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As stated by many authors, the Linear Congruential Generators (LCGs) proposed by Lehmer 
(1951), including the most popular one, 31

116807 mod 2 1i iX X −= −  (Rittaud, 2004), are 
known to have several serious defects such as short periods regarding our today needs and 
poor multidimensional structures. This is especially the case for power-two moduli which 
should be absolutely avoided (L’Ecuyer, 1998): see table 1 extracted from L’Ecuyer (2004) 
for a list of such generators.  
 
There are now alternative tools that correct such defects and that are both portable and 
efficient and, in addition, may be implemented without much difficulty. Most of them belong 
to the class of the so-called Multiple Recursive Generators (MRG) which are linear 
congruential generators based on a state vector having k elements.  
 1 1 2 2( ...... ) modi i i k i kX X X X mα α α− − −= + + + . (1) 
They can be divided into two categories according to the value of their modulus m . The 
“digital” ones are based on 2m =  and thus produce a sequence of bits. Those can then be 
combined by blocks of L  bits to generate “words” which can be easily converted (dividing 
them by 2L ) into uniform (0,1) numbers. This class is the basis for the so-called Shift Register 
Generators eg the Tausworthe (1965) generator, the Generalized Feedback (GFSR) generators 
of Lewis and Payne (1973) and the Twisted GFSR generators including the most famous one, 
the Mersenne-Twister “MT1937” proposed by Matsumoto and Nishimura (1998). For more 
details see eg the reviews by Deng (1998), Hellekalek (1998), L’Ecuyer (1998) and Law and 
Kelton (2000). 
 
The second class comprises generators build with a large modulus, usually a prime number to 
insure the largest period. Uniform random numbers on [ )0,1  are in this case classically 
calculated as /i iU X m= . To avoid the occurrence of zeroes, some procedures have been 
proposed. For instance, Deng and Xu (2003) proposed to compute iU  as ( )½ /i iU X m= + . 
L’Ecuyer (1999) converts 0iX =  into iX m=  and divides by 1m + . We will strictly apply the 
procedure chosen by the author of the generator considered so as to make it perfectly 
reproducible.  
We will restrict our attention here to such MRG’s based on 
 i) the most common value for a prime m  ie 312 1m = −  ; 
 ii) a large value of k .  
Provided the polynomial associated to (1) 1 2

1 2( ) ....k k k
kP x x x xα α α− −= − − −  is a primitive 

polynomial, the MRG in (1) reaches its maximum period 1kp m= −  and also has the property 
of equidistribution up to dimension k . The generators described here are presented in papers 
by Deng and Xu (2003) and more recently by Deng (2005) following initial work on fast 
MRGs by Deng and Lin (2000).  
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DX-1597-4d 
The first type of generators is a special class of MRGs (called DX-k in Deng and Xu’s (2003) 
terminology) with the following formula (Deng, 2005, page 6): 
 /3 2 /3( ) mod  i i t i ki k i kX B X X X X m− −− −      

= + + +  (2) 

where B  is the common multiplier / 3 2 / 3t kk kB α α α α      
= = = = , .    the ceiling function, 

t  refers to the smallest index for which the coefficient of i tX −  is not zero; m  is the usual 
modulus equal to 312 1− . Here we will pay special attention to 1t = .  
The one with the largest state vector is the DX-1597-4 ( k = 1597 ) and, within that class, the 
one with the largest multiplier (desirable property with respect to the lattice structure) uses 

1 073 741 362B =  (table II, column d, last row in Deng, 2005). Here / 3 533k =    and 

2 / 3 1065k =    so that this generator is defined as 

 31
1 533 1065 15971073741362( ) mod  2 1i i i i iX X X X X− − − −= + + + −  (3) 

This formulation requires a 64-bit integer data type. When this norm is not available, one can 
employ, as explained in the paper, an indirect computation based on writing B  as 

1 2  mod C C B p= with 1 2( ) /e C C B p= − having the smallest value for 19
1 20 , 2C C< < . This 

assumes that a double precision IEEE 754 standard is available. Here 1 29746C =  and 

2 36097C =  and 0e =  and the DX-1597-4d is calculated as 

 31 31
1 533 1065 159729746 36097( ) mod  2 1 mod 2 1i i i i iX X X X X− − − − = + + + − −   (4) 

 
Here are the corresponding APL programmes. 
 
