
 1

24 March 2005

Multiple Recursive Random Number Generators
and their APL programmes

Jean-Louis Foulley, INRA-SGQA

78352 Jouy-en-Josas Cedex, France
E-mail: jean-louis.foulley@jouy.inra.fr

As stated by many authors, the Linear Congruential Generators (LCGs) proposed by Lehmer
(1951), including the most popular one, 31

116807 mod 2 1i iX X −= − (Rittaud, 2004), are
known to have several serious defects such as short periods regarding our today needs and
poor multidimensional structures. This is especially the case for power-two moduli which
should be absolutely avoided (L’Ecuyer, 1998): see table 1 extracted from L’Ecuyer (2004)
for a list of such generators.

There are now alternative tools that correct such defects and that are both portable and
efficient and, in addition, may be implemented without much difficulty. Most of them belong
to the class of the so-called Multiple Recursive Generators (MRG) which are linear
congruential generators based on a state vector having k elements.
 1 1 2 2(......) modi i i k i kX X X X mα α α− − −= + + + . (1)
They can be divided into two categories according to the value of their modulus m . The
“digital” ones are based on 2m = and thus produce a sequence of bits. Those can then be
combined by blocks of L bits to generate “words” which can be easily converted (dividing
them by 2L) into uniform (0,1) numbers. This class is the basis for the so-called Shift Register
Generators eg the Tausworthe (1965) generator, the Generalized Feedback (GFSR) generators
of Lewis and Payne (1973) and the Twisted GFSR generators including the most famous one,
the Mersenne-Twister “MT1937” proposed by Matsumoto and Nishimura (1998). For more
details see eg the reviews by Deng (1998), Hellekalek (1998), L’Ecuyer (1998) and Law and
Kelton (2000).

The second class comprises generators build with a large modulus, usually a prime number to
insure the largest period. Uniform random numbers on [)0,1 are in this case classically
calculated as /i iU X m= . To avoid the occurrence of zeroes, some procedures have been
proposed. For instance, Deng and Xu (2003) proposed to compute iU as ()½ /i iU X m= + .
L’Ecuyer (1999) converts 0iX = into iX m= and divides by 1m + . We will strictly apply the
procedure chosen by the author of the generator considered so as to make it perfectly
reproducible.
We will restrict our attention here to such MRG’s based on
 i) the most common value for a prime m ie 312 1m = − ;
 ii) a large value of k .
Provided the polynomial associated to (1) 1 2

1 2()k k k
kP x x x xα α α− −= − − − is a primitive

polynomial, the MRG in (1) reaches its maximum period 1kp m= − and also has the property
of equidistribution up to dimension k . The generators described here are presented in papers
by Deng and Xu (2003) and more recently by Deng (2005) following initial work on fast
MRGs by Deng and Lin (2000).

 2

DX-1597-4d
The first type of generators is a special class of MRGs (called DX-k in Deng and Xu’s (2003)
terminology) with the following formula (Deng, 2005, page 6):
 /3 2 /3() mod i i t i ki k i kX B X X X X m− −− −      

= + + + (2)

where B is the common multiplier / 3 2 / 3t kk kB α α α α      
= = = = , .   the ceiling function,

t refers to the smallest index for which the coefficient of i tX − is not zero; m is the usual
modulus equal to 312 1− . Here we will pay special attention to 1t = .
The one with the largest state vector is the DX-1597-4 (k = 1597) and, within that class, the
one with the largest multiplier (desirable property with respect to the lattice structure) uses

1 073 741 362B = (table II, column d, last row in Deng, 2005). Here / 3 533k =   and

2 / 3 1065k =   so that this generator is defined as

 31
1 533 1065 15971073741362() mod 2 1i i i i iX X X X X− − − −= + + + − (3)

This formulation requires a 64-bit integer data type. When this norm is not available, one can
employ, as explained in the paper, an indirect computation based on writing B as

1 2 mod C C B p= with 1 2() /e C C B p= − having the smallest value for 19
1 20 , 2C C< < . This

assumes that a double precision IEEE 754 standard is available. Here 1 29746C = and

2 36097C = and 0e = and the DX-1597-4d is calculated as

 31 31
1 533 1065 159729746 36097() mod 2 1 mod 2 1i i i i iX X X X X− − − − = + + + − −  (4)

Here are the corresponding APL programmes.

