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The size of the global Routing Information Base (RIB) has been increasing at an alarming
rate. As a direct effect, the size of the global Forwarding Information Base (FIB) has experi-
enced rapid growth. This increase raises serious concerns for Internet Service Providers
(ISPs) as the FIB memory in line cards is much more expensive than regular memory mod-
ules, so frequently increasing this memory capacity for all the routers is prohibitively
costly to an ISP. Previous research on Internet traffic indicates that a very small number
of popular prefixes receive most of the Internet’s traffic, making ‘‘caching’’ a possible solu-
tion to reduce the FIB size. However, FIB caching may cause a cache-hiding problem where a
packet’s longest-prefix match in the cache differs from that in the full FIB, and thus the
packet will be forwarded to the wrong next hop. Motivated by these observations, we pro-
pose an efficient FIB caching scheme that stores only non-overlapping FIB entries into the
fast memory (i.e., a FIB cache), while storing the complete FIB in slow memory. Our caching
scheme achieves a considerably higher hit ratio than previous approaches while preventing
the cache-hiding problem. It can also handle cache misses, cache replacement, and routing
updates efficiently. Moreover, we have implemented the proposed caching scheme using
the OpenFlow platform, which allows a local or remote route controller to manage routes
in the cache. We use real traffic of a regional ISP and a Tier1 ISP to carry out our experi-
ments. Our simulation results show that with only 20 K prefixes in the cache (5.28% of
the actual FIB size), the hit ratio of our scheme is higher than 99.95%. Our OpenFlow imple-
mentation achieves a hit ratio near 99.94%, which approaches the performance of the
simulated results.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the routing table in default-free routers
has been growing rapidly due to a variety of factors such as
an increasing number of edge networks, increased use of
multihoming, and finer-grained traffic engineering prac-
tices [2]. Both academic and industry communities [3–7]
have been working on solutions to this problem. A direct
consequence of the routing table (RIB) growth problem is
the rapid growth of the forwarding table (FIB), which is cal-
culated based on the RIB and looked up during packet for-
warding. Although both trends are disturbing, Internet
Service Providers (ISPs) are more concerned about the FIB
size [8], because the FIB memory in line cards costs much
more than the memory in route processors as the former
needs to support much higher lookup speed at the line rate
(e.g., hundreds of millions of packets per second or higher).
To scale well with the increasing FIB size, a naive solution
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Fig. 1. Design architecture for FIB caching.
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is to add more memory to the routers. However, it is chal-
lenging to meet the continuously changing memory
requirements and, as FIB memory is expensive, upgrading
the memory of all the routers of an AS is not compelling
for ISPs. Moreover, as the size of FIB memory increases,
the line card may become more power-hungry and the
lookup time may also increase for non-TCAM-based FIB
implementations [2].

In the long run, modifying the current routing architec-
ture and protocols seems to be the best solution to these
problems [4]. However, such proposals may take a long
time to deploy due to the high costs associated with them.
Meanwhile, ISPs cannot afford to upgrade all their routers
frequently. Zhao et al. investigated various possibilities to
mitigate the routing scalability issue and concluded that
FIB size reduction would be the most promising solution
from an operator’s view [9].

One approach to reducing the impact of large FIBs is to
use high-speed memory as a cache to store the most popu-
lar routes [10–13] while storing the full FIB in lower-cost
memory. The feasibility of this approach, which we call
FIB caching, depends on how much locality is in the net-
work traffic. In fact, previous studies [11,13–15] have
shown that a small number of popular prefixes contribute
to most of the observed traffic. The data traces from a
regional ISP and a tier-1 ISP used in our evaluation also
support this observation. As such, a FIB cache needs to
store only a small set of popular prefixes thus saving a rou-
ter’s high-speed memory, increasing lookup speed, and
reducing power consumption.

Although caching has been studied extensively in gen-
eral, FIB caching has its unique set of issues. First, network
links forward a huge number of packets every second,
which means even a 1% miss ratio could lead to millions
of lookups per second in slow memory. To minimize this
problem, an effective FIB caching scheme must achieve
an extremely high hit ratio with a modest cache size.
Second, the cache miss problem is especially serious when
a router starts with an empty cache, so a good scheme
needs to quickly and effectively fill the cache even without
prior traffic information. Third, Internet forwarding uses
longest-prefix match rather than exact match. If not well
designed, a FIB caching scheme may cause a cache-hiding
problem where a packet’s longest-prefix match in the
cache differs from that in the full FIB, and thus the packet
will be forwarded to the wrong next hop (Section 2.1). To
prevent this problem, prefixes for the cache need to be
carefully selected from the full FIB or dynamically gener-
ated. Finally, prefixes and routes change from time to time,
therefore any practical FIB caching scheme needs to handle
these changes efficiently without causing the cache-hiding
problem.

We propose a FIB caching scheme that selects and gen-
erates a minimal number of non-overlapping prefixes for
the cache. Because the cached prefixes do not cover any
longer prefixes in the full FIB, we do not have the cache-
hiding problem. Based on this caching model, we develop
algorithms to systematically handle cache initialization,
cache misses, cache replacements, and routing updates.
Following this design, we implemented our FIB caching
scheme using the OpenFlow platform to control the FIB
cache. When a cache miss occurs, our OpenFlow controller
generates the matching non-overlapping leaf prefix and
installs it in the FIB cache in an OpenFlow switch.
Lacking efficient real-time access to the least recently used
or least frequently used flow entry in the FIB cache, our
controller infers the importance of a prefix based on how
frequently a cache miss happens on the prefix and adjusts
the cache timeout on the prefix dynamically to reduce
cache misses.

Our simulation results show that, for a routing table of
378 K prefixes, our scheme achieves an average hit ratio
higher than 99.95% using a cache size of 20 K prefixes
(5.28% of the full FIB size), and our scheme outperforms
alternative proposals in terms of hit ratio and number of
FIB updates. Our OpenFlow implementation achieves a
hit ratio near 99.94%, which approaches the performance
of the simulated results. In addition, we fill the initial
empty cache with the shortest non-overlapping prefixes
generated from the full FIB, which significantly increases
the hit ratio for the initial traffic. Our simulation results
show that the initialized cache has a hit ratio of 85% for
the first 100 packets, compared to 65% for an uninitialized
cache (i.e., an empty cache at the beginning).

