
A New Proposal for RSVP Refreshes
�

Lan Wang, Andreas Terzis, Lixia Zhang
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095�

lanw, terzis, lixia � @cs.ucla.edu

Abstract

As a soft-state protocol, RSVP specifies that each RSVP
node sends periodic control messages to maintain the state
for active RSVP sessions. The protocol overhead due to
such periodic messages grows linearly with the number of
RSVP sessions. One may reduce the overhead by using a
longer refresh period, which unfortunately leads to longer
delays in re-synchronizing RSVP state.

In this paper we introduce a novel “state-compression”
approach to reducing the overhead of periodic refreshes. In-
stead of per session refresh messages, an RSVP node sends
periodically to each of its neighbor node a Digest message
that contains a compressed version of the entire RSVP state
shared with that particular neighbor. In order to speed
up state synchronization in face of message losses we also
enhance RSVP with an acknowledgment mechanism. Our
mechanisms achieve a constant message transmission over-
head and low delay while retaining the soft-state nature of
the RSVP protocol.

1. Introduction

RSVP [3] is a resource reservation protocol that can be
used to request specific quality of service for particular data
flows across the Internet. RSVP carries such requests to all
the nodes along the data path(s) to make the resource reser-
vation. As a soft-state protocol, RSVP sets a finite lifetime
for all the reservation state. The end points of RSVP data
flows maintain their reservation by sending periodic refresh
messages along the data paths; a session’s state is automati-
cally deleted when its lifetime expires. Thus the network is
free from obsolete or orphaned reservations.

The periodic Refresh messages play the following im-
portant roles in assuring correct protocol operation:

�
We would like to thank Intel and Cisco for their generous support of

this research.

1. Automatic adaptation to route changes. IP rout-
ing changes cause data flows to switch to different
paths. By design RSVP refresh messages follow the
data paths, thus the first RSVP messages along the new
paths will establish the requested reservations, while
the state along the old paths is either explicitly torn
down or otherwise automatically timed out.

2. Persistent state synchronization. RSVP messages
are sent as IP datagrams which can be lost on the way.
RSVP state at individual nodes may change due to
rare or unexpected causes (e.g. undetected bit errors).
These factors may lead to momentary inconsistency in
RSVP state along the data paths. Periodic refreshes
serve as a simple repairing mechanism that correct any
and all state inconsistencies in RSVP state for active
sessions.

3. Built-in adaptation mechanism for reservation ad-
justment. When either a sender or a receiver needs
to change its traffic profile or reservation parameters
during a session, it simply puts the modified parameter
values in the next refresh message.

There is, however, a price to pay for the simplicity and
robustness that come with soft state: the protocol overhead
grows linearly with the number of active RSVP sessions.
Even in the absence of new control information generated
by sources or destinations, an RSVP node sends to its neigh-
boring nodes one message per active sender-session pair per
refresh period. Another performance concern is the reser-
vation setup or tear-down delay caused by occasional losses
of RSVP control messages. Although periodic RSVP re-
freshes eventually recover any previous losses, the recovery
delay, which is proportional to the refresh period, can be
considered unacceptable in a number of circumstances. One
may reduce the recovery delay by reducing the refresh pe-
riod, however doing so would worsen the refresh overhead
problem.

To overcome the dilemma between protocol overhead
and responsiveness, in this paper we present a new approach

to RSVP overhead reduction. The crux of our scheme is to
replace all the refresh messages sent between two neigh-
boring nodes for each of the RSVP sessions with a digest
message that contains a compressed “snap shot” of all the
shared RSVP sessions between two neighbor nodes. When
an RSVP node, say � , receives a digest from a neighbor
node, it compares the value carried in the digest message
with the value computed from � ’s local RSVP state. If the
two values agree, � refreshes all the corresponding local
state; otherwise � starts a state re-synchronization process
to discover and repair the inconsistency. To assure quick
state synchronization in face of packet losses we also en-
hance RSVP with an acknowledgment option, so that in-
stead of waiting for next refresh, any lost RSVP messages
can be quickly retransmitted.

