. They have in-
spired research on visualization of dense time series of stress
measurements together with associated contexts (e.g., loca-
tion, activity, driving, etc.) that may inform the content and
timing of just-in-time stress interventions [59].
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Given the widespread adverse health consequences of stress
(both in the short term and in the long term) [12,42,45,48,57],
these advances hold tremendous promise to improve public
health and wellbeing. But delivering a sensor-triggered stress
intervention (e.g., breathing or relaxation exercises) is feasi-
ble only if there exists a method to detect clinically significant
stress episodes in real time that can be used to trigger the in-
tervention at most opportune moments.

To trigger a reactive stress intervention, we need to locate ma-
jor stress episodes in the sensor data stream. This introduces
several challenges. First, stress measurements obtained from
sensors usually have to be inferred from physiological data,
which by their very nature is rapidly varying, similar to real-
time tracking of stock prices. Second, unlike stock-price data,
the time series of stress is discontinuous due to factors such as
sensor detachment and wireless losses [51, 55]. Third, sensor
measurements are frequently confounded by physical activ-
ity (23% of the time [55]), that need to be filtered out for an
accurate assessment of stress.

Another set of challenges concerns the triggering of the inter-
vention. First, the decision to trigger must be made quickly so
the intervention can be effective. Hence, simple methods that
can be efficiently implemented on mobile devices are needed.
Second, too-frequent prompts of an intervention can lead to
alarm fatigue [38] and render the system useless. Ideally, the
intervention policy should be personalized to the tolerance
level of the individual and the frequency of intervention (e.g.,
once per day) desired by the user.

In this paper, we take first steps towards the development of
such JITI and develop time-series-pattern mining methods to
detect significant stress episodes in discontinuous ambulatory
data. The goal of this work is to establish the foundation on
which a just-in-time stress intervention can be developed.

For model development and application, we use data col-
lected in a 4-week field study in 38 opioid-dependent poly-
drug users receiving opioid agonist maintenance treatment,
all of whom were in a larger trial investigating individual and
environmental influences on drug use. Each participant wore



wireless physiological sensors for 10+ hours per day, from
which we obtained a continuous measure of stress [34].

In brief, we first developed methods to deal with physical ac-
tivity and discontinuities in the time-series data. We then ap-
plied the cStress model [34], imputed the missing data, and
validated the output of cStress (together with its imputation)
against self-reported stress. Next, we trained a stock pre-
diction method called Moving Average Convergence Diver-
gence (MACD) [3] to locate the time of an increase in stress
in rapidly varying continuous time-series data. We estimated
the probability distribution of the likelihood of stress assess-
ments and the probability distribution of stress durations (in
the smoothed time series) to personalize the algorithm for
each individual. The threshold on stress likelihood can corre-
spond to tolerance level, and the duration can be selected to
meet the expected intervention frequency preference.

We assessed relationships between stress and the neighbor-
hood environment with independently obtained data from
the Neighborhood Inventory for Environmental Typology
(NIfETy) [25]. Finally, as a next step toward developing a
just-in-time proactive stress intervention, we investigated the
feasibility of predicting whether a rapid rise in stress would
lead to a significant stress episode from spatio-temporal con-
text and the users’ prior history. The development and de-
ployment of a JITI represents a future research opportunity.

RELATED WORKS
The first category of related works are the ones on stress
monitoring. Assessment of stress and physiology can be ob-
tained episodically when a user interacts with a device or
continuously via sensors on the body or in the user’s envi-
ronment. Examples of the former include capturing ECG
from a smartphone camera (during gaming [26]) or from
electrodes embedded on smartphone jackets (e.g., Alivecore),
hand arm dynamics from the computer mouse [61], and pres-
sure from pressure sensitive keyboard and mouse [28]. Phys-
iology can be obtained continuously from wearable physio-
logical sensors [19]. Stress detection can be done from a
variety of physiological parameters including ECG and res-
piration [34, 52], electrodermal response [43], photoplethys-
mography from fingertip [40], or near-infrared spectroscopy
from forehead [29]. Our method can be applied to stress mea-
surements obtained from any of the above methods.

The second category of works are those that assess interrupt-
ibility, workload, or availability to decide when to deliver a
prompt for intervention, self-report, or phone call [22, 35, 36,
62]. A recent work [58] proposed a model that uses stress,
time, location, and the current context to determine the avail-
ability or interruptibility of users, in their natural environ-
ment, to respond to randomly triggered self-report prompts.
It found that users are least available at work and during driv-
ing, and most available when walking outside. These works
are complementary to ours. Once a trigger for intervention
has been generated by our model, it should be delivered to
the user only when they are determined as being physically,
cognitively, and socially available.

The third category includes works on stress interventions. An
example is a reflective intervention called AffectAura [44]
that logs physiological state using audio, visual, sensors, and
user activities and aims to support reflection via visualization.
Visualization is replaced by a wearable butterfly in [41] that
helps users reflect on their stress level and regulate it. Textiles
have been designed that can actuate in response to stress [14].
These complementary works indicate interesting intervention
possibilities, if appropriate methods such as ours can reliably
detect stress episodes in real-life.