The remainder of the paper is structured as follows:
Section 2 gives an overview of our scheme. Section 3 pre-
sents our FIB caching algorithm in detail. Section 4
describes our OpenFlow design and implementation.
Section 5 evaluates our scheme and compares it with other
approaches. Section 6 discusses related work and Section 7
concludes the paper.
2. Design overview

Fig. 1 illustrates a router architecture with the proposed
FIB caching scheme. The control plane contains the RIB
while the Slow FIB and FIB cache reside in the data plane.
The Slow FIB memory contains a copy of the full
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forwarding table with all prefix entries and next hop infor-
mation. The Cache contains only the most popular prefixes
driven by data traffic. We place the Slow FIB in the data
plane (in the line card) rather than the control plane (in
the route processor) so that a cache miss/replacement
can be quickly handled. The Slow FIB handles four events:
Route Announcement, Route Withdrawal, cache miss and
cache replacement. The Route Announcement and Route
Withdrawal events correspond to changes in the RIB,
which need to be propagated to the FIB. A Cache Miss event
occurs when an incoming packet does not have a matching
prefix in the FIB cache, and a cache replacement event
occurs when the FIB cache is full. In the remainder of this
paper, full FIB or FIB refers to the Slow FIB, and operations
occur in the Slow FIB unless the location is explicitly sta-
ted. Before discussing the operations that take place in
the Slow FIB and FIB Cache, we explain the cache-hiding
problem and outline our solution for handling it in the
following section.

2.1. Cache-hiding problem

FIB caching is different from traditional caching mecha-
nisms – even if a packet has a matching prefix in the cache,
it may not be the correct entry for forwarding the packet if
there is a longer matching prefix in the full FIB. Below we
use a simple example to illustrate this cache-hiding prob-
lem. For ease of illustration, we use 8 bit addresses and
binary representations of addresses in our examples.

Suppose a FIB table contains three prefixes as shown in
Table 1, and the corresponding cache is empty (not
shown). Assume a data packet destined to 10011000
arrives at a router. The router then looks for the longest
prefix match in the cache, which has no matching entry
(the cache is empty). The router then looks up the full
FIB in slow memory and loads the matching entry
1001=4 with the next hop 2 to the cache (Table 1(b)).
Now, suppose another data packet destined to 10010001
arrives. Then, the router will first check the cache to see
if there is a prefix matching the destination IP address. It
finds the matching prefix 1001=4 in the cache and thereby
sends the packet to the next hop 2. This is, however, incor-
rect because the real matching prefix for IP address
10010001 should be the more specific prefix 100100/6
with the next hop 1. In other words, the cached prefix
1001=4 ‘‘hides’’ the more specific prefix 100100=6 in the
full FIB.
Table 1
FIB entries and cache entries.

Label Prefix Next hop

(a) FIB entries
A 10/2 4
B 1001/4 2
C 100100/6 1

(b) Cache entries
B 1001/4 2

Note: The cache is initially empty and receives one entry upon the first
cache miss.
2.2. Our solution to cache-hiding

To illustrate our solution, we use Patricia Tries (i.e.,
Radix Tree) [16] to store the Slow FIB and cached prefixes.
A Patricia Trie is a space-optimized tree where the child
prefix can be longer than the parent prefix by more than
one. It is commonly used to store routing tables in a com-
pact manner. Note, however, that our solution can be
applied to any tree-based structures.

We cache the most specific non-overlapping prefixes
that do not hide any longer prefixes in the full FIB to avoid
the cache hiding problem. In Table 1, C’s address space is
covered by B, so they are not non-overlapping prefixes
(see Fig. 2(a)). As such, we cannot simply load the prefix
B (1001=4) into the cache because it will cause a problem
for the next packet destined to the address 10010000.
Instead, we need to generate a leaf prefix D (10011=5) to
represent the address space under B that does not overlap
with C (Fig. 2(a)) and put it into the cache (Fig. 2(b)). D
(10011=5) has the next hop 2, which is the same as its cov-
ering prefix B (1001=4). The next packet destined to
10010000 causes a cache miss again and correctly finds a
matching prefix C (100100=6) with the next hop 1 in the
Slow FIB (Fig. 2(c)). The matching prefix is then loaded into
the cache (Fig. 2(d)). We call our approach FIB caching using
minimal non-overlapping prefixes because we select or gen-
erate only the shortest leaf prefixes needed by the data
traffic to minimize the number of cached prefixes.

In addition to solving the cache hiding problem, our
proposal may also simplify hardware design for the cache
and make the cache more efficient. First, since the inter-
dependency between prefixes is eliminated, there should
be only one matching prefix, if any, for a data packet. A
TCAM-based (Ternary Content-Addressable Memory)
cache then does not need to sort the cached prefixes in
decreasing order of prefix lengths, thus making any cache
update operation faster. Second, the priority encoder logic
used to select the longest matching prefix can also be
removed [17].

2.3. Workflow for handling data traffic

Fig. 3 shows how our design handles an incoming
packet. In the ‘Init’ (initialization) phase, we load all FIB
entries into the Slow FIB. Subsequently, we fill up the
entire cache with the leaf prefixes that have the shortest
length (Section 3.6).

For any incoming packet, a prefix match is performed
on the Patricia Trie of the cache (note that there is no need
for longest prefix match since the prefixes in the cache do
not overlap). In the case of a match, the packet is for-
warded accordingly. In the case of a cache miss, a longest
prefix match is performed in the Slow FIB and the packet
is discarded if the lookup returns no matching prefix. On
the other hand, if the longest matching prefix in the Slow
FIB is a leaf node in the Patricia Trie, it is pushed to the
cache. Otherwise, i.e., the prefix is an internal node, a more
specific prefix is created and pushed to the cache
(Section 3.3). Packets that experience a cache miss can be
stored in a separate queue and forwarded once the prefixes
from Slow FIB memory are installed into the cache.



(a) Generate prefix D

in Full FIB
(b) Insert
D in FIB
Cache

(c) Select prefix C

in Full FIB
(d) Insert C in
FIB Cache

Fig. 2. Selection or generation of a leaf prefix.