At start we need to initialize the 1597 element-seed. I suggest to do it simply via the usual 
linear congruent generator LCG (75, 231 -1) with an initial value of 1 which gives 
16807 282475249 1622650073 984943658 1144108930,…., 1476003502 1607251617 
2028614953 1481135299 1958017916 
(see the programme in appendix A for LCG) 

__________ 
 
Output: R a quasi random number between 0 and 231 -2 
 

 
Example:Using the previous seed R1597, one obtains for 10 successive draws 
221240004 2109349384 527768079 238300266 1495348915 1589596592 1437773979 
813027151 401290350 1732813760 
 
Note that this programme is not intended for a direct use in simulation works, but it may be 
useful to check that outputs are exactly reproducible.  

__________ 
Input: N: size of the vector of N uniform numbers to generate 
Output: R such a vector of  U(0,1) numbers calculated as ( )½ /i iU X m= +  
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With the same 1597-seed as before, we get for N=50, one obtains 
 -as the first five 
0.1030229053 0.9822423502 0.2457611634 0.1109672089 0.6963261013 
 -as the last five 
0.3426870549  0.1907795485  0.7101110752  0.9272213492  0.5966575984 

__________ 
 
Input: a positive integer N 
Output: R a random “equiprobable” draw among the integers 1,2,…,N calculated as 

( )x 0,1 1iN U +    where [ ].  is the symbol for the integer part.  
 

 
 
Example : 10 successive draws among numbers from 1 to 10000, are 
 1031  9823  2458  1110  6964  7403  6696  3786  1869 8070 
 
DX-643-4d 
The same can be done by applying formula (2) with k = 643 , 4s = , 1t =  and 

1 073 740 543B =  resulting in DX-643-4d. In that case, the recurrence is (Deng, Table II, 
column d, and following ones) 

31
1 215 429 6431073740543( ) mod  2 1i i i i iX X X X X− − − −= + + + −  (5) 

It is computed via 

 31 31
1 215 429 64330559 105410( ) mod  2 1 mod 2 1i i i i iX X X X X− − − − = + + + − −   (6) 

The programmes are 
 

 
 
Example:Starting with a seed R643 equal to 16807 282475249 1622650073 984943658 
1144108930 470211272 101027544…. ie based on LCG (75, 231 -1) with an initial value of 
1, one obtains for 10 successive draws:   
1641505334 103236556 721745135 104437320 329533308 1025183836 1860188164 
329379879  255862529  2125528287 
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__________ 
 
Input: N: size of the vector of N uniform numbers to generate 
Output: R such a vector of U(0,1)’s 
 

 
 
With the same 643-seed as before, we get for N=50, one obtains 
 -as the first five 
0.7643854875  0.04807326782  0.3360887691  0.04863241713  0.1534509047 
 -as the last five 
0.2580945304  0.9492599207  0.3861052375  0.1677643827  0.4536414728 

__________ 
 
Input: a positive integer N 
Output: R a random draw among the integers 1,2,…,N 

 

 
Example: 10 successive draws among numbers from 1 to 10000, are 
 
7644  481  3361  487  1535  4774  8663  1534  1192  9898 

__________ 
DX-47-4b 
Finally, one may wish to use something simpler and lighter but of good quality. Then, we 
suggest the DX-47-4 based on 46281B = (see table II on page 8, column b) corresponding to  
 31

1 16 32 4746281( ) mod  2 1i i i i iX X X X X− − − −= + + + − . (6) 
The corresponding programmes (made along the same lines as previously) are  
 
Output: R a quasi random number between 0 and 231 -2 

 
 
Example : Starting from a seed R47 equal to 16807, 282475249, 1622650073, 984943658, 
1144108930,… one gets  
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839071403 1731758405 1606050126 1443462404 2109690996 2114024150 298132109 
628783979  817598807  1011726052  
 

__________ 
Input: N: size of the vector of N uniform numbers to generate 
Output: R such a vector of U (0,1)’s 
 

 
 
Example: With the same 47-seed as before, we get for N=50, one obtains 
 -as the first five 
0.3907230701  0.8064128488  0.7478753697  0.6721645618  0.9824014257 
 -as the last five 
0.8843225815  0.9192814191  0.820364061  0.02971864796  0.4020915785 

__________ 
Input: a positive integer N 
Output: R a random draw among the integers 1,2,…,N 
 

 
 