The fourth category of related works are sensor-triggered JI-
TIs that have emerged in other contexts. For example, [9]
presented a JITI to prevent emotional food intake. Another
example is [53] that proposed a system where earpieces (to
monitor chewing and swallowing), augmented-reality glasses
(for capturing food consumed) and a physiological sensor (for
heart rate) are connected to a mobile-phone application that
processes the data and gives feedback to the user. Sensor-
triggered JITIs have also been proposed for preventive main-
tenance of a plant (see a review in [11]) and for GPS-based
vehicle navigation [2, 4]. But, none of these methods can be
used directly to mine the time series of stress to find signifi-
cant stress episodes.

The closest related works are those that aim to discover
or predict stress episodes from time series of physiological
data. MoodLight [43] finds episodes of arousal from electro-
dermal activity (EDA) in the lab environment and regulates
the color of a desk lamp to reflect the user’s stress level. When
users reduce their stress level, the light color changes to blue.
In [37], the authors present a method to predict the time se-
ries of heart-rate variability (HRV) using a first-order Hid-
den Markov Model. The algorithm was tested in a simulated
patient environment using a beta distribution (α = 0.1 and
β = 1). In contrast to these works, our model addresses real-
life challenges of discontinuity and rapid variability.

DATA DESCRIPTION
We used data collected as part of a larger outpatient study of
relationships among stress, addictive behaviors, and daily ac-
tivities. The parent study, and this substudy, were approved
by the Institutional Review Board (IRB), and all participants
provided written informed consent. The participant demo-
graphics, study setup, and the data we collected appear below.

Devices and Sensor Measurements
Sensor Suite: During the study, participants wore a wireless
suite of physiological sensors under their clothes. The sensor
suite consisted of an unobtrusive, flexible band worn around
the chest. It provided respiration data by measuring the ex-
pansion and contraction of the chest via inductive plethys-
mography (RIP) and included a two-lead electrocardiograph
(ECG), and a 3-axis accelerometer. The measurements were
transmitted wirelessly using ANT radio [1] to an Android
smartphone. The sampling rates for the sensors were 128 Hz
for ECG, 64 Hz for respiration, 32 Hz for each accelerome-
ter axis. They were downsampled at the sensor before wire-
less transmission at the rate of 28 packets/second, where each
packet has 5 samples.



Mobile Phone: Each participant also carried a smartphone. It
received and stored data from the sensors; it also sampled and
stored data from its own sensors (e.g., accelerometers).

Field Study Procedure
Participants were trained in the proper use of the devices.
They were shown how to remove the sensors before going to
bed and how to put them back on correctly the next morning.
They were also asked to take them off during showers and
any contact sport. Participants received an overview of the
smartphone software’s user interface. Once the study coor-
dinator felt that participants understood the technology, they
left the research clinic and went about their normal lives. Par-
ticipants were asked to wear the sensors during their waking
hours, complete self-reported questionnaires when prompted,
and record instances of drug use and craving on the phone.

Participants were asked to return to the research clinic daily.
The study coordinator uploaded the data collected the pre-
vious day and reviewed the physiological measurements to
ensure that sensors were working and were being worn prop-
erly. On the final day, participants returned study equipment
and completed an Equipment and Experience Questionnaire.
Finally, participants were debriefed on their experiences and
comfort with the study.

We recruited 38 polydrug users (age 41±10 years, 11 female,
6 dropped out) who agreed to wear the sensor suite. Because
drug use does not occur every day in all these users, we con-
ducted the study for four weeks to maximize the likelihood of
capturing real-life drug use events.

Compensation: Participants received $10/day for wearing the
sensors (and $5 bonus for 14+ hours of wearing), carrying the
smartphone, and completing device-prompted questionnaires
consisting of 32 items. In total, participants were paid up to
$380 plus bonus (if any) for four weeks of participation.

Self-report: The smartphone initiated Ecological Momentary
Assessment (EMA) questionnaires at random times. The 32-
item EMA asked participants to rate their subjective assess-
ment of affect on a 6-point scale. In addition, participants
were asked about the presence of drug and smoking cues.

Data Collected: Participants wore the physiological sensors
and carried the smartphone for 12.52 hours each day in their
daily, free-living condition. Due to sensor detachment, dis-
placement, loosening, and wireless loss between phone and
the sensor, some of the ECG data were not of acceptable qual-
ity. We computed the amount of unacceptable ECG data us-
ing a method proposed in [55] and discarded them. Accept-
able ECG data were obtained 10.54 hours per day on average
(around 10,447 hours of data in total); these were the data we
used for stress inference. We observed that most of the par-
ticipants wore the sensor and contributed data between 6:00
AM to 8:00 PM of a day. A total of 5,755 EMA responses
were collected (5.8/day), with a compliance rate of 88.0%.

STRESS INFERENCE FROM PHYSIOLOGICAL DATA
In this section, we describe the procedure we used to infer
physiological stress from wearable sensors. We adapt a recent
model called cStress proposed in [34].

cStress Model for Stress Assessment
The cStress model uses electrocardiogram (ECG) and respi-
ration data to infer stress. This model is applied to a set of
features collected from a minute’s worth of sensor measure-
ments, whereby consecutive minutes are non-overlapping,
and it determines whether that minute’s sensor readings cor-
respond to a physiological response to stressors. The model
includes 80th percentile of R-R intervals and Heart-Rate
Variability (HRV) from the ECG data, and the mean IE ratio
and the median of Stretch from the respiration data [34]. This
model was shown to classify stress and non-stress minutes
with 95% accuracy on independent subject validation (differ-
ent from training set) in lab stress testing. It also showed that
using HRV measure alone from ECG, as has been the case
in several prior works [46, 47], leads to a significantly lower
F1 score (from 0.78 to 0.56). Finally, the model was evalu-
ated against self-report from independent subjects in the field
and was found to have a F1 score of 0.71 [34]. We modified
the model to generate stress measurements every five seconds
from overlapping windows to get a smoother time series.