At start we need to initialize the 1597 element-seed. I suggest to do it simply via the usual
linear congruent generator LCG (75, 231 -1) with an initial value of 1 which gives
16807 282475249 1622650073 984943658 1144108930,…., 1476003502 1607251617
2028614953 1481135299 1958017916
(see the programme in appendix A for LCG)

Output: R a quasi random number between 0 and 231 -2

Example:Using the previous seed R1597, one obtains for 10 successive draws
221240004 2109349384 527768079 238300266 1495348915 1589596592 1437773979
813027151 401290350 1732813760

Note that this programme is not intended for a direct use in simulation works, but it may be
useful to check that outputs are exactly reproducible.

Input: N: size of the vector of N uniform numbers to generate
Output: R such a vector of U(0,1) numbers calculated as ()½ /i iU X m= +

 3

With the same 1597-seed as before, we get for N=50, one obtains
 -as the first five
0.1030229053 0.9822423502 0.2457611634 0.1109672089 0.6963261013
 -as the last five
0.3426870549 0.1907795485 0.7101110752 0.9272213492 0.5966575984

Input: a positive integer N
Output: R a random “equiprobable” draw among the integers 1,2,…,N calculated as

()x 0,1 1iN U +   where []. is the symbol for the integer part.

Example : 10 successive draws among numbers from 1 to 10000, are
 1031 9823 2458 1110 6964 7403 6696 3786 1869 8070

DX-643-4d
The same can be done by applying formula (2) with k = 643 , 4s = , 1t = and

1 073 740 543B = resulting in DX-643-4d. In that case, the recurrence is (Deng, Table II,
column d, and following ones)

31
1 215 429 6431073740543() mod 2 1i i i i iX X X X X− − − −= + + + − (5)

It is computed via

 31 31
1 215 429 64330559 105410() mod 2 1 mod 2 1i i i i iX X X X X− − − − = + + + − −  (6)

The programmes are

Example:Starting with a seed R643 equal to 16807 282475249 1622650073 984943658
1144108930 470211272 101027544…. ie based on LCG (75, 231 -1) with an initial value of
1, one obtains for 10 successive draws:
1641505334 103236556 721745135 104437320 329533308 1025183836 1860188164
329379879 255862529 2125528287

 4

Input: N: size of the vector of N uniform numbers to generate
Output: R such a vector of U(0,1)’s

With the same 643-seed as before, we get for N=50, one obtains
 -as the first five
0.7643854875 0.04807326782 0.3360887691 0.04863241713 0.1534509047
 -as the last five
0.2580945304 0.9492599207 0.3861052375 0.1677643827 0.4536414728

Input: a positive integer N
Output: R a random draw among the integers 1,2,…,N

Example: 10 successive draws among numbers from 1 to 10000, are

7644 481 3361 487 1535 4774 8663 1534 1192 9898

DX-47-4b
Finally, one may wish to use something simpler and lighter but of good quality. Then, we
suggest the DX-47-4 based on 46281B = (see table II on page 8, column b) corresponding to
 31

1 16 32 4746281() mod 2 1i i i i iX X X X X− − − −= + + + − . (6)
The corresponding programmes (made along the same lines as previously) are

Output: R a quasi random number between 0 and 231 -2

Example : Starting from a seed R47 equal to 16807, 282475249, 1622650073, 984943658,
1144108930,… one gets

 5

839071403 1731758405 1606050126 1443462404 2109690996 2114024150 298132109
628783979 817598807 1011726052

Input: N: size of the vector of N uniform numbers to generate
Output: R such a vector of U (0,1)’s

Example: With the same 47-seed as before, we get for N=50, one obtains
 -as the first five
0.3907230701 0.8064128488 0.7478753697 0.6721645618 0.9824014257
 -as the last five
0.8843225815 0.9192814191 0.820364061 0.02971864796 0.4020915785