The rest of this paper is structured as follows: we briefly
introduce the basic RSVP terminology and operations be-
low. In Section 2 we present an overview of our state
compression algorithm. Section 3 describes in detail the
data structure and procedure for computing RSVP digests.
Section 4 presents a list of proposed new RSVP messages
and related processing rules that are needed to implement
our new scheme. Section 5 analyzes the overhead of di-
gest computation. After identifying the limitations of our
scheme in Section 6, we discuss the relationship between
this effort and previous work done in the area in Section
7. Finally, Section 8 summarizes our findings and discusses
the applicability of our method to other soft-state protocols.

1.1. RSVP Basic Operations and Terminology

RSVP is a receiver-driven protocol. To provide receiver-
driven reservation functionality, a data source sends PATH
messages towards the receivers, leaving behind a trace of
“path state” at each router they traversed. Receivers wishing
to make a reservation then send RESV messages, which fol-
low the path state traces upstream towards the data source,
reserving resources at each intermediate node along the
way. The state set up by PATH and RESV messages is
called path and reservation state, respectively. The state
is deleted if no matching refresh messages arrive before the
expiration of its life timer. The state may also be deleted
by either the sender or receiver using PathTear or ResvTear
messages.

PATH and RESV messages are idempotent. When a
route changes, the next PATH message will initialize the
path state on the new route, and future RESV messages will
establish reservation state there; the state on the now-unused
segment of the route will time out. Thus, whether a mes-
sage is “new” or a “refresh” is determined separately at each
node, depending upon the existence of state at that node.

Before we proceed with our proposed RSVP state com-
pression algorithm we give the definitions of some terms

that will be used in the rest of this paper.

RSVP State An RSVP path or reservation state.

Regular/Raw RSVP Message RSVP messages defined in
RFC2205 [3], e.g. PATH, RESV, PathTear and
ResvTear messages.

Refresh Message An RSVP message triggered by a re-
fresh timeout to refresh one or a set of RSVP state.
It can be a PATH message for a path state, a RESV
message for a reservation state or a Digest message (in
our scheme) for aggregate state.

MD5 Signature The result of the computation of the MD5
algorithm.

Digest A set of MD5 signatures that represents a com-
pressed version of the RSVP state shared between two
neighboring RSVP nodes.

2. Design Overview

The goal of our proposal is to improve RSVP’s scalabil-
ity allowing efficient operation with large number of ses-
sions (e.g. tens of thousands sessions). More specifically,
we aim at reducing the number of refresh messages while
still preserving the soft-state paradigm of RSVP. In this sec-
tion we briefly describe our state compression approach; the
details of the compression scheme are presented in the next
section.

Instead of sending a refresh message per sender-session
pair to a neighbor, our approach is to let each RSVP node
send a digest message which is a compact way of represent-
ing all the RSVP session state shared between two neigh-
boring nodes. In this way, the number of refresh messages
per refresh period is reduced from being proportional to the
number of sessions to being proportional to the number of
neighbor nodes. Raw RSVP messages are sent either when
triggered by state changes or after state inconsistency is de-
tected to re-synchronize the state shared between two nodes.

These benefits cannot come without any overhead. Gen-
erally speaking, the protocol overhead of RSVP can be di-
vided into two components, the bandwidth overhead for
message transmissions, and the computation overhead for
processing these messages. One can further subdivide the
computation overhead to system overhead (e.g. system in-
terrupts by packet arrivals) and message processing over-
head. The state compression scheme can effectively de-
crease the bandwidth and system overhead, however at the
cost of increased message processing overhead as we apply
additional processing to compress RSVP state to a single
digest message per neighbor. Therefore, one important part
of our design is to minimize the cost of digest computation.

To compress RSVP state into a digest, one can sim-
ply concatenate the state of all the RSVP sessions into a
long byte stream and compute a digest over it. However
this brute-force approach suffers from a high overhead of
recomputing the whole digest again whenever any change
happens. To scale the digest computation we compute the
digest in a structured way. First, we hash all the RSVP ses-
sions into a table of fixed size. We then compute the signa-
ture of each session, and for each slot in the hash table we
further compute the slot signature from the signatures of all
the sessions hashed to that slot. On top of this set of signa-
tures, we build an � -ary tree to compute the final digest (a
complete description of the data structures used is given in
section 3.3).