Inferred Measures of Stress
The cStress model provides a continuous measure of stress,
scaled to be between 0 and 1, for every 5 seconds of over-
lapping one-minute sensor data. This time-series of 5-second
probability-like measures of stress, for a particular partici-
pant, is referred to hereafter as “stress likelihood.”

To assess stress within intervals longer than a minute, we use
a different measure, called “stress density,” which accounts
for likely variation in contexts and activities (e.g. morning
vs. afternoon, driving vs. home). We define stress density as
the area under the stress-likelihood time-series divided by the
length of the interval.

REDUCING THE IMPACT OF CONFOUNDING FACTORS
Although physiology is affected by several kinds of events in
daily life, the main confounder for stress assessment is physi-
cal activity. To isolate data affected by activity, we first detect
physical activity from chest-worn 3-axis accelerometer data,
using an existing model [55]. Second, we estimate the time it
takes for physiology to recover from the effect of a just con-
cluded activity episode. Both data are then excluded.

Physiological readings generally return to baseline within
2 minutes after physical activity (unless the activity is es-
pecially intense) [20]. However, the majority of activity
episodes in our daily life are of short durations. Although
our participants were physically active 22.7% of their sensor-
wearing time, 95% of their activities lasted less than 2.1
minutes. Discarding 2 minutes of data after each activity
episode would result in excluding 35.0% of additional data.
We, therefore, need a more systematic person- and situation-
specific method to estimate recovery time. We consider
two approaches — a data based method and a model based
method.

Data Based Approach
To estimate the time it takes for physiology (e.g. heart-rate)
to recover after each episode of physical activity, as detected



Figure 1. ECG RR interval decreases due to activity which recovers
exponentially during stationary period.

using accelerometry, we can simply record the heart-rate be-
fore physical activity, designating it as the resting heart-rate,
and then compute the time it takes for the heart-rate to re-
turn to the resting heart-rate after the end of physical activity.
Heart-rate (HR) is defined as the number of beats per minute.

A key weakness of this direct approach for computing the re-
covery time is that, in the field setting, the HR may take a
very long time to recover to the most recent resting HR (see
Figure 1), due to confounding factors, such as caffeine in-
take, during or after the physical activity episode, that typi-
cally raise the HR, resulting in a higher resting HR.

Model Based Approach
To address this weakness, we developed an alternate, model-
based approach, which learns a participant-specific HR re-
covery rate that can be used to estimate the time during which
the heart-rate should recover, given the most recent peak
heart-rate during physical activity and resting heart-rate be-
fore physical activity. An additional benefit of the model is
that it summarizes the data succinctly in one parameter. Fi-
nally, computation of the recovery rate in the natural envi-
ronment could serve as an indicator of cardiovascular fitness,
similar to the 6-minute walk tests [56] done in clinics.

Estimation of Recovery Rate: According to [23, 33], heart-
rate after an arousal (e.g., activity) recovers exponentially
(see equation (1)). Figure 2, which plots one participant’s
heart-rate during a physical activity episode, illustrates this
exponential recovery. In equation (1), HRRest is the rest-
ing heart-rate before the physical activity episode, HRPeak
is end-of-activity heart rate at time t0, and HRR is heart rate
during the recovery period at time t. The constant τ repre-
sents the exponential recovery rate. Whilst there is a possibil-
ity that it can vary across time, our model makes a simplifying
assumption of a constant participant-specific recovery rate.

After we have learned the recovery rate for a particular par-
ticipant, we can use equation (2) to estimate the recovery du-
ration once physical activity is over.

HRR = HRRest + (HRPeak −HRRest)e−
t−t0
τ (1)

t− t0 = τ ln
HRPeak −HRRest
HRR−HRRest

(2)

To learn the recovery rate parameter τ for each participant, we
first identify and isolate clean episodes where there is at least

Figure 2. Heart-rate increases due to activity. Exponential recovery
parameter τ is learnt for each participant. 99% exponential recovery
curve (equation 1) is shown. Before the heart rate is recovered another
activity happened. So baseline heart rate is carry forwarded.

a 2-minute rest period (detected by accelerometry), needed to
compute HRRest, followed by an activity period of at least 2
minutes to represent a significant activity episode, and lastly
at least a 2-minute stationary period so we can compute the
latency to recover. Next, for each such episode, we derive
HRRest as the median HR of the last one minute of the initial
rest period, and HRPeak as the median HR of the last 10
seconds of the activity period. Finally, we compute the times
required for the HR to drop 10%, 20%, up to 90% of the total
increase in HR from rest to peak — [HRPeak − HRRest].
With these quantities defined for all episodes, equation (2)
can be used to learn τ using least-squares regression.

We computed the recovery rate τ for each participant. The
mean of recovery rates across all 38 participants τ̄ is 19.8 sec-
onds (SD=6.3). Participants’ mean 95% recovery duration of
59.3 seconds (SD=18.9), is consistent with the literature [20].