Fig. 3. Workflow for Handling Incoming Data Traffic (the dotted line means that during cache replacement, the Slow FIB needs to be updated but the flow of
operation does not continue beyond that point).
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When a new prefix needs to be installed into a full
cache, one of the existing prefixes in the cache needs
to be removed (Section 3.3) using a suitable cache
replacement mechanism. Subsequently, the correspond-
ing entry in the full FIB may be deleted or updated
according to different scenarios that will be discussed
in Section 3.3.

Upon receiving an announcement or withdrawal event
from the RIB, the Slow FIB updates the corresponding
entry and updates the cache if necessary. The specific
operations to update the cache are described in Sections
3.4 and 3.5.
3. Design description

In Section 2, we highlighted the operations taking place
at each component of the caching model. This section pro-
vides the details of each operation and also discusses more
complex scenarios.

3.1. Data structure

Each node in the Patricia Trie of the Slow FIB is one of
four types that may change upon an update. These types
help us to keep the FIB cache, Slow FIB, and RIB consistent



Y. Liu et al. / Computer Networks 83 (2015) 85–99 89
with each other. The four types are as follows (note that
this classification does not apply to the cache): (a)
CACHE ONLY: a leaf node that is created on demand as a
result of the cache miss event; (b) FIB ONLY: a node
derived from the original routing table or RIB update, but
the prefix is not in the cache; (c) FIB CACHE: a leaf node
derived from the routing table and the prefix is in the
cache; and (d) GLUE NODE: any other auxiliary node except
the above three types.
3.2. Handling cache misses

In the case of a cache miss, we perform a longest prefix
match in the Slow FIB and may encounter the following
three cases: (1) if there is no matching node, then drop
the packet; (2) if there is a matching leaf node with the
type FIB ONLY , set the type to FIB CACHE and install the
prefix with the corresponding next hop into the cache;
and (3) if there is a matching internal node with the type
FIB ONLY , generate a CACHE ONLY node as described below
and install it into the cache.

Suppose PL and PR are the left and right child of a node
P, respectively, and X is the destination IP address. We gen-
erate a CACHE ONLY node with the same next hop as its
parent on the trie and a prefix containing the first lþ 1 bits
of X, where l is defined as follows: (a) if PL is NULL, then
compare PR with X to get the common portion Y with
length l; (b) if PR is NULL, then compare PL with X to get
the common portion Y with length l; and (c) if PL and PR

are not NULL, then compare X with PL and PR separately,
and get the common portion YL and YR, then find the longer
prefix Y with length l from YL and YR. A new glue node with
prefix Y will be inserted below node P with the same next
hop as P. The new leaf node to be installed into the cache
will be a child of the new glue node, with a prefix equal
to the first lþ 1 bits of X, a next hop inherited from the par-
ent, and a type of CACHE ONLY as it is generated on
demand.

Now we provide a detailed example of case c mentioned
above. In Fig. 4(a), the matching node B with prefix 1001=4
has both a left child (C) and a right child (D). According to
the rules above, YL is the common portion of X (10010100)
and C (100100/6), with a value 10010/5 and YR is the com-
mon portion of X and D (10011/5) with a value 1001/4.
Therefore, we pick the longer one 10010/5 for Y, and l is
the prefix length of Y, i.e., 5. The new leaf node (F) has a
prefix of X/(l + 1), i.e., 100101/6, a next hop of 2, and a node
type of CACHE ONLY as shown in Fig. 4(c). Fig. 4(g) and (h)
show the cache entries before and after the update.
3.3. Handling cache replacement

When the cache becomes full and a new prefix needs to
be inserted, an existing prefix in the FIB cache needs to be
evicted according to the replacement strategy (e.g. LRU).
We first remove the existing prefix from the cache, insert
the new prefix into the cache, and then update the Slow
FIB. There are two cases that may occur in the event of
prefix removal:
1. if the corresponding node type is CACHE ONLY , it means
that the node was created on-demand and there would
be no such entry in the RIB, so we can remove it directly
from the cache;

2. if the corresponding node type is FIB CACHE, it means
that this node has a corresponding prefix in the RIB so
we cannot remove it from the FIB. Therefore, we change
the type to FIB ONLY .

Fig. 5 shows the removal of prefix 100100/6 from the
cache (cache replacement event). Fig. 5(a) and (b) show
the cache operations. Fig. 5(c) and (d) show the Slow FIB
operations.

3.4. Handling Route Announcements

A Route Announcement may add a new prefix or update
an existing entry in the Slow FIB (see the complete work-
flow in Fig. 6). Below we describe each scenario briefly.

When adding a new node to the FIB trie, we need to
handle the following two cases (Fig. 6):

1. The new node is added as a leaf node: if its direct parent
node type is CACHE ONLY (i.e., the prefix of this node
was generated on demand and is in the cache), then
we remove the parent node from both the FIB and the
cache in order to avoid the cache-hiding problem. If
the direct parent of the new node is a FIB ONLY , nothing
needs to be done because the parent node must not be
in the cache. If the direct parent of the new node is
FIB CACHE (i.e., the prefix attached to the parent node
is in the cache and needs to be removed from there),
then we set the parent node type as FIB ONLY and
remove the prefix from the cache.

2. The new node is added as an internal node: all the
CACHE ONLY nodes whose next hops are derived from
this node should have the same next hop as this one,
so we update these nodes with the new next hop and
update the cache accordingly to synchronize the next
hop information. We do not update the FIB CACHE
nodes because their next hops are directly from the
corresponding real prefixes in the RIB, not derived from
their ancestors.

Similarly, we need to handle two cases when updating
an existing FIB entry to change its next hop value, as illus-
trated in Fig. 6.

3.5. Handling route withdrawals

For a Route Withdrawal, the matching node can be
either a leaf node or an internal node, and we process it
as follows (Fig. 6):

1. Leaf node: If the node type is FIB CACHE, we delete it
from both the FIB and the cache. If the node type is
FIB ONLY , we delete it from the FIB only since it is not
in the cache.