There are two advantages in using a tree structure to
compute the digest:

1. Whenever the digests computed at two neighboring
nodes differ, the two nodes can efficiently locate the
portion of inconsistent state by walking down the di-
gest tree;

2. When an RSVP session state is added/deleted/modifi-
ed, an RSVP node only needs to update the signatures
along one specific branch of the digest tree, i.e. the
branch with the leaf node where the changed session
resides.

In our current design, we use the MD5 algorithm to com-
pute state signatures. As stated in [7], “it is computation-
ally infeasible to produce two messages having the same
message digest, or to produce any message having a given
pre-specified target message digest.” We can therefore con-
clude, with a high level of assurance, that no two sets of dif-
ferent RSVP states will result in the same signature. How-
ever, it should be noted that our state compression scheme
can work well with any hash function that has a low colli-
sion probability, such as CRC-32, as long as two neighbor-
ing nodes agree upon their choice of the hash function.

As a further optimization, we also add an acknowledg-
ment option (ACK) to the RSVP protocol. The ACK is used
to minimize the re-synchronization delay after an explicit
state change request. A node can request an ACK for each
RSVP message that carries state-change information, and
promptly retransmit the message until an acknowledgment
is received. It is important to note the difference between a
soft-state protocol with ACKs and a hard-state protocol. A
hard-state protocol relies solely on reliable message trans-
mission to assume synchronized state between entities. A
soft-state protocol, on the other hand, uses ACKs simply to
assure quick delivery of messages; it relies on periodic re-
freshes to correct any potential state inconsistency that may
occur even when messages are reliably delivered, for exam-
ple state inconsistency due to undetected bit errors, or due
to undetected state changes.

3. State Organization

One can suspect that the increase in refresh efficiency
cannot come for free. This is indeed the truth and the trade-
off comes in the form of increased storage and computa-
tion. The increase in storage originates from the need to
keep per neighbor state, since separate digests are sent to
different neighbors. Consequently, computation costs are
inflated since we have to compute the per-neighbor digests
and we have to operate on the per-neighbor data structures.
In the sections that follow we elaborate on the requirements
for extra state introduced by the compression mechanism.
Computation costs are further analyzed in Section 5.

3.1. Neighbor Data Structure

Current RSVP implementations structure the RSVP state
inside a node as a common pool of sessions, regardless of
their destinations. On the other hand, digest messages sent
towards a particular neighbor contain a compressed version
of the RSVP state shared with that neighbor. The need
therefore arises to further organize RSVP state inside a node
according to the neighbor(s) each session comes from or
goes to. To satisfy this need we introduce the Neighbor data
structure which holds all the information needed to calcu-
late, send and receive digests to and from a specific node.

In essence the Neighbor data structure is the collection
of RSVP sessions that the current node sends to or receives
from a particular neighbor. For efficiency neighbor data
structures may not actually store the sessions but contain
pointers to the common pool of sessions. This way a session
shared with multiple neighbors is not copied multiple times
to the corresponding neighbor structures. In addition to ses-
sions, the neighbor structure contains the digest computed
from the sessions shared with the neighbor and some auxil-
iary information such as retransmission and cleanup timers.

A node needs to compute two digests for each neigh-
bor, one for the state refreshed by messages received from
that neighbor and one for the state the local node is respon-
sible for refreshing towards that neighbor. We call these
two digests InDigest and OutDigest respectively. OutDi-
gest is sent in lieu of raw refreshes while InDigest is used to
for comparison when receiving a Digest message from that
neighbor. In the next section we present how we compress
each session state into an MD5 signature. In section 3.3 we
delve into the details of the data structure and algorithm we
use to derive a digest from the session signatures.