Isolating and Excluding Activity Confounds: Figure 2
shows an example of the effect of activity on heart rate in
daily life. For any such activity episode, we computeHRRest
and HRPeak. Then, we use equation (2) and the learned
value of τ to estimate the time interval (t − t0) required for
the heart-rate to return to resting heart-rate. Rather than re-
quiring HRR to return to HRRest exactly, we consider the
heart-rate that has dropped down to the line HRRest + σHR
as fully recovered, where σHR is the standard deviation of
all heart-rates during stationary intervals. Adding σHR to
HRRest allows for any natural variations in the resting heart-
rate throughout the day.

Using this model, in addition to the entire physical activity in-
terval, the estimated recovery interval (t− t0) that follows is
excluded from analysis, i.e., considered missing for the pur-
pose of stress inferencing. With this approach, only 7.4% of
data (as opposed to 35%) are excluded due to recovery from
physical activity, in addition to 22.7% that are directly af-
fected by physical activity (for a total of 30.1% of all data).

MISSING DATA IMPUTATION
Standard methods for finding trends in time-series data [3,8]
require continuous data streams. To apply these methods, we
needed a method to impute the missing data. Missing data in
time series of stress assessments can be due to unavailabil-
ity of data or due to presence of confounder such as physical



Figure 3. F1 score between self-report and sensor assessment range
from 0.130 to 0.917 with median 0.717. Bottom 5 have unacceptable
self-report consistency score with median cronbach’s alpha score 0.335
while overall consistency score is 0.843.

activity. Before imputation, we need to rule out the possibil-
ity that the data are Missing Not At Random (MNAR) [17].
We use the self-report item “Nervous/Stressed?” (Likert 1-6)
to check the assumption of independence. To address par-
ticipant biases, we use the z-score of self-report responses.
We find no significant difference in self-reported stress dur-
ing stationary moments and moments of physical activity
(p = 0.984 on Wilcoxon signed-rank test, paired two-tail,
n = 31). We also find no significant difference in self-
reported stress between stationary and missing data periods
(p = 0.841 on Wilcoxon signed-rank test, paired two-tail,
n = 24). Therefore, we conclude that our missing data in
stress assessments are not MNAR. They can be either Miss-
ing Completely At Random (MCAR) or Missing At Random
(MAR) [17].

We believe that our missing data should be considered Miss-
ing At Random (MAR) [10] because stress can be explained
by other known contextual variables [21, 24, 54] such as day
of the week, time of day, previous stress levels, and the slope
and intercept of previous time-series samples. We use these
variables to impute the missing data using the K-Nearest
Neighbor method proposed in [27, 60, 63].

We note that although we impute missing data to have a con-
tinuous time-series of stress assessments, we programmed
our JITI model so that it provides an intervention only
when there are non-imputed sensor-inference data (data-loss
<50%) with no confounding physical activity.

FIELD VALIDATION OF STRESS ASSESSMENT
The previously-described cStress model captures the instan-
taneous physiological response to stress. Although this model
was validated in both lab and field settings [34], before using
it on our dataset obtained from polydrug users, we validate
it against their field self-reports. We use the same approach
described in [34] to map cStress output to self-report ratings.

Figure 3 summarize the F1 scores across participants. They
range from 0.130 to 0.917 with a median of 0.717. Although
the F1 scores are acceptable for majority of the participants,
there are 5 participants whose low F1 score seem to suggest
poor agreement between self-reported stress and the model
output. This observation has lead us to analyze the consis-
tency of their self-reports, because they may be subject to
consistent bias or careless responding.

Figure 4. Timing of just-in-time stress intervention for momentary
and significant stress episode. Starting of a rectangular region indicates
precise proactive intervention timings generated by MACD.

We use Cronbach’s alpha [5] to assess the consistency of the
self-reported responses. Cronbach’s alpha measures the in-
ternal consistency of items that measures the same psycho-
logical construct. In most studies, an alpha score of 0.7 or
higher is regarded as acceptable [5].

We compute the Cronbach’s alpha using 5 affect items of
self-report — “Cheerful?”, “Happy?”, “Frustrated/Angry?”,
“Nervous/Stressed?”, and “Sad?” (The two positive items,
“Cheerful?” and “Happy?”, were reverse-coded). The over-
all consistency score across of all participant’s self-reports is
0.843. We compute Cronbach’s alpha for the 5 participants
from Figure 3 who show poor F1 score. They have unaccept-
able self-report consistency scores with a median Cronbach’s
alpha of 0.335. Furthermore, the participant with the smallest
F1 score (0.13) answered “3” on item “Nervous/Stressed?”
in 173 out of 177 self-reports, suggesting a bias toward neu-
tral self-assessment. These observations also demonstrate the
value of an objective sensor-based model of stress.

The above test not only demonstrated the validity of the
cStress model in our independent data set, but it also shows
the effectiveness of the imputation process since this valida-
tion was done on the imputed time series.

LOCATING STRESSFUL EPISODES
There are two types of JITIs. Proactive JITIs are intended to
precede and prevent an adverse event, such as an escalation of
moderate stress to severe stress. Reactive JITIs follow an ad-
verse event and are intended to mitigate its effects. Although
we did not implement a JITI in the current project, we de-
veloped our assessment methods with that goal in mind. For
either type of JITI, we need a method to determine from a
time series of stress data whether a significant stress episode
is occurring and if so, when it starts and ends.