2. Internal node: We delete its next hop and change the
node type to GLUE NODE (it is still useful in the FIB trie
to connect the other nodes). Since our algorithm puts



(a) FIB trie before update (b) FIB trie during update (c) FIB trie after update

Node : Prefix Next Hop Type

A : 10/2 4 F

B : 1001/4 2 F

C : 100100/6 1 H

D : 10011/5 2 C

(d) FIB entries before update

Node : Prefix Next Hop Type

A : 10/2 4 F

B : 1001/4 2 F

C : 100100/6 1 H

D : 10011/5 2 C

E : 10010/5 G

(e) FIB entries during update

Node : Prefix Next Hop Type

A : 10/2 4 F

B : 1001/4 2 F

C : 100100/6 1 F

D : 10011/5 2 C

E : 10010/5 G

F : 100101/6 2 C

(f) FIB entries after update

Node : Prefix Next Hop

C’ : 100100/6 1

D’ : 10011/5 2

(g) Cache entries before update

Node : Prefix Next Hop

C’ : 100100/6 1

D’ : 10011/5 2

F’ : 100101/6 2

(h) Cache entries after update

Fig. 4. Example of cache miss update. There are three fields for each node from left to right: prefix, next hop and node type (F: FIB_ONLY, H: FIB_CACHE, C:
CACHE_ONLY and G: GLUE_NODE) in the FIB trie. A bold font denotes a field updated in the current step. A solid rectangle denotes a node with a prefix from
the RIB. A dashed rectangle denotes a generated node due to a cache miss update. A gray node denotes a node in the cache.
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only leaf nodes into the cache, this internal node cannot
be in the cache, and therefore no cache update is
needed. Then we update the next hop field of those
CACHE ONLY nodes whose next hop was derived from
this node. Finally, we update the cache accordingly.

3.6. Cache initialization

Handling initial data traffic is a major concern for
deploying caching mechanisms [9]. To address this issue,
we fill up the initial empty cache with a set of leaf prefixes
from the FIB that cover the most IP addresses. More specifi-
cally, a breadth-first search is employed to find the short-
est leaf prefixes from the full FIB Trie (up to the cache
size). This way we achieve a high hit ratio while avoiding
the cache-hiding problem. In addition, if a router is able
to store the cache content in non-volatile memory before
restarting, it can use this stored cache to fill up the initial
cache.

4. OpenFlow implementation

To evaluate the efficiency and effectiveness of our FIB
caching algorithms in a realistic setting, we need a router
that supports a FIB cache and a mechanism to control the
forwarding entries in the cache. We chose the OpenFlow
platform [18] as it allows us to experiment with pro-
grammable switches without having to modify existing
hardware or software routers extensively. Note, however,
that this is not the only option for networks to deploy FIB



Node : Prefix Next Hop

C’ : 100100/6 1

D’ : 10011/5 2

F’ : 100101/6 2

(a) Cache entries before update

Node : Prefix Next Hop

D’ : 10011/5 2

F’ : 100101/6 2

(b) Cache entries after update

(c) FIB before update (d) FIB after update

Fig. 5. Example of prefix removal during cache replacement update.

Fig. 6. Workflow for handling announcements and withdrawals (loopbacks to the ‘Listen’ state are not shown).
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caching. In practice, ISPs could choose to deploy either
(a) routers that have a full FIB in slow memory and a
FIB cache in fast memory if such routers exist; or (b)
separate controllers and switches as in OpenFlow. In
the first case, the delay incurred by cache misses is mini-
mal as the full FIB is located in the same router except in
slower memory. In the second case, the controllers do
not have to be physically distant from the switch. In
regional ISPs, there can be a few controllers in the ISP
each serving routers in nearby areas. In large ISPs, one
or two controllers can be placed in each Point of
Presence to minimize the delay between the controller
and the routers (they may very likely be located in the
same room) (see Fig. 7).



Fig. 7. Design architecture for OpenFlow implementation.
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4.1. OpenFlow switch

An OpenFlow switch maintains a flow table with
corresponding actions for each flow entry and processes
any incoming, matching packets based on those actions.
The switch communicates with an external controller that
can install flow entries in the switch’s flow table, which
allows researchers to define desired behavior for the
switch without explicitly accessing or programming the
switch [18]. Many hardware switches exist already [19]
that support various versions of the OpenFlow specifica-
tion, a generic standard that defines certain required
features while detailing other optional features. As of
OpenFlow Switch Specification 1.4 [20], Layer 3 operations
such as the ability to perform TTL decrementing and MAC
address updates are defined as optional, thus it is up to the
hardware implementation to provide support for such
actions. For example, the HP 3800 Switch Series provides
OpenFlow 1.3 support with the previously mentioned layer
3 actions and the ability to hold 64 K flow entries [21].

4.2. OpenFlow controller

We use the OpenFlow controller to maintain the RIB
and full FIB, and the OpenFlow switch as a FIB cache.1

The controller performs the algorithms on the full FIB men-
tioned above in Section 3. The controller and switch may
communicate over a secure connection if the hardware
implementation supports this feature (see Section 6.3.3 of
the OpenFlow Switch Specification 1.4 [20]). The overhead
of a secure connection depends on the encryption algorithm,
hardware speed and other implementation specific parame-
ters; the reader is referred to a recent study on SSL process-
ing overhead by Zhao et al. [22]. We note that the major
overhead of SSL has been evaluated to be during session
establishment [22]. Since the OpenFlow components remain
connected during operation, the session establishment over-
head is typically incurred only once at the beginning. In case
the controller and switch are disconnected, SSL session
re-negotiation mechanism can greatly reduce the overhead
of re-establishing the secure connection [22]. Furthermore,
our evaluation results (Section 5) show that the cache miss
1 Our code is available for research and other non-commercial purposes.
Please contact us to obtain a copy of the source code.
ratio of our algorithm is extremely low, e.g., on the order
of 10’s of cache misses per second per switch, so the com-
munication between the controller and switch is infrequent.

When the controller first connects with the switch, the
FIB and RIB patricia tries are built and an initialized cache
is generated. After the initial cache entries are calculated,
the controller installs a flow entry for each prefix; the flow
entry defines its match rule so that any incoming packets
that hit the initialized prefix are forwarded according to
that flow entry’s actions. The controller also maintains an
update file that contains the announcement and with-
drawal of routes; the controller processes these updates
and applies them to the RIB. On the event that a packet
misses the switch’s flow table, the switch notifies the con-
troller by sending information about the packet that
caused the miss. The controller uses the packet’s destina-
tion address to generate a flow entry and installs the flow
entry in the switch. The switch then uses the flow entry to
forward the packet.