3.2. Session Signature

To compress a session state into a signature, we first need
to identify which session parameters need to be constantly
synchronized between neighbors. Table 1 shows the RSVP

objects included in the digest computation. A session is
uniquely identified by a session object which contains the
IP destination address, protocol ID and optionally a desti-
nation port number of the associated data packets. A Path
State Block (PSB) is comprised of a sender template (i.e.
IP address and port number of the sender), and a Tspec
that describes the sender’s traffic characteristics and possi-
bly objects for policy control and advertisements. A Reser-
vation State Block (RSB) contains filterspecs (i.e. sender
templates) of the senders for which the reservation is in-
tended, the reservation style and a flowspec that quantifies
the reservation. It may also contain objects for policy con-
trol and confirmation. Although PSBs and RSBs contain
some other fields such as incoming interface and outgoing
interfaces, these fields have only local meaning to a spe-
cific node and therefore should be excluded from the digest
computation. As to RSVP objects defined in the future, the
digest computation can also be applied to them if necessary.

RSVP Objects Sub-objects to Include
Session session object

PSB sender template, sender tspec,
adspec, policy

RSB filterspec, flowspec, reservation style,
policy

Table 1. RSVP Objects Included in Digest
Computation

We noticed that, in the current RSVP specification, RSBs
record only reservations requests received from downstream
neighbors, but not reservation requests forwarded upstream.
However, for a multicast session or many-to-one unicast
session, the reservation request a node receives from a
downstream neighbor may not be the same as the one it
sends to an upstream neighbor if the node is a merging or
splitting point. Since the sender of a digest has to compute
the digest based on what flowspec and filterspec are sent
to its neighbor, we require such information to be kept in
associated RSBs to facilitate the digest computation.

3.3. Hash Table and Digest Tree

The existence of the structures described in this section
is not fundamental for the correct operation of our compres-
sion scheme. However given the context where our pro-
posed solution will be most useful (e.g. tens of thousands of
sessions), these structures provide the desired performance
to make the scheme practically viable. Two are the principal
reasons that impelled us to include these data structures:

� Given the need for expeditious response to state
changes and the high volatility resulting from the high

volume of sessions, updates, insertions and deletions
must be done efficiently. This requirement can be
translated to two subgoals: a data structure that sup-
ports efficient session insertions and deletions and sec-
ond, incremental digest computation. Unfortunately,
the design of the MD5 algorithm does not allow incre-
mental digest computation. To overcome this limita-
tion we compute the state digest recursively, by apply-
ing the algorithm to session sets of increasing size.

� State inconsistencies must be resolved rapidly with-
out requiring complete state retransmission. To do so,
we need to quickly locate which part of RSVP state
contains the inconsistency and then send raw refreshes
only for these sessions.

In addition to the two primary reasons, simplicity and
robustness are essential if this mechanism is to supersede
the minimalism and potency of raw refreshes. With this set
of goals in mind, we continue by presenting each one of the
two data structures next.

Sessions are stored inside a hash table. The size of the
hash table is

�
and sessions are hashed to one of the

�
hash table slots. Hashing is done over some fixed session
fields (e.g the session’s address). If multiple sessions hash
to the same slot, they are inserted in a linked list. Sessions
inside the linked list are stored ordered according to their
destination address. Figure 1 shows the session hash table.
Slot � contains a pointer to the head of the linked list of
all stored sessions that hash to � . It also contains an MD5
signature that is computed by concatenating all the sessions’
MD5 signatures and applying the MD5 algorithm on the
compound message.

�

...

...

Hash Table

�
�����
	�

�

Figure 1. Hash Table

The second step is to reduce the total number of signa-
tures from

�
to � , the number of signatures that can fit

inside a single message. To do that we have introduced a
complete � -ary tree whose leaves are the slots of the hash
table. This digest tree is shown in Figure 2.

A node constructs the digest tree in the following way.
As we said earlier, the leaves of the tree are the signa-
tures stored in the slots of the hash table. The signatures

�����

� �������
	

�
� ��
 ��

�
������� � �
�����

����� �����

����� �����

Figure 2. Digest Tree

of � slots are concatenated and the MD5 algorithm is ap-
plied on the compound message. The result is stored at the
parent node on the tree. Looking at Figure 2, signatures���������������! are concatenated and the MD5 algorithm result
is stored in node " � . This grouping results in

�$# � level-1
signatures. If the number of level-1 signatures is still larger
than � , the node continues on to group each of � level-
1 signatures to compute a level-2 signature to get

�$# �&%
level-2 signatures. If ')(is the number of level-i signatures,
we repeat the grouping until '*(is less than or to equal to � .
The top level signatures represent the digest of that RSVP
state.

