
PLI-Sync: Prefetch Loss-Insensitive Sync for NDN
Group Streaming

Yi Hu
Machine Learning and Data Analytics Research

Perspecta Labs
Basking Ridge, NJ, USA
yhu@perspectalabs.com

Constantin Serban
Machine Learning and Data Analytics Research

Perspecta Labs
Basking Ridge, NJ, USA

cserban@perspectalabs.com

Lan Wang
Computer Science Department

University of Memphis
Memphis, TN, USA

lanwang@memphis.edu

Alex Afanasyev
School of Computing and Information Sciences

Florida International University
Miami, FL, USA

aa@cs.fiu.edu

Lixia Zhang
Computer Science Department

UCLA
Los Angeles, CA, USA

lixia@cs.ucla.edu

Abstract—In this paper we explore solutions to robust group
communication in disadvantaged wireless networks that exhibit
low bandwidth, high packet losses, and frequent or even per-
manent network partitions. More specifically, we propose a
group communication protocol based on Named Data Network-
ing (NDN). By design, NDN’s in-network caching and stateful
forwarding plane can help improve data delivery robustness in
disadvantaged networks, but when content is generated with dy-
namic rates, an efficient, low-overhead synchronization protocol
is needed to inform group members to fetch newly generated
content promptly. In this paper, we describe the Prefetch Loss-
Insensitive Sync (PLI-Sync) protocol for group communication
in highly disadvantaged networks. PLI-Sync combines optimistic
content pre-fetching with new content notification via sync,
and addresses the challenges of how to distinguish wireless
packet losses from mobility-induced disconnections, and between
data availability and retrievability. Our evaluations show that
leveraging the interplay between optimistic pre-fetching and a
low rate sync protocol can significantly reduce communication
overhead compared to relying on sync protocols alone, while
maintaining low data fetching latency and robust delivery in a
variety of wireless conditions and traffic load settings.

Index Terms—Named Data Networking, NDN, Sync, Group
Communication, Wireless Networks, Lossy Networks, Discon-
nected Intermittent Links, DIL

I. INTRODUCTION

Named Data Networking (NDN) [1]–[3] offers significant
advantages in supporting distributed applications over the
traditional IP-based networks. NDN makes named, secured
data the centerpiece of communication, where consumers
request desired data by name and the network satisfies these
requests. All data items are cryptographically signed and
encrypted as needed, hence providing inherent security, while
the network provides efficient data distribution using a stateful
data plane that offers request aggregation, in-network caching,
path discovery, loop suppression, and other features.

NDN benefits become more pronounced in disadvantaged
wireless networks that are often infrastructure-less, ad hoc, and
deployed on-demand anytime and anywhere. Such networks

are characterized by i) varying bandwidth availability due to
a multitude of factors, including limited spectrum, dynamic
node movements, and adverse operational conditions; ii) high
packet loss with different characteristics; and iii) disconnected
and intermittent links (DIL), often leading to frequent network
partitions as well as more pathological cases of permanently
partitioned networks.

NDN’s advantage in disadvantaged wireless networks stems
from its ability to retrieve data packets by names from any-
where, as well as to support in-network data caching. There-
fore when end-to-end network paths are constantly disrupted,
data packets can be retrieved from the caches on intermediary
nodes. In the context of group communication, data retrieved
by some group members increases the success of others in
retrieving the same data. Even when a network is permanently
partitioned, node mobility or network regrouping allows data
to flow from producers to consumers without relying on end-
to-end paths, significantly increasing data delivery robustness
and maintaining application functionality.

While the above NDN benefits for data transfer in wireless
networks is straightforward when dealing with stable, or
otherwise known, data generation patterns, dynamically gen-
erated content poses specific challenges. Since data retrieval
in NDN is a consumer-driven process, consumers need to
know the specific names, or at least the prefixes, of available
data. Thus prompt fetching of dynamically generated data
requires notifying all the consumers about a) the production
of new data, and b) the names of the new data. Once this
information is conveyed, typical consumer application-driven
data retrieval can be applied, bringing about the previously
mentioned benefits. This notification task is provided by an
NDN synchronization (or Sync in short) protocol [4], which
keeps all the consumers informed of the latest data production.
However, a Sync protocol also brings with it a certain amount
of communication overhead.