4.3. Cache management

In OpenFlow, cache replacement is currently achieved
by assigning idle timeout values to flow entries. The
controller installs flow entries in the switch using the
algorithm in Section 4.3.1 to assign an idle timeout value,
and the switch removes any flow entries that exceed their
idle time.

We have found that it is infeasible to implement better
cache replacement algorithms such as LRU or LFU based on
the current OpenFlow specification. An LRU algorithm
requires the controller to know which flow entry has been
idle for the longest time. While a switch does maintain the
time a flow entry has been idle, the controller cannot
request the idle time information. Moreover, even if the
controller can request every flow entry’s idle time, it will
have to get all the flow entries’ idle time to find the one
with the longest idle time, which is very inefficient. Note
that the controller can receive notifications containing a
flow entry’s idle time when a flow entry is removed, but
knowing a removed flow entry’s idle time is not useful
for picking another flow entry for removal when the con-
troller has a new flow entry to install. An LFU algorithm
requires the controller to know which flow entry has the
lowest packet count, but the controller is unable to request
this information directly. It must request the entire flow
table and choose a single flow entry with the lowest packet
count. In our experiments, it took around five seconds for
the controller to receive the complete stat reply (contain-
ing statistics for the entire flow table) from a switch with
20 K flow entries installed in the flow table, an impractical
amount of time to wait due to the fact that miss events are
continuously sent to the controller for processing. Other
research also shows long delays when collecting flow table
statistics from an OpenFlow switch [23]. OpenFlow’s use-
fulness for research and experimentation would be greatly
increased with the inclusion of switch defined cache
replacement methods and flow entry requests based on
longest idle time or lowest packet count.

As OpenFlow does not provide a means besides flow
entry timeout for cache replacement, we decided to design
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an algorithm that uses a variable timeout to maintain a
reasonable cache size.

4.3.1. Timeout algorithm
Maintaining a modest cache size is critical to the suc-

cess of an OpenFlow implementation; a large cache size
contradicts the purpose of FIB caching. Flow entries should
exist in the cache for as long as they are needed and then
remove themselves to make room for more useful flow
entries. Thus, it was necessary to determine suitable time-
out values to assign to flow entries so as to minimize the
cache size while maximizing the hit-ratio. To produce
potential timeout values, we ran a simulation where the
switch’s cache size was unlimited and the use of each pre-
fix was recorded. Using these recorded prefix access-times,
we can determine the times when a prefix was unused
(idle). We first calculated the quartiles for each individual
prefix and then calculated the quartiles of the combined
previously calculated quartiles. The results from our
24-hour traffic trace showed that the median of the prefix
timeout medians was 43 seconds. We used this value as
our initial timeout value for newly installed prefixes. But,
a single timeout value is not enough as many useful pre-
fixes could be idle for this amount of time, removed from
the cache, and then accessed again in a short period of
time. This premature removal would cause a cache miss
and negatively impact the cache’s hit-ratio. Therefore, pre-
fixes that are frequently removed and installed in a short
period of time should be installed with a greater timeout
value that increases multiplicatively with each subsequent
removal and quick re-installation.

Based on previously collected data and through experi-
mentation, we designed an algorithm that attempts to
minimize the cache size while maximizing the hit-ratio
using idle timeouts to remove flow entries from the cache.
The algorithm maintains each prefix that has been
installed as well as whether the prefix is currently in the
cache, a recent removal timer that starts on the prefix’s last
removal from the cache, and the number of times the pre-
fix has been removed from the cache.

The recent removal timer associated with each prefix
begins decrementing from 60 s when the prefix is removed
from the cache. If the recent removal timer reaches 0 s and
the prefix has not been installed again, the prefix’s removal
count is reset to zero. This clears the history for the prefix
and effectively marks the prefix as unpopular. Otherwise, if
the prefix is reinstalled in the cache before the recent
removal timer reaches 0 s, the timer is stopped because
the prefix is considered popular again.

On the installation of a prefix, the algorithm checks
whether the prefix has been installed previously; if not,
the prefix is installed with a timeout of 43 s. If the prefix
has been installed previously, the controller checks the
prefix’s removal count. A prefix with a removal count of
one means the prefix is being reinstalled during the 60-
second period and so is installed with a longer timeout
value. If the prefix has a removal count greater than one,
the prefix is installed with its previous timeout multiplied
by two. Otherwise, the prefix is installed with a 43 s time-
out. Our longer timeout value, 1100 s, was chosen from
experimentation that kept the cache size under 20,000
flow entries while maintaining a steady flow entry count.
This process is illustrated in Algorithm 1 in Appendix A.

When a prefix in the cache remains unused for its idle
timeout period, it is removed from the cache and the con-
troller is notified. The controller retrieves the entry for the
corresponding prefix, sets the prefix entry as not in the
cache, increments the removal counter for that prefix,
and starts the recent removal timer for that prefix. As time
advances, the timers for recently removed prefixes
advance until either the timer reaches 0 s or the prefix is
reinstalled into the cache. When a prefix’s recent removal
timer reaches 0 s, the removal counter for that prefix is
set to 0, which marks the prefix to be installed with the ini-
tial timeout value on its next installation. Algorithm 2 and
3 in Appendix A detail these procedures.
4.3.2. Comparison with a similar algorithm
After we independently designed the above variable

timeout algorithm, we discovered another work [24] that
pursued a similar process for managing flow entries in an
OpenFlow switch. Vishnoi et al. proposed an algorithm that
installs flow entries with an initial minimum idle timeout
and increases subsequent idle timeouts for flow entries
that are frequently evicted from the switch [24]. There
are, however, a number of differences between their algo-
rithm and ours. First, we use different metrics to set the
initial timeout: their algorithm uses the 80th percentile
of interarrival times from sample traffic traces to set an ini-
tial idle timeout value while our algorithm uses the med-
ian of the medians from the interarrival times of each
prefix. Second, the idle timeout value is adjusted in differ-
ent ways. Our algorithm sets a flow entry’s idle timeout to
an experimentally determined large value on its second
installation and then multiplicatively increasing the time-
out value on subsequent installations and our algorithm
does not enforce a maximum idle timeout value.
Moreover, their algorithm compares a flow entry’s active
time and idle time to reduce the idle timeout value
assigned to short lived flow entries that are repeatedly
removed whereas our algorithm only considers the fre-
quency of flow entry removals when assigning an idle
timeout value. Fine-tuning the timeout algorithm is one
area of our future work. Nevertheless, our evaluation
results in Section 5.7 show that our algorithm closely
approximates the performance of the LRU algorithm, even
though it is simpler than the algorithm proposed by
Vishnoi et al.
5. Evaluation

In this section, we first introduce our methodology,
then show the distribution of traffic to different destina-
tions in our traffic traces, and finally present our
simulation and implementation results.
5.1. Methodology

We evaluate our algorithm using a simulated FIB cach-
ing router with an ideal cache replacement algorithm and



 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 (%

)

Number of Prefixes

Regional ISP Data Trace
Tier1 ISP Backbone Data Trace

Fig. 8. Traffic distribution on non-overlapping prefixes.