We have chosen the degree of the tree to be the same as
the maximum number of MD5 signatures inside the digest
object to simplify the data structure and to reduce the num-
ber of parameters. Note that all insertions and deletions are
done in the hash table while the purpose of the digest tree
is to reduce the number of signatures from

�
to � and to

store intermediate results that will be used during the recov-
ery phase, after inconsistencies are detected.

The hash table size
�

and the maximum number of sig-
natures � in a digest are two important factors that affect
the performance of our digest scheme. A smaller

�
re-

sults in more sessions being hashed to each slot on average,
which means more overhead in updating the signature of a
slot. However, given an � , a smaller

�
also leads to a

lower digest tree and consequently fewer intermediate lev-
els of the tree to maintain and fewer messages to exchange
during the recovery procedure. This suggests that, when
choosing

�
, one needs to take into consideration both the

target tree height and the expected number of sessions in
each hash slot. Furthermore, if the actual number of ses-
sions differs greatly from the expected number of sessions,
the sender of a digest may need to change its

�
to achieve

better performance. As a result, the sender should nofify
the receiver of the modified

�
and the receiver needs to use

the new value of
�

in its digest computation. A larger �
means each node in the tree has a larger fan-out and there-

fore the digest tree will have fewer levels. In general, one
would like � to be the largest value allowed by the link
MTU.

4. Mechanism Description

4.1. New RSVP Messages and Objects

Our compression mechanism requires three new RSVP
messages, namely: Digest, ACK and DigestErr. A Digest
message carries a timestamp object that uniquely identifies
it and a digest object that represents the state shared between
a node and its neighbor (i.e. the receiver of the message).
After a node discovers a neighbor capable of exchanging
digests (see section 4.2), it periodically sends Digest mes-
sages refreshing the total RSVP state of that neighbor. If a
node wishes to send Digest messages at a different interval
than the standard, it can specify that interval in the Digest
message. In this way, the receiver will know when to ex-
pect Digest messages and in their absence when to delete
the associated state.

ACK messages are used to acknowledge raw RSVP mes-
sages or Digest messages. Since many messages may be
outstanding when an ACK is received at the sender side, the
ACK message contains the timestamp of the message it ac-
knowledges. The receipt of an ACK message indicates that
the original message was received and processed by the re-
ceiver. Moreover, the message was processed at the receiver
side without creating any errors. Otherwise, an error mes-
sage (ResvErr, PathErr or DigestErr) would have arrived in-
stead of the ACK message.

A DigestErr message acts as a negative acknowledgment
to a Digest message. Similar to ACK messages, the Di-
gestErr message carries the timestamp of the received digest
message. In addition, it contains the digest value computed
at the receiver side, which is used later in the recovery pro-
cess (see section 4.4).

The timestamp object mentioned before contains two ba-
sic fields: the Timestamp field which is the time that the
packet was sent and the Epoch field which is a random 32-
bit value initialized at boot time. All timestamp objects sent
from a node should use the same Epoch value as long as
the node is not rebooted. If, after the initialization phase,
a node receives two consecutive messages with different
Epoch values, it can conclude that the sender of these mes-
sages has rebooted. The receiving node must then purge all
state associated with that sender.

We chose to use time as the message identifier because it
is always increasing and so a sender does not have to check
if the value is in use or has been used before. It also helps
the receiver to identify which of the RSVP messages for
the same state is the most recent one. However, depending
on the node’s processing speed and timer granularity, two

������������
������������

��������������������
������������

��������������������
��������������������
	�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�

�
�
�

�
�
�

���

���
�������������������������

���

���������������
���������������

��

��
����������

����������������������������
���������������������������� ��

'

� �

�

New Route

Original Route

Non RSVP Cloud

Figure 3. RSVP Session over a non-RSVP
cloud

consecutive messages may get the same timestamp value.
Therefore, we define the timestamp to be � � �"!$# �%#'&)(+*-,/.1032 ,
where # is the current time and #'&)(+*-, is the last timestamp
value used.