Input: a positive integer N
Output: R a random draw among the integers 1,2,…,N

Example: 10 successive draws among numbers from 1 to 10000, are
3908 8461 9571 2366 933 3699 1971 7298 5619 9900
3908 8065 7479 6722 9825 9845 1389 2929 3808 4712

MRG-1597-2
Deng (2005) also proposed MRG-k-s generators based on different construction procedures.
For k = 1597 and 2s = (MRG-1597-2), he gave this generator
 31

1 15971057217510 1066409146 mod 2 1i i iX X X− −= + − . (7)
When a 64-bit integer type is not available, it can be computed as

() ()31 31 31
1 159744653 71769 mod 2 1 48619 21934 mod 2 1 mod 2 1i i iX X X− −

 = − + − −  (8)

This generator, as DX-1597-4 described previously, has a period of ()1597311 2 1 1km − = − − ie

about 1014903 an has a uniform distribution up to dimension 1597k = .
Although this generator is a little bit more complicated than the corresponding DX-1597-s, it
has a more complex structure which, according to Deng, makes “harder to devise a general
empirical test that such generators will fail”.

The programmes are as follows:

 6

Example: starting with a seed R1597 equal to 16807 282475249 1622650073 984943658
1144108930 470211272 101027544… ie based on LCG (75, 231 -1) with an initial value of
1, one obtains for 10 successive draws :
1811133916 491217212 31477969 917602403 1251137860 2141366420 1997727199
1852033570 34235151 178125418

Input: N: size of the vector of N uniform numbers to generate
Output: R such a vector of U(0,1)’s

Example: With the same 1597-seed as before, we get for N=50,
 -as the first five
0.8433749514 0.2287408396 0.01465807181 0.4272919166 0.582606467
 as the last five
0.3458714908 0.3731809076 0.1382221401 0.2910157814 0.9041655634

Input: a positive integer N
Output: R a random draw among the integers 1,2,…,N

Example : 10 successive draws among numbers from 1 to 10000, are
 8434 2288 147 4273 5827 9972 9303 8625 160 830

 7

MRG32k3a

Another way to deal with a large modulus in a MRG is to combine MRG’s with smaller
moduli (L’Ecuyer, 1998; Deng et al, 2005). The generator considered here is a standard one
from L’Ecuyer (1999) known as MRG32k3a. It combines two MRG’s of order 3k = and is
defined as follows:
 1, 11 1, 1 12 1, 2 13 1, 3 1() modi i i iX X X X mα α α− − −= + + (9)

 2, 21 2, 1 22 2, 2 23 2, 3 2() modi i i iX X X X mα α α− − −= + + (10)

with
 11 12 130, 1403580, 810728α α α= = = − and 32

1 2 209m = − ; (11)

 21 22 23527612, 0, 1370589α α α= = = − and 32
2 2 22853m = − . (12)

The final generator combines these two according to
 1, 2, 1() modi i iZ X X m= − . (13)
The corresponding uniform (0,1) generator is calculated as (l’Ecuyer, 1999)
 ()*

1/ 1i iU Z m= + , (14)

where *
iZ corresponds to *

i iZ Z= if 0iZ > and *
1iZ m= otherwise. This avoids the

occurrence of zeroes and ones that might cause problems for simulating some non-uniform
distributions: eg the logistic, exponential, Weibull (Devroye, 1986; Evans et al, 1993).

According to L’Ecuyer (1999), this generator is approximatively equivalent to a MRG of
order 3k = with a modulus 1 2m m m= , 1 18446645023178547541α = ,

2 3186860506199273833α = and 3 87386136264398222622α = .

It has a period of ()()3 3 191
1 21 1 / 2 2p m m= − − ≈ 573x10 . It is also well behaved up to

dimension 45. Its implementation requires as previously the IEEE 754 double precision
standard.

The APL programmes proposed here take advantage of the vector operating procedures of
APL to calculate the two component generators simultaneously.