Example: 10 successive draws among numbers from 1 to 10000, are 
3908 8461 9571 2366 933 3699 1971 7298 5619 9900 
3908  8065  7479  6722  9825  9845  1389  2929  3808  4712 
 
MRG-1597-2 
Deng (2005) also proposed MRG-k-s generators based on different construction procedures. 
For k = 1597  and 2s = (MRG-1597-2), he gave this generator 
 31

1 15971057217510 1066409146 mod  2 1i i iX X X− −= + − . (7) 
When a 64-bit integer type is not available, it can be computed as 

( ) ( )31 31 31
1 159744653 71769 mod  2 1 48619 21934 mod  2 1 mod  2 1i i iX X X− −

 = − + − −   (8) 

This generator, as DX-1597-4 described previously, has a period of ( )1597311 2 1 1km − = − −  ie 

about 1014903  an has a uniform distribution up to dimension 1597k = .  
Although this generator is a little bit more complicated than the corresponding DX-1597-s, it 
has a more complex structure which, according to Deng, makes “harder to devise a general 
empirical test that such generators will fail”.  
 
The programmes are as follows: 
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Example: starting with a seed R1597 equal to 16807 282475249 1622650073 984943658 
1144108930 470211272 101027544… ie based on LCG (75, 231 -1) with an initial value of 
1, one obtains for 10 successive draws : 
1811133916 491217212 31477969 917602403 1251137860 2141366420 1997727199 
1852033570 34235151 178125418 

__________ 
Input: N: size of the vector of N uniform numbers to generate 
Output: R such a vector of U(0,1)’s 
 

 
 
Example: With the same 1597-seed as before, we get for N=50,  
 -as the first five 
0.8433749514 0.2287408396 0.01465807181 0.4272919166 0.582606467 
 as the last five 
0.3458714908  0.3731809076  0.1382221401  0.2910157814  0.9041655634 

__________ 
Input: a positive integer N 
Output: R a random draw among the integers 1,2,…,N 
 

 
Example : 10 successive draws among numbers from 1 to 10000, are 
 8434  2288  147  4273  5827  9972  9303  8625  160  830 
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MRG32k3a 
 
Another way to deal with a large modulus in a MRG is to combine MRG’s with smaller 
moduli (L’Ecuyer, 1998; Deng et al, 2005). The generator considered here is a standard one 
from L’Ecuyer (1999) known as MRG32k3a. It combines two MRG’s of order 3k =  and is 
defined as follows: 
 1, 11 1, 1 12 1, 2 13 1, 3 1( ) modi i i iX X X X mα α α− − −= + +  (9) 

 2, 21 2, 1 22 2, 2 23 2, 3 2( ) modi i i iX X X X mα α α− − −= + +  (10) 

with 
 11 12 130, 1403580, 810728α α α= = = −  and 32

1 2 209m = −  ;  (11) 

 21 22 23527612, 0, 1370589α α α= = = −  and 32
2 2 22853m = − . (12) 

The final generator combines these two according to 
 1, 2, 1( ) modi i iZ X X m= − . (13) 
The corresponding uniform (0,1) generator is calculated as (l’Ecuyer, 1999) 
 ( )*

1/ 1i iU Z m= + ,  (14) 

where *
iZ  corresponds to *

i iZ Z=  if 0iZ >  and *
1iZ m=  otherwise. This avoids the 

occurrence of zeroes and ones that might cause problems for simulating some non-uniform 
distributions: eg the logistic, exponential, Weibull (Devroye, 1986; Evans et al, 1993).  
 
According to L’Ecuyer (1999), this generator is approximatively equivalent to a MRG of 
order 3k =  with a modulus 1 2m m m= ,  1 18446645023178547541α = ,  

2 3186860506199273833α =  and 3 87386136264398222622α = . 

It has a period of ( )( )3 3 191
1 21 1 / 2 2p m m= − − ≈ 573x10 . It is also well behaved up to 

dimension 45. Its implementation requires as previously the IEEE 754 double precision 
standard.  
 
The APL programmes proposed here take advantage of the vector operating procedures of 
APL to calculate the two component generators simultaneously.  
 
At start we will need to initiate the seed R32K as a (3x2) matrix build from the usual LCG eg 
          16807       984943658 
  282475249     1144108930 
1622650073       470211272 
 
ie seed for X1:    16807        282475249     1622650073  
and for X2: 984943658      1144108930       470211272 

__________ 
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Input: N: size of the vector of N uniform numbers to generate 
Output: R such a vector of U(0,1)’s computed as in (14).  
 