Furthermore, the timestamp object carries a flag indicat-
ing whether the sender is requesting an acknowledgment for
this message. This flag should be turned off in the times-
tamp objects carried by ACK and DigestErr messages to
avoid an infinite exchange of ACK messages.

Last, the digest object carries a set of MD5 signatures.
These signatures can be either the digest or some set of MD-
5 signatures from some other level of the digest tree.

4.2. Neighbor Discovery

To use the compressed refresh scheme, a node needs to
discover which of its neighbors are capable of exchanging
digests. For this reason, when a RSVP node starts sending
(raw) RSVP messages for a session, it should request that
the neighbor(s) acknowledge these messages by including a
timestamp object with the ACK Requested flag turned on.
If the node receives an ACK message in response from a
neighbor whose address is not currently on the Neighbor
Structure list, it has then discovered a new compression-
capable neighbor. If on the other hand, that neighbor does
not understand timestamp objects (legacy node), it will re-
turn an error message. We can then conclude that this neigh-
bor is compression-incapable.

When a non-RSVP cloud exists between two RSVP
neighbor nodes, although the nodes can discover each
other using acknowledgments during the initial message ex-
changes, the upstream neighbor may not be able to detect
whether sessions crossing the cloud switch next hops. These
changes are caused by route changes inside the non-RSVP
cloud and are not detectable if the upstream neighbor’s out-
going interface remains the same. The original RSVP spec-
ification does not share this problem since RSVP messages
for individual sessions carry the session’s address and there-
fore naturally follow any route changes. In the compression
scheme however, digest messages are explicitly addressed

to particular next hops and therefore the same solution can-
not be used.

Figure 3 illustrates our point. In this scenario node �
originally has

�
as its downstream neighbor for session

�
.

After a route change, node ' becomes � ’s downstream
neighbor for that session. However, since � ’s outgoing
interface remains unchanged, � will not notice the route
change, hence it will continue to include session

�
when

calculating the digest to
�

. Node
�

will not be informed
of the change either as long as � sends it the same digest.
Therefore, node ' will never get a PATH message from � .
As a result, resources will be reserved on the path between
� and

�
while data packets will follow the path from � to

' .
The digest scheme therefore, cannot be used over non-

RSVP clouds until an effective way of detecting route
changes is found. Fortunately, the existence of non-RSVP
clouds can be detected by mechanisms described in [2]. If
a non-RSVP cloud exists between two nodes, regular re-
freshes should be used instead of the compression mecha-
nism.

4.3. Normal Operation

Neighboring nodes start by exchanging regular RSVP
messages as usual. Once a node discovers a compression-
capable neighbor, it creates a digest for the part of its RSVP
state that it shares with each of this neighbors. Subse-
quently, the node sends Digest messages instead of raw
RSVP refreshes at regular refresh intervals. When an event
that changes the RSVP state (e.g. a sender changes its traf-
fic characteristics (Tspec)) occurs, raw RSVP messages are
sent immediately to propagate this change.

Raw RSVP messages are sent as before, with the added
option of asking for an ACK. A sender requesting an ac-
knowledgment, includes in the message a timestamp object
with the ACK Requested flag turned on. The sender also
sets a retransmission timer for the packet sent. Processing
at the receiver side includes updating the digest of the ses-
sion that the message belongs to as well as updating the
digest tree. If during processing a condition occurs that re-
quires sending back an error message back to the sender (e.g
a ResvErr) then the receiver sends back to the sender that
error message. This error message will cancel any pending
retransmissions of the original message.