This paper describes Prefetch Loss-Insensitive Sync (PLI-



Sync), specifically designed for dynamic data streaming
among a group of users in a disadvantaged wireless network.
PLI-Sync takes a novel approach of combining an optimistic
content prefetching with a state vector sync protocol. By
utilizing the sync protocol and the data prefetching in a com-
plementary way, PLI-Sync can keep data fetching delay low
while significantly lowering the sync protocol communication
overhead, under the conditions of heavy packet losses, network
partitions, and variable data generation rates.

The rest of this paper is organized as follows. §II presents
the application model and its requirements. §III discusses
the design of the PLI-Sync protocol, and §IV reports the
evaluation scenario and the performance of the PLI-Sync. We
conclude the paper with §VI.

II. APPLICATION MODEL

The application model we consider in this paper assumes
that individual data items are produced dynamically in real-
time according to a stochastic process. Figure 1 (upper part)
shows the data production model, where data items are gener-
ated at highly variable time intervals. Note that our stochastic
data production model subsumes simpler cases where the
data productions follow either constant rate or otherwise
deterministic patterns.

Producer

Consumer

1

2
3
4
5

1

Producer

Consumer

2

1
3
4
5

2

Producer

Consumer

3

1
2
4
5

3

Producer

Consumer

4

1
2
3
5

4
Producer

Consumer

5

1
2
3
4

5

Producer Consumer

Fig. 1. Stochastic Stream Data Production and Consumption Application
Model (top: a single producer and consumer pair; bottom: a group
with multiple producer/consumer-combos)

We define an application group as a set of producers and
consumers. A stream of data is defined as the data generated
by a single producer. Figure 1 (bottom) shows the combined
producer-consumer model in a group. The model assumes that
each node may host applications that produce and/or consume
one or multiple streams of data. While there could be cases
where nodes are producer-only or consumer-only as shown in
Figure 1 (top), the group producer-consumer combo case is
our dominant use case.

Our application model allows dynamic group membership.
Nodes may join or leave the group at different times, and the
exact group membership may not be known a priori. Given the

DIL conditions in the network, a specific producer-consumer
combo group might only last for a short duration of time.

There are multiple applications and use cases that fit the
above model. We list three of them below. One such class
of apps are Situational Awareness apps used by emergency
response teams, where data items are produced pseudo-
periodically to report the individual view of each team member
and to be consumed by everyone in the group. Another app
is a group chat, where all the members of the group produce
and consume chat messages from each other. And the third
application use case is video and audio group simulcast, where
team members broadcast their audio/video data to all the
other team members. The PLI-Sync described in this paper
is designed for supporting, and has been integrated with, all
the above three application use cases.

III. PLI-SYNC DESIGN

Figure 2 shows the major components of the PLI-Sync
Streaming Node communication stack. Each node hosts an
application instance. The application may interact with the
communication stack using multiple streams: one or more
producer streams and one or more consumer streams per group
member.

Producer
Stream

Consumer
Streams

Producer

Consumer

PLI-Sync

N
D

N
 L

ib
ra

ry
 L

ay
er

Ap
pl

ic
at

io
n 

Lo
gi

c 
/

Pr
es

en
ta

tio
n

NFD

Interest
Data

Interest
Data

Interest
Sync Plane

Data Plane

NDN
Network

PLI-Sync Streaming Node

Fig. 2. Overview of the PLI-Sync Streaming Node

The communication layer consists of a data plane compo-
nent and a sync plane component. The data plane consists of a
Producer component which receives data interests and serves
the requested data, and a Consumer component which issues
interests for data in all the relevant streams and processes the
received data. The sync plane is responsible for synchronizing
the data production state of all members within the group,
enabling the consumer to fetch newly generated data promptly.

A PLI-Sync Streaming Node also contains a local NDN
Forwarding Daemon (NFD), representing the entry point into
an NDN network composed of a mix of streaming nodes and
(pure) NDN forwarders in an arbitrary proportion, depending
on the specific deployment.