94 Y. Liu et al. / Computer Networks 83 (2015) 85–99
an LRU replacement algorithm, as well as our OpenFlow
implementation.

The ideal caching simulation gives us the optimal cache
hit ratio, which cannot be achieved by any real-time cache
replacement algorithm, by preprocessing the traffic trace
to get the best prefix to replace at any given time. More
specifically, we first simulate a FIB caching router with
an unbounded cache size and record the access-times of
each prefix. Then we use the prefix access-times to remove
the flow entry that is the least useful at the current time
(the flow entry that will be used furthest in the future).
The simulation uses as input prefix access-times, a traffic
trace, a routing table and routing updates. The results are
reported in Section 5.7 to gauge the performance of our
OpenFlow implementation.

A previous study conducted by Kim et al. [11] shows
that the LRU algorithm performs almost as well as the ideal
cache replacement algorithm. Since the latter is infeasible
in practice, we simulated our cache with the LRU algorithm
to obtain more realistic results. Our program takes a traffic
trace, a routing table and routing updates as input to simu-
late packet lookup and forwarding process. The LRU algo-
rithm is used in all the simulations in this section except
those in Section 5.7.

Our OpenFlow implementation uses the design
described in Section 4. We use a network emulator called
Mininet [42] to create a virtual network with two hosts
and an OpenFlow switch running Open vSwitch software
[26]. One of the hosts sends packets from a traffic trace
to the switch. For simplicity, the next hop of all the flow
entries is set to the other host. This simplification does
not affect our evaluation results since the specific next
hop value does not have an impact on the hit ratio or over-
head of FIB caching. The virtual network runs in a virtual
machine with 2 GB RAM and a 100% CPU execution cap
on a host machine with a 2.7 GHz Intel Xeon E5-2680
CPU. We use another machine with a 3.40 GHz Intel
Pentium 4 CPU and 4 GB RAM to run an OpenFlow con-
troller programmed using POX [27], an OpenFlow develop-
ment platform that supports OpenFlow version 1.0 [28].
The controller and switch communicate over a TCP session
established by POX. Since they are located on the same
subnet, the one-way delay between them is very small
(less than 1 ms). In order to keep the cache size below
20 K, the switch is started with an initial cache of 10 K pre-
fixes; otherwise, the misses against the initial cache would
cause the cache to grow larger than 20 K. The results from
our OpenFlow implementation are described in
Section 5.7.

We utilized two traffic traces to evaluate our scheme.
The first one is a 24 h traffic trace of more than 4.1 billion
packets from a regional ISP collected from 12/16/2011 to
12/17/2011. To validate the results from the first trace,
we used a second trace from a very different source – a
backbone router with a much higher forwarding speed in
a Tier1 ISP. The data trace contains about 2.5 billion pack-
ets collected by CAIDA [29] from 13:00 to 14:00 on 06/19/
2014. CAIDA collects only a one-hour trace each month
from each monitor due to storage limitations. This trace
is the most recent and best public traffic trace we can find.
For the regional ISP data trace, we obtained routing tables
and updates of 30 different routers from the route-views2
data archive [30] on 12/16/2011 and 12/17/2011. After the
initialization of the Slow FIB and cache, we run our caching
scheme with the data and updates. The updates and data
are also passed through an emulated router without the
cache to verify the forwarding correctness of our scheme.
Our results are similar for all the 30 routers, so we present
the results from one of them in most cases. Similar opera-
tions were performed over the second traffic trace using a
global routing table on 06/19/2014 from RouteViews [30].
Note that all the following results were obtained using the
first traffic trace, unless otherwise noted.

We also compared our scheme with different cache-
hiding approaches, the most straightforward being the
Atomic Block approach. This scheme loads not only a
matching prefix into the cache but also finds all the sub-
prefixes of the matching prefix in the FIB. It then loads
them into the cache so that subsequent packets will not
encounter the cache-hiding problem. Uni-class, another
method, divides up a matching prefix into multiple fixed-
length (24 bits) sub-prefixes on the fly and installs the
one matching the destination address into the cache [11].
This approach assumes that 24 is the longest prefix length
in the FIB so the cached and/24 are separated prefixes will
not hide more specific prefixes in the FIB. This assumption
is usually true as operators filter out prefixes longer than
and /24 are separate to prevent route leaks. Moreover,
we compared our approach with three techniques pro-
posed by Liu [12], Complete Prefix Tree Expansion
(CPTE), No Prefix Expansion (NPE) and Partial Prefix Tree
Expansion (PPTE), using a static routing table. Finally, we
compared the differences between our schemes and the
RRC-ME (Reverse Routing Cache using Minimal
Expansion Prefix) algorithm proposed by Akhbarizadeh
and Nourani [10], which uses a binary tree (with no expan-
sion) and only installs or generates a disjoint prefix into the
cache on the fly.
5.2. Traffic distribution

Fig. 8 shows the traffic distributions over prefixes of
two global routing tables corresponding to the two data
traces. The x-axis represents the popular prefix rank, and
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the y-axis represents the cumulative percentage of the IP
packets covered by the popular prefixes. For the regional
ISP traffic distribution (black points line), we make two
main observations: (a) the top 10, 100, 1 K, 10 K, 20 K
popular prefixes cover about 42.79%, 79.18%, 93.81%,
99.51%, and 99.87%, respectively, of the traffic which sup-
ports a common finding from several other studies
[14,11,15,13], i.e., a very small number of popular prefixes
contributes to most of the traffic; and (b) most of the
entries in the global routing tables are not in use during
this period. In fact, more than 70.18% of the FIB entries
were not used at all which further suggests the feasiblity
of introducing an efficient caching mechanism for the rou-
ters. For the Tier1 ISP traffic distribution (blue dots line),
the top 1 K, 10 K, 20 K popular prefixes cover about
97.25%, 99.96%, and 99.99%, respectively, of the traffic
and thus yields much higher skewness than the regional
one, which further justifies our observations.