To find significant stress episodes in our rapidly varying time-
series data, we adapt a stock-prediction model. Such a model
operates on a similar dataset, where there exist time-series
of stock prices and the objective is to predict the precise
moments of buy or sell events, based on prior observations.
Methods such as the Relative Strength Index (RSI) [64] and
Bollinger Band [6] estimate whether stock is in an oversold
or overbought condition and provide a buy or sell signal, re-
spectively. “Oversold” means there are fewer people who can



sell the stock relative to the number wishing to buy, indicat-
ing that the stock is undervalued and will eventually increase
in price. The reverse is true for stocks that are overbought.

However, the assumptions that apply to stock prices do not
hold for stress levels. If someone is extremely relaxed it
does not imply that his/her stress level will go up as a con-
sequence. Fortunately, this assumption is not built into the
method we use, called Moving Average Convergence Diver-
gence (MACD) [3], which has recently been used to detect
trends in physiological data [33]. MACD estimates the trend
based on short-term and long-term Exponential Moving Aver-
age (EMA). It provides one signal when the trend is going up
and another signal when it is going down. When applied on
the stress likelihood time-series, MACD can provide a signal
for a proactive intervention when the stress likelihood is go-
ing up and a reactive intervention when the stress likelihood
is going down.

MACD is computed as follows:

M = EMA(L;wslow)− EMA(L;wfast)

S = EMA(M ;wsignal),
(3)

where L is the stress likelihood time-series, M is the so-
called MACD line, and S is the so-called MACD Signal Line.
As the formula shows, M is calculated by subtracting a fast-
moving, short-term EMA line from a slow-moving, long-term
EMA line. The intersection of M and S indicates a change
in trend, and the sign of the difference between M and S in-
dicates whether the trend is positive or negative.

Before applying MACD, it is important to address the fact
that the stress likelihood time-series is rapidly varying and
that it may contain inaccuracies as it is the output of a ma-
chine learning model that is rarely perfect. To account for
this, we first smooth the stress likelihood time-series using
a simple moving average with a 2 minute window length, a
duration we selected based on visual inspection.

We tune the window length parameters, wslow, wfast, and
wsignal, used in (3), seeking to maximize gain

N , where gain is
defined as the total area under the stress likelihood time-series
curve during positive-trend intervals, whereby the start and
end of each positive-trend interval are dictated by the MACD
rule, mentioned above, and N is the number of positive-trend
intervals. Dividing by N discourages window lengths that
result in a very large number of short positive-trend inter-
vals. Using a grid search with progressive zoom, with initial
grids covering the range from 5 seconds to 30 minutes for
each parameter, we found that the optimal window lengths
are: wslow = 7.5 minutes, wfast = 1.67 minutes, and
wsignal = 14.2 minutes, respectively.

Figure 4 shows a typical example of stress likelihood time-
series, with colored boxes highlighting the positive-trend in-
tervals, chosen by the MACD rule using the optimal window
length parameters. As the figure illustrates, this approach
is able to detect starts for good-quality positive-trend inter-
vals in stress likelihood time-series. Additionally, we show
that stress densities for the minute after the detected positive-
trend interval starts are significantly greater than those for the

Figure 5. The likelihood of stress follow beta distribution with shape
parameter α = 0.222 and β = 1.027. Significant stress threshold is
0.782 (p=0.95).

preceding minute (p < 0.001 on Wilcoxon signed-rank test,
paired one-tail, n = 15, 434). As an added bonus, we can
use the MACD rule to comprehensively mark the start and
end of each stress episode, defined as the interval contain-
ing a positive-trend interval and an immediately following
negative-trend interval.

Defining Significant and Momentary Stress Episode
We define two types of stress episodes: Significant Stress
Episode (SSE) and Momentary Stress Episode (MSE).
MACD divides the stress-likelihood time-series into smaller
variable length, increasing and decreasing episodes. An
episode in the time-series is defined as an increasing trend,
immediately followed by a decreasing trend. There are
15,434 such episodes. However, in some episodes, stress-
likelihood does not cross the binary stress classification
threshold (from cStress). Such instances are discarded, leav-
ing 9,087 episodes for further analysis. Significant stress
episodes are those that have a high likelihood of stress and
persist for a significant duration. All others are momentary.

To decide which stress likelihoods are significantly high,
we calculate a stress-likelihood threshold ν based on the
95th percentile of stress-likelihood values. To address the
between-participant differences, we calculate participant-
specific thresholds, based on each participant’s stress likeli-
hoods only. All stress episodes with likelihoods above this
threshold are marked as SSE candidates.

Figure 5 is a histogram of all stress likelihoods pooled to-
gether. As it shows, the stress likelihoods are skewed to the
left and follow the Beta distribution with parameter estimates
α = 0.222 and β = 1.027. We had sufficient data for every
participant, from which ν’s could be easily found. If suf-
ficient data are not available for a participant (e.g., when a
participant has just begin providing data), we can compute ν
based on the estimated parameters of the Beta distribution.
In particular, the likelihood threshold ν can be calculated us-
ing the inverse Beta Cumulative Distribution Function (CDF),
F−1Beta(p = 0.95|α = 0.222, β = 1.027).

Figure 6 illustrates how duration threshold, λ, informs the se-
lection process for SSE candidates. We first select the desired
number of significant stress episodes per day, d, and then,
we can simply select the λ that corresponds to d episodes
per day. The durations of SSE candidates follow the Log-



Figure 6. Stress episode with high likelihood of stress (95th percentile)
(see figure 5) and a duration of more than duration threshold is marked
as a significant stress episode. For a duration threshold 7.3 minute leads
to one expected significant stressful episode per day (10+ hours of sensor
wearing time).