A. Producer Streams

The Producer component (Figure 3) receives a continuous
stream of application messages and transforms them into a
stream of NDN data packets, following a naming scheme of
the form:

“/<prefix>/<n>/<NodeId>/stream/<streamNum>/<seqNum>”



where i) node number “<NodeId>” identifies a specific source
node issuing the data; ii) the stream number “<streamNum>”
represents a specific stream of data generated by that node;
for example, a video file and the location data of the same
node are represented by two different streamNum’s; and iii)
the seqNum is a monotonically increasing number, one for
each newly produced data packet. “<prefix>” represents an
application and “<n>” identifies a group. The producer may
save produced data packets in a local repo, which can then be
served upon receiving matching interests.

Producer
Data
A

Data
B

Data
C /da

ta/
n/#
/st
rea
m/
#/1

/da
ta/
n/#
/str
ea
m/
#/2

/da
ta/
n/#
/str
ea
m/
#/3

Fig. 3. PLI-Sync producer names incoming application messages.

B. Consumer Prefetching

The consumer component issues interests for data items in
an increasing order of the sequence number. One key aspect of
our solution is that, upon receiving a piece of data, a consumer
optimistically issues an interest for the next sequence number
into the stream, before receiving notification of that piece of
data’s production. This data interest will be pending in the
network, until the producer generates the next data item, or
until the Interest’s lifetime expires.

An important parameter of the prefetching mechanism is
the value of the interest lifetime for data prefetching interests.
Usually an interest’s lifetime reflects expected network delay
as well as the needs of the consumer; for prefetching interests,
the lifetime value is also needs to reflect the producer’s data
production rate. To address this need, each consumer runs an
estimation module that predicts the production rate using a
weighted average of the interest satisfaction time over a given
time window, where the weight and the time window length
can be configured. In addition, whenever a prefetch interest
expires, a consumer also consult the sync plane, which we will
explain next, as the consumer may have received sync interests
after the prefetch interest was sent and before it expired to
learn whether new data has been produced. Such information
helps the consumer to adjust the lifetime value for subsequent
prefetching interests. The adjustment of the interest lifetime
can also be performed via a number of other approaches; a
more in-depth discussion of this topic is beyond the scope of
this paper.

This prefetching design enables prompt data retrieval of
sequentially generated data packets at the estimated pace of
the producer’s stochastic process. However, this scheme suffers
from the following two drawbacks if applied alone.

a) Producer stream discovery: prefetching data from ex-
isting streams alone does not provide a discovery mechanism
to signal when a new node joins the group and starts streaming
data, or when an existing node initiates a new data stream.
This signaling function is important to support dynamic group
membership, where nodes can join or leave (temporarily or

permanently) at any point, making it difficult for consumers
to determine when to start and when to stop pulling data for
each stream.

b) Operations under lossy conditions: When the network
exhibits significant losses, a consumer has difficulty in telling
whether a data prefetching interest’s expiration is due to the
requested data not being produced yet, or due to the interest
or the returned data getting lost in the network. If the former
is assumed while the latter is true, the consumer risks getting
stuck without retransmitting the interest. However, if the latter
is assumed while the former is true, issuing spurious interests
for data not yet produced may significantly increase the
network overhead. Notwithstanding this overhead, prefetching
may also lead to stream throughput collapse even under modest
network losses: a consumer may spend a significant amount
of time waiting on interest timeout for lost packets, unaware
of the state of the producer at the given moment in time. In
our initial trials we observed significant throughput collapse
even for relatively small (≈10%) end-to-end packet loss rate.
The collapse in stream throughput is further amplified by
confounding DIL conditions and network partitioning events.

C. Sync Plane

To address the two issues identified above, PLI-Sync
deploys a state vector sync protocol. The state vector is
propagated using NDN interests: each producer generates
periodic sync interests, regardless of whether new data is
generated. The period is significantly lower than the average
data generation rate which is determined either empirically
or in a data-driven manner. The format of the sync interests
for a group of an application is as follows: “/<prefix>
/<n>/<NodeId>/sync/<seqNum>/<vector_state>”, where
“<vector_state>” = “(streamNum, nodeId, SeqNum),

..., (streamNum, nodeId, SeqNum)”. This name encodes
the issuing node id, the sync prefix, and a vector which
enumerates all data streams of all the node in the group with
their latest sequence number. The node id is used to facilitate
the authentication of the interest packets: all PLI-Sync
interests are signed using a private key corresponding to the
application-defined security trust schema. This is necessary
since such interests carry important information whose abuse
could adversely impact the protocol.