At start we will need to initiate the seed R32K as a (3x2) matrix build from the usual LCG eg
 16807 984943658
 282475249 1144108930
1622650073 470211272

ie seed for X1: 16807 282475249 1622650073
and for X2: 984943658 1144108930 470211272

 8

Input: N: size of the vector of N uniform numbers to generate
Output: R such a vector of U(0,1)’s computed as in (14).

Example : With the same seed as before, we get for N=50, one obtains
 -as the first five
0.7669364155 0.7286176883 0.5890946068 0.2480655726 0.2741894033
 as the last five
0.264122945 0.1468770745 0.5614629734 0.177519304 0.7555685728

If for instance, one wishes to produce draws of 32-bit integers (numbers ranging from 0 to

322 1−), one simply has to calculate ()322 0,1iU   , ie the integer part (symbolized by [].) of

the product of 322 by an uniform random number defined as before; this can be done in APL
with: ()2*32 x GMRG32K N for N draws. Here for N=10, one has
3293966822 3129389142 2530142070 1065433521 1177634520 1644939348 3413537337
1852571700 115527021 783713440.
This example was used as a test of validation of results from our APL programmes with the
original ones developed by L’Ecuyer’s team (see appendix B).

Input: a positive integer N
Output: R a random draw among the integers 1,2,…,N calculated as ()x 0,1 1iN U +  

Example: 10 successive draws among numbers from 1 to 10000, are
 7670 7287 5891 2481 2742 3830 7948 4314 269 1825

A programme in C is also provided: see appendix C

 9

Conclusions

The generators presented here offer good opportunities to update the classical LCG generators
still used in many instances. There are alternatives to the modulus-two generators and their
GFSR and other extensions provided by some softwares (eg “R” and the MT-19937). The
formulation and programming of the MRG and c-MRG’s shown here are easy provided a
double precision IEEE 754 standard is available. Moreover, they have passed the “Crush”
batterie of stringent tests defined in the well-known TESTU01 suite developed by Prof Pierre
L’Ecuyer.

Finally, among the possible choices, I would suggest the two generators:
 -the DX-1597-4d by Deng (2005) as it has the largest order k among the MRGs, more
non-zero terms and is more efficient numerically than the MRG-1597-2;
 -the MRG32k3a by L’Ecuyer (1999) for its intrinsic properties despite a shorter period
and also due to its increasing popularity (SAS, Arena, Automod, …).

Remember the advice given by most specialists in this field: “The most prudent policy for a
person to follow is to run a Monte Carlo program at least twice using quite different sources
of random numbers before taking the answers of the programme seriously; this not only will
give an indication of the stability of the results, it will also guard against the danger of trusting
in a generator with hidden deficiencies” (Knuth, 1998).

Acknowledgements

I am indebted to Professor Lih-Yuan Deng from the Department of Mathematical Sciences of
the University of Memphis, Memphis, TN for his valuable assistance in reading this
manuscript, providing me with some of his recent works and also checking the numerical
examples of the DX-k and MRG generators shown here.

Special thanks are also expressed to Dr Richard Simard from “Laboratoire de Simulation et
d’Optimisation”, Département d'Informatique et de Recherche Opérationnelle, Université de
Montréal, who checked my test examples for the MRG32ka and gave me further explanations
about this generator.

I also would like to thank the Monolix (“Modèles Non Linéaires Mixtes”) group for
stimulating discussions on that subject, and a few other people from the APL community (S
Baron, E Lescasse, E McDonnell, M Righetti, B Rutiser and my INRA colleagues JJ Colleau
and L Ollivier) for their real interest in this matter. I am especially grateful to JJ Colleau for
some suggestions which greatly improve the efficiency of the APL programmes.

Sites

http://www.cs.memphis.edu/~dengl/dx-rng/ Prof Lih-Yuan Deng

http://www.iro.umontreal.ca/~lecuyer/ Prof Pierre L’Ecuyer

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html Matsumoto “Mersenne Twister”

 10

References

Deng L.Y., Uniform random numbers, Encyclopedia of Biostatistics, in: Armitage P, Colton T (Eds),
John Wiley & Sons, New York, 1998, Vol 5, pp. 4651-4656.