5.3. Hit ratio

The hit ratio of a cache is the success rate of finding a
matching entry in the cache. It is considered one of the
most important metrics to evaluate a caching scheme.
For a given cache size, the higher the hit ratio is the better
the cache scheme would be. In our experiments, we obtain
the hit ratios for 30 routers with different cache sizes rang-
ing from 1 K to 20 K prefixes. Fig. 9(a) shows different hit
ratios for one router with five different cache sizes over
the 24 h period of the regional ISP traffic trace. We observe
that on average the hit ratio is 96.83%, 98.52%, 99.25%,
99.84%, 99.95% for the cache size of 1 K, 2 K, 3.5 K, 10 K
and 20 K, respectively. The dips around 870 million data
packets are due to the traffic pattern around 7:30 a.m.
which has the lowest traffic rate but a similar number of
distinct destination addresses. This leads to a high miss
ratio as we are dividing roughly the same number of cache
misses with a much lower number of packets.
Furthermore, we found that the hit ratio tends to be more
stable as the cache size increases. Other routers have very
similar results to this one.

Fig. 9(b) shows different hit ratios for one router with
five different cache sizes over 1 h period of the Tier1 ISP
traffic trace. Surprisingly, the Tier1 ISP traffic from a back-
bone router has higher hit ratios than the counterpart of
the regional ISP traffic, which validates the feasibility and
effectiveness of our approach. Overall, both traffic traces
from different times and locations demonstrate similar
properties in terms of high hit ratios and skewness.

Fig. 9(c) compares the hit ratios for the different caching
approaches, such as Atomic Block approach and Uni-class
approach, with a fixed cache size of 20 K. Our approach
has a 99.95% hit ratio on average. The Atomic Block
approach has a 99.62% hit ratio and the Uni-class approach
has a 97.19% hit ratio, on average. Although the hit ratio of
the Atomic Block approach is close to our approach, it takes
much more time to maintain the cache as shown in
Section 5.6. The difference between the hit ratios of the
Atomic Block approach and our scheme is due to the fact
that the Atomic Block approach fills the cache with all
the sub-prefixes of a matching prefix; these may include
many prefixes that will not match subsequent packets.
On the other hand, our scheme creates only the most speci-
fic prefix that matches an arriving packet’s destination
address and thus, for a given cache size, our scheme covers
more useful prefixes than the Atomic Block approach. The
low hit ratio of the Uni-class approach is due to its fixed
long prefix length (24). Given the same cache size, it can
cover much fewer useful addresses than the other
approaches.

Moreover, we compared our approach with the three
techniques proposed by Liu [12], CPTE, NPE and PPTE,
using a static routing table (the author did not specify
update handling algorithms). NPE does not increase the
FIB size and has a 99.16% hit ratio on average. PPTE
increases the FIB size by 13,384 and has a 99.48% hit ratio
on average. CPTE expands the FIB trie into a complete bin-
ary tree and installs disjoint prefixes into the cache. Thus, it
has the same hit ratio as our scheme (not shown in the fig-
ure), but it significantly increases the FIB size by more than
two times from 371,734 to 1,131,635 prefixes. In our
scheme, we only increase the full FIB size by 6288 and
reach a hit ratio of 99.95% on average. Finally, the RRC-
ME algorithm proposed by Akhbarizadeh and Nourani
[10] has the same hit ratio as our scheme (not shown in
the figure), but our update handling algorithm is much
more efficient (Section 5.5).

5.4. Initial traffic handling

One of the biggest concerns for ISPs is how to handle
the initial traffic when the cache starts with an empty set
[9]. Instead of a cold start, we fill the initial empty cache
completely with the shortest non-overlapping prefixes if
there is no history of popular prefixes available. Fig. 9(d)
shows the initial traffic hit ratios. We used the first 1 mil-
lion packets to do the experiment. The top line represents
the hit ratio with cache initialization and the lower line
represents the one without cache initialization. After the
first 100 packets, the initialized cache has a hit ratio of
85% and the un-initialized one has a hit ratio of only 65%.
Their hit ratios are very close to each other once 100,000
packets are forwarded.

5.5. Routing update handling performance

Fig. 10 shows the routing update handling performance.
The top curve represents the total number of RIB updates.
The middle curve represents the total number of updates
(8348) pushed to the cache including next hop changes
(8251) and prefix deletions. The bottom curve shows the
number of prefix deletions (97), which is only 3.18% of
the total number of RIB updates. Since we store a few flags
in the routing table (control plane), such as FIB ONLY , to
infer whether certain prefixes need to be updated in the
cache, actually very few updates are pushed to the cache,
the updates have almost no influence on the cache hit
ratio. On the other hand, the authors in the RRC-ME
approach [10] did not utilize any control plane informa-
tion, therefore, both zero padded and one padded IP num-
bers of the lookup prefix need to be used to guarantee its
parent being present in RRC (Reverse Routing Cache). In
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other words, each prefix that need to be updated must be
converted into two IP addresses first and then looked up
in the cache to find the matching parent prefix. In the pro-
cess, the cache will be interrupted twice if there is no
matching prefix; otherwise, the cache will receive three
memory access requests. Specifically, in the period of
24 h, the previous work needs at least 523,754 (all together
261,877 updates) cache lookups as compared to our
scheme which needs only 8251 lookups.
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5.6. Time cost

Fig. 11 compares the time cost to process all the routing
updates and data of three approaches. We made two main
observations: (a) the Atomic Block approach takes about
four times longer to finish the same task than the other
two approaches; (b) our approach takes almost the same
time as the Uni-class approach but has a much higher hit
ratio as shown previously.