The sync interests fulfill the following two roles.
a) Stream discovery: Sync interests inform all the con-

sumers of the existing streams, including any newly created
ones by either current or newly joined nodes, and the current
data state of each stream, i.e., the last sequence number.

b) Prefetch advise: The issuer of a Sync interest informs
the rest of the group its current view regarding the state of
all data productions in the group. The sync interest helps
the data plane’s prefetch mechanism distinguish packet losses
from data availability. Whenever a sync interest reflects a
newer sequence number for a give stream, the consumer can
confidently fetch the new data, based on the stream latency
and reliability requirements.



The period length of sync interests represents a tradeoff be-
tween network overhead and maximum tolerable data fetching
latency. The choice of the sync period is also dependent on
the number of nodes in the network (or partition): if each node
generates sync interest at a given rate, a larger group means a
higher count on the total sync interests generated compared to
a smaller group. In a network of 50 nodes, we configured the
sync interest rate to be 6 to 10 times lower than the nodes’
average data generation rates.

D. Data and Sync Plane Interplay

Figure 4 shows the interplay between the data plane and
the sync plane in PLI-Sync. PLI-Sync derives latest data
availability information from the following sources: i) sync
interests received over the network from other PLI-Sync
instances; ii) the local producer, reflecting the local stream
states; and iii) the local consumer, reflecting the latest data
fetched (optimistically or not) for all the streams in its group.
This last aspect distinguishes PLI-Sync from previous NDN
sync protocols in which consumers only fetch data that is
known to have been published. Therefore, the previous sync
protocols supply new data information to the local consumer
but do not obtain such information from the consumer. In
contrast, PLI-Sync makes the local consumer an important
source of latest data state discovery. As we show in §IV, the
consumer-contributed sync state can significantly reduce the
overhead of sync protocol while maintaining low data fetching
latency.

ProducerConsumer Sync

PLI-Sync Stack
iii) ii)

i)

Fig. 4. Data Plane and Sync Plane Interactions

Another important semantic distinction between PLI-Sync
and most other sync protocols is that each node N uses sync
interests to report the latest data packet of each stream that N
has obtained, instead of reporting the latest sequence number
of all the new data. Therefore whenever a consumer finds that
a stream has produced new data, it proceeds to fetch the corre-
sponding data aggressively, knowing with high confidence that
the data should be available nearby, e.g., from the sync-issuing
node. This design departure from most other NDN Sync
protocols reflects a difference in design priorities. The earlier
Sync designs take into consideration the cases where not every
consumer would want all the data, especially when it is under
resource constraints (e.g. under poor connectivity, or running
low in local memory or battery power). However, the first
priority in the PLI-Sync design is resilient data delivery when
operating with intermittent connectivity and frequent network
partitions. An extreme case is shown in Figure 5: as time
advances from t0 to t1, the network is permanently partitioned,
thus no path exists between node A and nodes B and C.
This situation is common under severe DIL or high mobility
conditions, where propagating the dataset state alone would

A B C A B C

A[10]A[15]A[15] A[15]A[15]A[20]

t0 t1

Fig. 5. Operations in Partitioned Networks

not help. At time t0, Node A and B can communicate, their
data states get synchronized (in this case Node B synchronizes
with Node A stream state sequence 15), and Node B retrieves
the data items up to “/prefix/n/A/stream/15” via fetch in
data plane, and a copy of all retrieved data is cached in the
content store of Node B. Later on at time t1, when Node B
is in contact with Node C, Node C synchronizes its state with
that of Node B, and hence it becomes aware of the Node
A stream state sequence 15. As a result, Node C is able to
fetch the data item up to “/prefix/n/A/stream/15” from the
network (i.e., from the NFD of Node B). This functionality is
enabled by the semantic of the PLI-Sync state vector backed
by direct and eager fetching in the data plane, as well as by
the PLI-Sync node design (Figure 2) where each participating
node has an NFD instance that caches consumed data locally.