Significant Stress Episode Momentary Stress Episode
Duration
(minute)

Total
Count

E(count)
per day

Total
Count

E(count)
per day

13.5 498 0.5 8,589 8.7
7.3 997 1.0 8,090 8.2
2.4 1,992 2.0 7,095 7.2

Table 1. In total there are 9,087 stress episodes with an expected count
per day of 9.2. A duration threshold of 13.5 minutes labels 498 signifi-
cant stress episodes, with an expected daily count 0.5.

Normal distribution, with estimated parameters µ = 2.064
and σ = 0.871. Out of 9,087 stress episodes, 2,082 con-
tains high stress likelihood (2.1/day). Researchers who are
in the designing phase of a stress intervention with no ac-
cess to data, can calculate λ using the following formula:
E(SSE/day) = (1− FlogNorm(λ|µ = 2.064, σ = 0.871))∗
2.1, where FlogNorm(d|µ, σ) is the LogNormal CDF.

The rule for identifying the SSEs is as follows — all those
stress episodes that have stress likelihoods greater than the
threshold of ν and persist for duration greater than λ. We
identify other stress episodes as MSEs. Figure 4 shows sev-
eral examples of SSEs and MSEs.

Table 1 summarizes descriptive statistics for SSEs and MSEs.
In total, there are 9,087 stress episodes, with an expected
daily frequency of 9.2. A duration threshold of 13.5 minutes
labels 498 (or 0.5/day) as significant stress episodes.

APPLICATIONS OF OUR MODEL
To demonstrate the utility of our model, we analyze the rela-
tionship between successive stress episodes and the variabil-
ities in stress episodes across persons and situations, time of
day, physical activity, and location. Finally, we investigate
the feasibility of predicting the onset of a significant episode
upon observing a rapid rise in stress.

Role of Prior Stress
We analyze the relationship between durations of successive
stress episodes. Figure 7 is a scatter plot of the duration
of the current stress episode versus the duration of the pre-
ceding stress episode. We observe a healthy correlation of
0.42. This correlation can be explained by theory and ev-
idence [30, 31, 50] suggesting a spiral process where current

Figure 7. Next stress duration as a function of current stress duration.
Surprisingly, the correlation observed here is 0.4243.

Figure 8. (a) Overall participants stress. We observe that there exist
wide between person variation. (b) Day wise stress for the participant
with maximum stress density. We observe that there exist wide between
day variation.

exposure to stressors can lead to subsequent reactivity to other
stressors by attenuating the state coping capability of the per-
son. For example, stressors such as facing financial troubles
may decrease the person’s stress coping capacity. This may
lead the person to respond with subsequent stress to an event
or an environment that would, in other circumstances, be easy
to deal with, such as being in a noisy environment.

Need for Personalization
We next analyze the variability in stress densities across par-
ticipants and across days for the same participant. Figure 8(a)
shows the stress density for each participant in increasing or-
der. There is wide between-person variation. The two most
stressed participants are twice as stressed, on average, as the
two least stressed participants. Figure 8(b) shows daily stress
for the participant with maximum overall stress density. Here,
for 4 (out of 27) days, that participant had three times lower
stress density than he/she had on average. On the other hand,
the most stressful day has a stress density twice the overall
average. These observations demonstrate that the frequency
(or even the content) of stress interventions may need to be
calibrated to each person and for each day.

Temporal Effect on Stress
We do not observe any significant difference in stress level be-
tween weekdays and weekends (0.168 vs. 0.163, p = 0.744
on Wilcoxon signed-rank test, paired two-tail, n = 38). Most



Figure 9. Role of temporal and activity on stress density . Here morning
is defined as before 8 AM, day time as 8 AM to 7 PM, and night as after
7 PM. Red line represents the overall stress density.

of our participants did not have full-time jobs; this may ex-
plain the absence of a difference.

As hypothesized in [39], we observe that in our sample, stress
varies by time of day. It is low in the mornings, rises during
the middle portion of the day, and subsides again at night.
These differences were significant in pairwise comparisons
of midday versus morning (0.186 vs. 0.105, p < 0.001 on
Wilcoxon signed-rank test, one-tail, n = 38) and midday ver-
sus night (0.186 vs. 0.133, p = 0.001 on Wilcoxon signed-
rank test, one-tail, n = 38), and not morning versus night
(0.105 vs. 0.133, p = 0.055 on Wilcoxon signed-rank test,
one-tail, n = 38). These are expected observations, as the ac-
tive day is likely spent looking for work and drugs and being
exposed to drug cues and potential conflicts. Some of these
events may occur during evening and night times as well, but
are less likely than during the daytime.

Effect of Activity on Stress
Even after we remove the confounding periods of moderate to
high physical activity, we still find that stress density for the
next 15 minutes after a walk is higher than usual, as shown in
Figure 9. In contrast, stress density was lower in the 60 min-
utes following a 60 minutes of inactivity, (which generally
happen at home) (0.186 vs. 0.117, p = 0.001 on Wilcoxon
signed-rank test, paired one-tail, n = 38).