 
 
Example : With the same seed as before, we get for N=50, one obtains 
 -as the first five 
0.7669364155  0.7286176883  0.5890946068  0.2480655726  0.2741894033 
 as the last five 
0.264122945  0.1468770745  0.5614629734  0.177519304  0.7555685728 
 
If for instance, one wishes to produce draws of 32-bit integers (numbers ranging from 0 to 

322 1− ), one simply has to calculate ( )322 0,1iU   , ie the integer part (symbolized by [ ]. ) of 

the product of 322  by an uniform random number defined as before; this can be done in APL 
with: ( )2*32 x  GMRG32K   N  for N draws. Here for N=10, one has 
3293966822  3129389142  2530142070  1065433521  1177634520  1644939348 3413537337  
1852571700  115527021  783713440. 
This example was used as a test of validation of results from our APL programmes with the 
original ones developed by L’Ecuyer’s team (see appendix B). 

__________ 
 
Input: a positive integer N 
Output: R a random draw among the integers 1,2,…,N calculated as ( )x 0,1 1iN U +    
 

 
 
Example: 10 successive draws among numbers from 1 to 10000, are 
 7670  7287  5891  2481  2742  3830  7948  4314  269  1825 
 
A programme in C is also provided: see appendix C 
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Conclusions 
 
The generators presented here offer good opportunities to update the classical LCG generators 
still used in many instances. There are alternatives to the modulus-two generators and their 
GFSR and other extensions provided by some softwares (eg “R” and the MT-19937). The 
formulation and programming of the MRG and c-MRG’s shown here are easy provided a 
double precision IEEE 754 standard is available. Moreover, they have passed the “Crush” 
batterie of stringent tests defined in the well-known TESTU01 suite developed by Prof Pierre 
L’Ecuyer.  
 
Finally, among the possible choices, I would suggest the two generators: 
 -the DX-1597-4d by Deng (2005) as it has the largest order k  among the MRGs, more 
non-zero terms and is more efficient numerically than the MRG-1597-2;  
 -the MRG32k3a by L’Ecuyer (1999) for its intrinsic properties despite a shorter period 
and also due to its increasing popularity (SAS, Arena, Automod, …).  
 
Remember the advice given by most specialists in this field: “The most prudent policy for a 
person to follow is to run a Monte Carlo program at least twice using quite different sources 
of random numbers before taking the answers of the programme seriously; this not only will 
give an indication of the stability of the results, it will also guard against the danger of trusting 
in a generator with hidden deficiencies” (Knuth, 1998).  
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Appendix A:Programme for the LCG(75, 231 -1) 
 
Input: N=number of values generated; Output: the corresponding vector of pseudo-random 
numbers 
 
At start, the seed ⁯RL is set to a given value 
 

 
 
Example : With a seed of 1, one gets for the first ten draws: 
16807 282475249 1622650073 984943658 1144108930 470211272 101027544 1457850878 
1458777923  2007237709 
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Appendix B: A test example for MRG32k3a 
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Appendix C: C programme for MRG32k3a  (due to Pierre l’Ecuyer and provided by 
Richard Simard) 
 
 #define norm 2.328306549295728e-10 
 #define m1   4294967087.0 
 #define m2   4294944443.0 
 #define a12     1403580.0 
 #define a13n     810728.0 
 #define a21      527612.0 
 #define a23n    1370589.0 
 
 static double s10 = 12345, s11 = 12345, s12 = 12345, 
               s20 = 12345, s21 = 12345, s22 = 12345; 
 
 double MRG32k3a (void) 
 { 
    long   k; 
    double p1, p2; 
    /* Component 1 */ 
    p1 = a12 * s11 - a13n * s10; 
    k = p1 / m1;   p1 -= k * m1;   if (p1 < 0.0) p1 += m1; 
    s10 = s11;   s11 = s12;   s12 = p1; 
 
    /* Component 2 */ 
    p2 = a21 * s22 - a23n * s20; 
    k  = p2 / m2;  p2 -= k * m2;   if (p2 < 0.0) p2 += m2; 
    s20 = s21;   s21 = s22;   s22 = p2; 
 
    /* Combination */ 
    if (p1 <= p2) return ((p1 - p2 + m1) * norm); 
    else return ((p1 - p2) * norm); 
 } 
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Table 1: LCG generators with a modulus power two (from L’Ecuyer, 2004)  
 

 