Although this example might seem a rare pathological
situation (or at best contrived) it is typical of DIL networks
where links are temporary permitting only a few packet
exchanges before going away. Effective communication under
such conditions becomes essential for network functionality.

IV. PERFORMANCE EVALUATION

We implemented the PLI-Sync software stack using multiple
versions of NFD and ndn-cxx library (0.6.2 to 0.6.6). We
ported and used the stack on different platforms (Ubuntu
16.04, Ubuntu 18.04, Android 7.2, Android 8.0) in deploy-
ments with up to 100 devices, using a variety of wireless
networks. The evaluation results described in this section had
been performed in a hybrid environment, consisting of virtual
machines hosting the PLI-Sync software stack and application,
and an ns-3 simulation-in-the-loop network model. The results
presented below are based on a 50-node network shown in
Figure 6. This network consists of five groups of ten mobile
devices (n1-n10, ..., n41-n50), connected via WiFi 802.11n to
an Access Point (AP1-5), and each AP is connected via LTE
to a central LTE Router. The APs are configured to operate
at a HtMCS6 rate of 58.5Mbps shared between ten associated
nodes, whereas the LTE network is configured to operate at a
rate of 100Gbps shared among all five LTE links.

Each phone was represented by a Ubuntu18.04 host running
the PLI-Sync Streaming Node software stack in Figure 2,
including an NFD instance. Each of the AP nodes and the LTE
Router node also ran an NFD instance, but without running the
app or PLI-Sync software stack. The application, emulating a
generic Situational Awareness app, generated a stream of data
items with a bimodal distribution alternating between light
episodes (data size 696B, inter-arrival-time uniform 9~11s,
1~50 data items) and heavy communication episodes (data
size 1783B inter-arrival-time uniform 1~5s, 1~10 data items).
Data generation was independent at each node.



LTE Router

AP1

n1 ~ n10

AP2

n11 ~ n20

AP3

n21 ~ n30

AP4

n31 ~ n40

AP5

n41 ~ n50

Fig. 6. 50-Node Evaluation Network

The NDN network was configured with opportunistic
caching, using UDP unicast faces between each mobile device
and its AP, and between each AP and the LTE Router. We did
not use broadcast NDN faces, due to poor (or no) support and
performance for either WiFi and LTE. In all experiments we
used a multicast forwarding strategy for all prefixes.

We used the following main metrics for our evaluation:
• Delivery latency: defined as the difference between the data

generation time and the data reception time.
• Overall Interest to Data Ratio (OIDR): the ratio between

the total number of interests sent (data and sync planes) and
the number of data items received. It measures the interest
overhead in the sync plane and data plane.

• Data Interest to Data Ratio (DIDR): the ratio between the
number of data interests sent and the number of data items
received. It measures the performance in the data plane.

• Sync Interest to Data Ratio (SIDR): the ratio between the
number of sync interests sent and the number of data items
received; it measures sync interest overhead.

• Sync ACK to Data Ratio (SADR): the ratio between the
number of sync ACK data sent and the number of data items
received; it measures sync ACK data overhead.1

• Efficiency (EFF): the total bytes of received data at all end
nodes, divided by the total sent bytes at all nodes (the latter
consisting of total bytes of sync interests sent, total bytes of
sync ACK sent, total bytes of data interest sent, total bytes
of data sent).

• Catch up latency: defined as the data fetching delay after
additional data becomes retrievable following mobile node
movements.

A. Heavy Loss Conditions

In the first scenario we considered a network with heavy
packet losses. Each packet generated by a mobile device is
subject to a 20% loss on the uplink path to the AP, and an
additional 20% packet loss rate on the downlink from the AP
to each receiver node. The loss is applied using ns3 rate error
model on a per-packet basis. There is no additional LTE link
loss. In this scenario, we analyze the performance of PLI-
Sync and compare it with the performance of PSync [5] (in

1PLI-Sync does not generate sync ACK data; PSync used in the comparison
does.