This observation seems to contradict the common belief that
physical activity such as walking helps to reduce stress [15].
This apparent contradiction could be because our partici-
pants’ physical activities usually corresponds to transporta-
tion (e.g., walking and public transport). Upon conclusion
of these episodes, they could have been exposed to cues, un-
pleasant environments, work challenges, etc. They could also
have been engaged in jobs that required significant physical
activity. This observation prompted us to investigate the role
of environmental context in stress.

Environmental Effect on Stress
To analyze the effect of environment on stress, we use
the Neighborhood Inventory for Environmental Typology
(NIfETy) [25] as a measure of environmental disorder. GPS
data is mapped to this index. The collection of NIfETy data
has occurred in several waves, starting in 2005. We use data
from Wave Eight, because they were collected close in time to
our participants’ provision of GPS data. During Wave Eight,
trained NIfETy raters sampled 528 individual georeferenced
blockfaces in the city where the study was conducted. The

Figure 11. The likelihood of stress for one participant overlaid on
the disorder map. Disorder here is the aggregated posterior probabil-
ity value for top 10 NIfETy variables (see figure 10) with κ > 0.70.

raters noted the presence or absence of each of 77 variables,
which were divided a priori into five categories: (1) Social
Disorder, (2) Physical Disorder, (3) Drug Paraphernalia, (4)
Adult Activity, and (5) Youth Activity.

Method: To estimate probable NIfETy ratings for the areas
between the 528 rated city blockfaces, we develop a model
that incorporated data from remote-sensing-derived maps of
surface imperviousness and landcover [65]. The remote-
sensing data consist of 180,000 pixel values measured as an
image across the city. Next, we use a distance matrix to mea-
sure the distance between all NIfETy blockfaces and the cen-
troid coordinate location for individual pixels in the remote
sensing image of the city. We complete the distance mea-
surements iteratively, where the first matrix is the distance
from each of the 180,000 pixels to the closest NIfETy block-
face. The second iteration is the distance from each pixel to
second-closest NIfETy blockface. This process is replicated
with the distance matrix for all 528 NIfETy blockfaces, so
that we have 528 distance layers for each of the 180,000 pix-
els. These layers are then rasterized for the city and sampled
for each NIfETy location.

Next, we develop a RandomForest based classifier [7] to
predict a dichotomous outcome (i.e., 0 = “absent” or 1 =
“present”) for each of the 77 NIfETy variables, using the 2 re-
mote sensing layers, coordinate location, and the 528 distance
values. We reason that with the distance values included,
the machine-learning model would generate predictions sim-
ilar to those of Kriging, a common geospatial interpolation
method that uses distance alone to make its predictions [18].
By adding remote-sensing data to our model, we account for
real-world physical environments in the city.

We then generate a citywide map of inferred probabilities for
each of the 77 NIfETy variables at each pixel. We use Co-
hen’s kappa to compare model-inferred probabilities to actual
ratings at the NifETy blockfaces (representing a gold stan-
dard). Only NIfETy values with a kappa greater than 0.4 are
used in our analysis here (n=61) as predictors of stress ratings.
The posterior probability computed by the Random Forest
model is used to infer the binary labels: “absent”/“present”,
using 0.5 as the binary threshold.

Findings: Figure 10 presents the stress densities across 37
different location contexts, for which the classification κ >
0.7, distinguishes between cases where the context is present
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Figure 10. Effect on stress density across different location contexts detected with κ > 0.7. Noisy environment is highly associated with stress.

and absent. We observe that noisy location; presence of graf-
fiti, cigarette butts, trash in street, and bars are associated
with high stress likelihood. Bars may be a potent cue for
drugs and hence may elevate stress in our population. In con-
trast, locations where the NIfETy raters had seen male adults
involved in positive interaction and youth playing are associ-
ated with lower stress than average.

This suggests that geolocation tracking can help inform the
timing of JITIs, that might, for example, propose a relatively
less stressful route. As an example, Figure 11 shows one
participant’s stress assessments overlaid on disorder map of
the city. Disorder here is the aggregated posterior probability
value for the top 10 NIfETy variables with κ > 0.70. The
figure suggests that people are more likely to be stressed in
some specific parts of the city with high disorder score.

Prediction for Proactive Stress Intervention
As another application of our model, we employ it to train
a classifier for predicting significant stress episodes. As de-
scribed earlier, we use the MACD method to identify and lo-
cate stress episodes. All stress episodes, momentary or signif-
icant, are considered candidate windows during the training
process. Our goal in this prediction task is to determine early
on, as soon as an MSE is detected, whether it will become
an SSE, which essentially becomes a MSE/SSE classification
task. For this task, we identify and compute 173 candidate
features, and then train a model with 100 selected features.

Feature Computation: We compute 173 features to train a
MSE/SSE classifier. These features are based on the observa-
tions and findings presented earlier.

Time and Day (3 features): As shown in Figure 9, there are
temporal factors that affect stress, such as time of day. There-
fore, we include the following features: “time of day,” “hour
of day,” and “weekday”.

Previous Stress Episode (3 features): As shown in Figure 7,
durations of adjacent stress episodes are correlated. Hence,

we include the features “duration of previous stress episode,”
“time since previous episode,” and “time required to cross
binary stress threshold.”

Slope and Intercept (22 features): We use the slope and in-
tercept of a best-fit line, fitted to past stress likelihood val-
ues. The rationale behind the inclusion of this feature was
an assumption of a “calm before the storm.” In addition,
a fast ramp-up of the stress likelihood has a good potential
to break into an SSE. To compute these features, we use the
slope and intercept associated with the crossing of the binary
stress threshold. We also use the slope and intercept of prior
30 sec, 1 min, 2 min, etc., up to 10 min.