Deng L.Y., Efficient and Portable Multiple Recursive Generators of Large Order, ACM Transactions
on Modeling and Computer Simulation 15 (2005) 1-13.

Deng L.Y., Lin D.K.J., Random number generation for the new century, The American Statistician 54
(2000) 145-150.

Deng L.Y., Xu H., A system of high-dimensional efficient, long-cycle and portable uniform random
generators, ACM Transactions on Modeling and Computer Simulation 13 (2003) 299-309.

Deng L.Y., Li H., Shiau J-J.H., Theory and practice of combination generators, 2005 (submitted).

Devroye L., Non uniform random generation, Springer Verlag, Berlin, 1986.

Evans M., Hastings N., Peacock B., Statistical distributions, 2nd edition, J Wiley, NY, 1993.

Hellekalek P., Good random generators are (not so) easy to find, Mathematics and Computers in
Simulation, 46 (1998) 485-5005.

Knuth D.E., The Art of Computer Programming, volume 2 : Semi-numerical Algorithms. Addison-
Wesley, Reading, MA, 3nd edition, 1998.

Law A.M., Kelton W.D., Simulation modelling and analysis, 3rd edition, Mc Graw Hill, Boston, 2000.

L’Ecuyer P., Random number generation, Handbook on Simulation, Chapter 4, Wiley, 1998.

L’Ecuyer P., Good parameters and implementation for combined multiple recursive random number
generators, Operations Research 47 (1999) 159-164.

L’Ecuyer P., Simulation: aspects stochastiques, IFT6561, Notes de cours, Chapitre III, partie
I, http://www.iro.umontreal.ca/~lecuyer/cours.html, 2004

Lehmer D.H., Mathematical methods in large-scale computing units, Annals of Computer Laboratory
of the Harvard University 26 (1951) 141-146.

Lewis T.G., Payne W.H., Generalized feedback shift register pseudo-random number, algorithm,
Journal of the ACM 20 (1973) 456-468.

Matsumoto M., Nishimura T., Mersenne-Twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator, ACM Transactions on Modeling and Computer Simulation 8 (1998)
3-20.

Rittaud B., Fabriquer le hasard, 1. L’ordinateur à rude épreuve, La Recherche 381 (2004), 28-33.

Tausworthe R.C., Random number generated by linear recurrence modulo two, Mathematics of
Computation 19 (1965) 201-209.

 11

Appendix A:Programme for the LCG(75, 231 -1)

Input: N=number of values generated; Output: the corresponding vector of pseudo-random
numbers

At start, the seed ⁯RL is set to a given value

Example : With a seed of 1, one gets for the first ten draws:
16807 282475249 1622650073 984943658 1144108930 470211272 101027544 1457850878
1458777923 2007237709

 12

Appendix B: A test example for MRG32k3a

 13

Appendix C: C programme for MRG32k3a (due to Pierre l’Ecuyer and provided by
Richard Simard)

 #define norm 2.328306549295728e-10
 #define m1 4294967087.0
 #define m2 4294944443.0
 #define a12 1403580.0
 #define a13n 810728.0
 #define a21 527612.0
 #define a23n 1370589.0

 static double s10 = 12345, s11 = 12345, s12 = 12345,
 s20 = 12345, s21 = 12345, s22 = 12345;

 double MRG32k3a (void)
 {
 long k;
 double p1, p2;
 /* Component 1 */
 p1 = a12 * s11 - a13n * s10;
 k = p1 / m1; p1 -= k * m1; if (p1 < 0.0) p1 += m1;
 s10 = s11; s11 = s12; s12 = p1;

 /* Component 2 */
 p2 = a21 * s22 - a23n * s20;
 k = p2 / m2; p2 -= k * m2; if (p2 < 0.0) p2 += m2;
 s20 = s21; s21 = s22; s22 = p2;

 /* Combination */
 if (p1 <= p2) return ((p1 - p2 + m1) * norm);
 else return ((p1 - p2) * norm);
 }

 14

Table 1: LCG generators with a modulus power two (from L’Ecuyer, 2004)