Max latency for PLI-Sync: 10 sec
Max latency for PLI-Sync (no consumer): 12 sec

Max latency for PSync: 10 sec0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

Latency, sec

C
D

F PLI-Sync

PLI-Sync
(no consumer)

PSync

Fig. 7. Data Retrieval Latency

Full Sync Mode), and PLI-Sync without feeding information
from the consumer into the sync plane; we dub this setup PLI-
Sync-noconsumer. PLI-Sync-noconsumer is also configured
for a node to send additional sync interests when a received
sync interest does not have the latest data production state
about itself. Consequently, the data retrieval latency for PLI-
Sync, PLI-Sync-noconsumer, and PSync are similar in this
scenario as shown in Figure 7. The slightly larger maximum
data retrieval latency for PLI-Sync-noconsumer is due to the
reliance on the sync interests to learn the latest data production
state. PSync displays a step-like latency pattern because it was
configured with a sync interest lifetime of one second.2

TABLE I
METRICS UNDER HEAVY LOSS

- OIDR DIDR SIDR SADR EFF
PLI-Sync 1.88 1.87 0.06 0 13.4

PLI-Sync (no cons.) 2.66 2.08 0.58 0 3.0
PSync 4.88 1.68 0.18 3.02 0.45

The overhead and efficiency measures for single long-
running experiments (12 hours each) are summarized in Ta-
ble I. As expected, PLI-Sync has the smallest overall overhead
ratio. The difference in overhead between PLI-Sync and PLI-
Sync-noconsumer can be attributed to the feedback between
consumer and the sync plane: knowledge of new data from a
node’s data plane helps speed up other nodes’ data discovery,
thus, saves the overhead of sending extra sync interests. The
Data Interest to Data Ratio is the smallest for PSync because
in this case data is retrieved only after nodes are informed of
data’s existence, in contrast to PLI-Sync’s optimistic retrieval
which results in extra-overhead due to the retrieval attempts
prior to data production. The Sync Interest to Data Ratio is
the smallest for PLI-Sync, since it is at constant rate and
low frequency (60s). This overhead is larger for PLI-Sync-
noconsumer. The Sync ACK to Data Ratio is only applicable
to PSync, since PLI-Sync does not respond to sync interests
with sync ACK. Finally, it can be observed that the efficiency
is much higher for PLI-Sync as compared to PLI-Sync-
no-consumer and PSync, thanks to both its optimistic data
fetching and the data plane discovery contributions to sync.

2This value was hand-picked for the experiment to balance overhead and
data fetching delay. Larger values would prolong the fetching delay, while
smaller values increase sync overhead.



B. Network Partitioning

In the second scenario, in addition to the 20% loss in WiFi
reception, we created a permanently partitioned network in
the following way. After the network is fully connected for
the first 100s, nodes under AP4 and AP5 get disconnected
from LTE, creating their own network partition. At time 400s,
nodes under AP3 get disconnected as well, hence creating a
network partitioned three-way. At time 700s, AP3 reconnects
with the [AP4, AP5] partition, enabling the nodes under AP3
to ferry data generated by nodes under [AP1, AP2] during the
time period [100s, 400s] to [AP4, AP5]. Then nodes n21-n30
along with AP3 continue to repeat the swing pattern between
a two-partitioned and a three-partitioned network.

0.00

0.25

0.50

0.75

1.00

0.4 0.5 0.6 0.7 0.8

Latency, sec

C
D

F

n21-n30 catch up
after n31-n50
reconnect

n31-n50 catch up
about n1-n20 info 
via n21-n30

Fig. 8. Disconnected Mode Retrieval Latency

Figure 8 shows the CDF for catch up latency for PLI-Sync
operating in the disconnected mode, where the periodic sync
interest rate of a producer remains one per 60s. The solid
green line highlights the discovery latencies at nodes n21-n30
of data produced by nodes n31-n50 following a reconnection.
The dashed red line measures the latency of discovery at
nodes n31-n50 of data produced by nodes n1-n20 following a
reconnection with nodes n21-n30. It can be observed that the
latency is under one second in both cases.

The overhead and efficiency measures are qualitatively
similar to those obtained in connected mode (OIDR=2.19,
DIDR=2.18, SIDR=0.06, SADR=0, and EFF=14.6), demon-
strating that the protocol has stable performance and low
overhead across a wide range of network conditions, achieving
its design goal.