Prior Stress Density and Skewness (30+30 features): Figure 7
suggests that the prior stress density is correlated with the
current stress density. Hence, we compute the stress densities
of the previous N minutes, where N increases from 1 to 30.
We also compute the skewness of the previous N minutes,
varying N from 1 to 30.

Location (61 features): Figure 10 shows the apparent effect
of location on stress density. We use 61 NIfETy scores out of
77 which are detected with performance κ > 0.4.

Physical Activity (24 features): Figure 9 shows that there is
a significant association between the post-walk period and a
high stress likelihood. Inspired by [58], we use 24 aggregated
features of activity (All-N, Any-N, Duration-N, and Change-
N) over windows of varying sizeN — 5 min, 10 min, 15 min,
20 min, 25 min, and 30 min.

Feature Selection: To improve the generalization perfor-
mance of the classifier, we perform feature selection and re-
tain only the top 100 features with the highest information
gain [13]. This ensure approximately one feature for every
100 samples (total 9,087 samples).

Model: We train a RandomForest learning algorithm [7] to
discriminate between MSEs and SSEs. To address the is-
sue of imbalanced class sizes, we use a cost-sensitive clas-



Figure 12. Tradeoff analysis for triggering frequency of stress inter-
vention. The x-axis represents model proposed triggering frequency of
stress intervention per day and two y-axes represent precision and recall
for predicting SSEs.

Duration
(minute)

E(count)
per day Accuracy Kappa

13.5 0.5 94.8% 0.444
7.3 1.0 88.3% 0.428
2.4 2.0 77.7% 0.495

Table 2. Performance of the prediction of Significant Stress Episodes
with duration 13.5, 7.3, and 2.4 minute.

sification approach [16], assigning a higher cost to misclas-
sifications of actual SSEs. For evaluation, we use leave-one-
subject-out validation.

Table 2 summarizes the performance of our model. The
model is able to predict SSEs with a duration of 13.5 min-
utes with accuracy of 94.8% and κ = 0.444. Figure 12 shows
the tradeoff analysis. The x-axis represents a triggering fre-
quency of stress intervention per day and the two y-axes rep-
resent precision and recall for predicting SSEs. Researchers
designing an intervention can use this information to find a
triggering frequency that will achieve specific values of pre-
cision and recall.

DISCUSSION, LIMITATIONS, AND FUTURE WORK
Our work has several limitations. First, physiological indices
of stress can be confounded by pharmacological factors, such
as smoking, coffee intake, or other drugs. Automated detec-
tion of those events could help further refine stress inferences.

Second, we assume that the recovery rate is constant for a par-
ticipant, but, in reality the rate may change over the course of
a day or context (e.g., caffeine intake). Calibrating the recov-
ery rate to time of day or to contexts (e.g., smoking, drinking,
etc.) represents interesting future work opportunities.

Third, our model for generating stress intervention triggers
can be supplemented with visual-exposure (via smart eye-
glasses), digital traces (e.g., appointments on a smartphone
calendar), and social exposures (e.g., twitter, facebook, etc.)
to improves its accuracy and context sensitivity.

Fourth, our dataset was collected from a specific population
from a specific location, whose lapses due to stress might lead
to devastating consequences. Therefore, the findings and their
implications may differ with other populations. Nevertheless,
we present a method together with its feasibility and applica-

bility that can potentially be carried over to other populations
and locations.

Finally, our work demonstrates only the mechanism for de-
termining when to intervene. It does not directly provide an
efficacious intervention, which requires making choices on
not only the timing of delivery, but also the right content, the
adaptation mechanisms for personalizing it to the individual
and the user’s context, and selecting the right modality for
delivery (e.g., on the phone, on a smart watch). Conducting
a micro-randomized trial [49] could be a natural next step to
determine the most efficacious strategy for personalized JI-
TIs. Several populations can be targeted for stress JITI where
stress plays a significant role. They include those with prob-
lems of addiction, migraine, panic disorders, depression, etc.

CONCLUSION
Just-in-time interventions have been possible for quite some
time for applications such as traffic-aware navigation. GPS
sensors have also made it possible to explore interventions
that are based on geofencing. Our work presents the first ap-
proach to analyze the time-series of stress data for determin-
ing the timing of just-in-time stress intervention. Given the
wide prevalence of stress and its adverse impacts on health,
job performance, and quality of life, stress management is
useful for everyone. This work opens up numerous oppor-
tunities to now design efficacious interventions for helping
dealing with daily stress in work life, social life, or otherwise.
For the specific population addressed here — outpatients un-
dergoing treatment for addiction-stress management in real-
world circumstances will be most valuable if it is linked to
prevention of drug craving and relapse.

In addition to showing how time-series data can be mined for
determining the timing of interventions, our work makes sev-
eral methodological contributions. For example, our method
of estimating the recovery time of physiology from a physical
activity episode could possibly be used as a measure of car-
diovascular fitness outside of controlled settings for heart pa-
tients. Our work also proposes a method to mine time series
sensor data on human health status and explore the tradeoffs
between intervention frequency and probability of capturing
the event of interest. This approach can be adopted to analysis
of other sensor data that may help determine the best timing
and frequency for mHealth interventions in daily life.
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