5.7. OpenFlow

To evaluate how well our implementation performs, we
compare the hit-ratio between the OpenFlow imple-
mentation, an Least Recently Used (LRU) simulation and
the ideal caching algorithm; Fig. 12 shows the results.
The OpenFlow implementation closely resembles the hit-
ratio of the LRU simulation which suggests the feasibility
of a real world FIB caching implementation. The traffic
trace used in our experiments contained around 4 billion
packets collected over a 24 h period. This means, on aver-
age, there were around 50 K packets arriving at the switch
per second. The OpenFlow results show an average hit-rate
of 99.94%, which suggests approximately 31 packets will
miss the switch’s flow table per second. Thus, the
OpenFlow controller must be able to handle an average
of 31 packets per second per additional dependent switch
added, which is not a high traffic load.

We also measured the additional delay when a cache
miss occurred in our implementation by capturing packet
miss messages sent from the switch to the controller and
flow modification messages sent from the controller to
the switch for installing new prefixes. We measured an
average delay of under 20 ms per cache miss, which
includes the delay in the POX platform that implements
generic controller functionality and the delay in our own
code for generating the prefix to install in the cache.
Since our code showed an average processing time of less
than 1 ms per cache miss, we suspect that the majority
of the additional processing time may be incurred by the
POX code in the controller. As POX is experimental soft-
ware mostly used for research (‘‘a platform for the rapid
development and prototyping of network control software
using Python’’ according to http://www.noxrepo.org/pox/
about-pox/), it is not expected to achieve the performance
of production systems in market today. We also expect
that the performance of OpenFlow controllers will con-
tinue to improve, but this is out of scope for this work.
Our future work will be to investigate this processing delay
and if necessary, migrate our implementation to a more
optimized controller platform.

6. Related work

Two main solutions can lead to FIB size reduction with-
out changes to the routing architecture, FIB aggregation
and FIB caching. FIB aggregation is to aggregate a large
FIB table into a smaller one with the same forwarding
results. There have been a number of FIB aggregation algo-
rithms proposed in last few years [31–36]. The aggregation
results show that the FIB size can be reduced to 1/3 of the
original table size, at most. According to [35], even with the
state-of-the-art FIB lookup algorithm, called Tree Bit Map
[37], the actual memory-saving is half of the original FIB
memory and reducing more than this seems impossible.
Therefore, instead of FIB aggregation, our work focuses
on FIB caching.

FIB aggregation can reduce the FIB size by aggregating a
large FIB table into a smaller one with the same forwarding
results. FIB caching is complementary to FIB aggregation.
In fact, the full FIB can be aggregated first and then serve
as the basis for caching which can further reduce the
required cache size.

The Virtual Aggregation (VA) scheme [38] tries to install
some virtual prefixes which are shorter than real prefixes,
such as /6, /7 and /8, to legacy routers to control FIB size
growth. It can reduce the FIB size on most routers but rou-
ters that announce the virtual prefixes still need to main-
tain many more specific prefixes. Our FIB caching scheme
can be applied to those routers with a larger FIB size in a
network deploying VA.

Forwarding table compression [39] can further increase
the space saving benefits of our FIB caching algorithm. By
compressing the most popular prefixes, the FIB’s memory
footprint can be reduced even more.

Liu proposed Routing Prefix Caching for network pro-
cessors [12] which employs three prefix expansion meth-
ods: NPE, PPTE, and CPTE. These solutions can eliminate
the inter-dependencies between prefixes in the cache,
but they will either increase the FIB size considerably or
have a high miss ratio. Akhbarizadeh and Nourani pro-
posed RRC-ME [10]. This solution can also solve the
cache-hiding problem through using disjoint prefixes, but
it has significant update handling overhead, especially in
the worst cases. Kim et al. proposed route caching using
flat and uniform prefixes of 24 bits long [11]. It can reach
fast access speeds using a flat hash data structure for
lookup. However, this approach leads to prefix frag-
mentation and thus has a lower hit ratio than our approach
as shown in our evaluation results.

Katta et al. proposed a CacheFlow system [40] to install
popular fine-grained forwarding policies in the small
TCAM, while relying on software to deal with the traffic
with unpopular rules. In their work, the authors have to
handle rules that partially overlap, rather than the only

http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
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‘‘containment’’ relationships handled in our proposed
work.

7. Conclusion

We presented an effective caching scheme to mitigate
the problems caused by the rapidly increasing size of the
global forwarding table. This scheme allows ISPs to keep
their operational cost low by storing a fraction of the full
FIB in the expensive fast memory while storing the full FIB
in slow memory. Our results based on real data show that
we can use only 3.5 K prefixes to reach a hit ratio of 99.25%
and 20 K prefixes to reach a hit ratio of 99.95%. Moreover,
we fill the initial empty cache with the shortest non-
overlapping prefixes and obtain a high hit ratio for the initial
traffic. Also, our scheme includes a set of efficient algorithms
to process both FIB and cache update events while prevent-
ing the cache-hiding problem. In addition to simulation, we
experimented a new cache timeout algorithm based on the
proposed scheme using the OpenFlow protocol and the
experimentation closely approximates the simulation
results. Our future work includes: (1) investigate other
potential cache initialization schemes; (2) design more
effective timeout algorithms to reach higher hitting ratio
for the OpenFlow implementation; and (3) customize the
OpenFlow protocol to include switch-defined cache replace-
ment methods and flow entry requests based on longest idle
time or lowest packet count.
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Appendix A. Timeout algorithms

Algorithm 1. On prefix installation

1: if cache miss then
2: Lookup the corresponding prefix
3: if prefix has been installed previously then
4: Stop prefix:timer
5: if prefix:removals = 1 then
6: prefix:timeout 1100 s
7: else if prefix:removals greater than 1 then
8: prefix:timeout prefix:prev timeout � 2
9: else
10: prefix:timeout  43 s
11: end if
12: else
13: prefix:timeout  43 s
14: end if
15: prefix:in cache TRUE
16: endif
Algorithm 2. On removal from cache

1: Lookup the corresponding prefix
2: prefix:in cache FALSE
3: Increment prefix:removals
4: Start prefix:timer
Algorithm 3. On time advance

1: for each prefix entry do
2: if prefix:in cache = FALSE then
3: if prefix:timer has reached 0 s then
4: prefix:removals ¼ 0
5: end if
6: end if
7: end for
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