V. RELATED WORK

A number of NDN sync protocols have been developed
[4]–[10]. ChronoSync [7] adopts a cryptographic digest data
structure to encode the dataset state. This representation is
not semantically meaningful, thus it cannot directly show the
difference in the dataset state when multiple nodes make
changes to the dataset states. This reduces the protocol effi-
ciency, when compared with PLI-Sync, especially in networks
with disconnected and intermittent links (DIL). iSync [6] and
PSync [5] use an invertible Bloom Filter (IBF) [11] to encode
dataset state, relying on the IBF subtraction operation to infer
the state difference. IBF by design has certain limitations
on the amount of information it can decode with a single
operation due to the probability of false positive errors [11].
As such, multiple rounds of exchanges may be required to

resolve differences, which can be expensive or infeasible under
DIL conditions. VectorSync [8], DDSN [12], and SVS [13]
overcome this problem by directly reporting the latest data
production of all the group members to improve resiliency, a
feature that we borrow in PLI-Sync. PLI-Sync makes a unique
contribution by combining data plane and sync plane in data
information discovery with significantly increased efficiency.

VI. CONCLUSION

The results shown in this paper demonstrate that PLI-Sync
can provide robust data delivery in DIL environments, with a
low data fetching delay and a low protocol overhead. Among
the topics not covered in this paper are the impact of routing
and forwarding on the performance of PLI-Sync, the effects
of network congestion on data retrievability, as well as aspects
related to the predictability of stream data production. These
topics are left for future research.

ACKNOWLEDGEMENT

This work was supported in part by DARPA under contract
HR0011-17-C-0113. The views, opinions and/or findings ex-
pressed are those of the authors and should not be interpreted
as representing the official views or policies of the Department
of Defense or the U.S. Government. Distribution Statement
”A” (Approved for Public Release, Distribution Unlimited).

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. Thronton, M. F. Plass, N. H. Briggs,
and R. Braynard, “Network Named Content,” CoNEXT, 2009.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Reviews, June 2014.

[3] A. Afanasyev, T. Refaei, L. Wang, and L. Zhang, “A brief introduction
to Named Data Networking,” in Proc. of MILCOM, Oct. 2018.

[4] P. Moll, W. Shang, Y. Yu, A. Afanasyev, and L. Zhang, “A Survey of
Distributed Dataset Synchronization in Named Data Networking,” Tech.
Rep. NDN-0053, Revision 2, Named Data Networking, March 2021.

[5] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data
Synchronization for Named Data Networking,” in Proceedings of the
IEEE Conference on Computer Communications (INFOCOM), 2017.

[6] W. Fu, H. Ben Abraham, and P. Crowley, “isync: a high performance
and scalable data synchronization protocol for named data networking,”
in Proceedings of the 1st ACM Conference on Information-Centric
Networking, pp. 181–182, 2014.

[7] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proceedings of
the 21st IEEE International Conference on Network Protocols (ICNP
2013), (Goettingen, Germany), Oct. 2013.

[8] W. Shang, A. Afanasyev, and L. Zhang, “VectorSync: Distributed dataset
synchronization over Named Data Networking,” Technical Report NDN-
0056, NDN, Mar. 2018.

[9] P. Heras-Quirós, E. Castro, W. Shang, Y. Yu, S. Mastorakis,
A. Afanasyev, and L. Zhang, “The design of roundsync protocol,” in
Technical Report NDN-0048, 04 2017.

[10] X. Xu, H. Zhang, T. Li, and L. Zhang, “Achieving resilient data
availability in wireless sensor networks,” in 2018 IEEE International
Conference on Communications Workshops (ICC Workshops), 2018.

[11] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference?: efficient set reconciliation without prior context,” in
SIGCOMM, 2011.

[12] T. Li, Z. Kong, S. Mastorakis, and L. Zhang, “Distributed Dataset Syn-
chronization in Disruptive Networks,” in 2019 IEEE 16th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2019.

[13] “Specification and API Description of the StateVectorSync (SVS) Pro-
tocol.” by NDN Project Team, available online at https://github.com/
named-data/StateVectorSync.