If no ACK is received before the retransmission timer ex-
pires, the sender retransmits the message up to a configured
number of times. Each of the retransmissions carries the
same timestamp contained in the original message. If an up-
dated message (i.e. a PATH message from the same sender
but with different Tspec) is sent before an ACK is received,
the original message becomes obsolete and no longer needs
to be retransmitted. If no ACK arrives even after the mes-

sage has been retransmitted for the maximum number of
times, the message is purged from the node’s list of pending
messages. Any inconsistencies created by the possible loss
of this message will be later resolved by digests.

Period
Time

NodeB

Digest(#��)

Ack(#��)

Node A

Ack(# %)

PATH(# %)
Ack(# �)

PATH(# %)

Digest(#
�)
�

#
%

#��

Refresh

Figure 4. Message Exchange

Digest messages are always sent with the
ACK Requested flag turned on. Digest messages are
also retransmitted for a maximum number of times in the
absence of ACK messages. However, following the original
RSVP design where an RSVP node never stops sending
refresh messages for each active session, a node should
not stop sending digest refreshes even if it fails to receive
an acknowledgment in the previous refresh interval. If the
neighbor node crashed and becomes alive again, it will
find the digest value different from its own and the two
routers will start the re-synchronization process. When
the digest value is changed, the node needs to cancel any
pending retransmission of the obsolete Digest message and
promptly send a Digest message with the new digest value.

When a node receives a Digest message, it checks to see
if the state reported by the Digest message is consistent with
the corresponding state stored locally. To do so the node
does a binary comparison between each of the MD5 signa-
tures contained in the digest object and the corresponding
MD5 signatures in the InDigest (see section 4.2). If all of
them agree then the state is consistent and an ACK is sent
back. Otherwise the receiver returns a DigestErr message
containing its InDigest and the process described in the next
section begins.

Figure 4 gives an example of message exchanges be-
tween two nodes under normal condition. Nodes A and B
had consistent state at time # � . A sent a Digest message to
B and received an ACK message for it. A then had a state
change at time # % which triggered a PATH message sent to
B. This message was lost, so A didn’t receive an ACK un-

til it timed out and it had to retransmit the PATH message
(using the same timestamp # %). B received the retransmitted
PATH message and sent an ACK message back to A. Up to
this point, the two nodes were synchronized. When the di-
gest refresh timer timed out at #�� , A sent a Digest message
with updated digest value to B. Since A and B were still
consistent, B sent an ACK to A for the Digest message.

4.4. Recovery Operation

Two RSVP neighbors may become out-of-sync due to a
number of reasons. For instance, a state-changing RSVP
message got lost and the sender did not ask for ACK. It may
also happen that a node crashed and lost part or all of its
state. Since it is impossible to enumerate all the possible
reasons, the best that one can do is to detect state incon-
sistencies once they arise and have a way of repairing the
damaged state.

As we mentioned in section 4.3, a node sends a DigestErr
message if the received digest value disagrees with the local
digest. The timestamp and digest value in the DigestErr
message help the two neighbors localize the problem. If the
timestamp acknowledged is smaller than the timestamp of
the last Digest message sent, this error message is for an
obsolete message. This message should be ignored since
it may not represent the current state of the neighbor. If
they are equal, the node starts a depth-first search of the
mismatching signatures from the root of the digest tree.

When a node receives a DigestErr message it compares
the digest value with its own to find the states that are incon-
sistent. When it finds the first mismatching signature (call
it
� �), it sends a Digest message containing the signatures

used to compute
� � . A DigestErr is expected for this Digest

message since at least one of the children signatures should
not match. The node again looks for the first mismatching
signature (

�
%) in the second DigestErr message and sends

the children of
�
% in a Digest message. This procedure is

repeated until the leaf signature (
���

)1 causing the problem
is found. Now, the node knows that one or more of the ses-
sions in that hash table slot (represented by

���
) must be

inconsistent with those in the neighbor. It can then locate
these sessions by further exchanging the session signatures
with the receiver. However, we found that locating specific
sessions may get quite complicated in some cases, for ex-
ample, when the sender or receiver has sessions that do not
exist in the peer. When a node encounters these cases, it
can simply send raw refreshes for all the sessions in that
particular bin. After refreshing these sessions, the node re-
examines

���
	 � (the parent of
���

) for other inconsistencies
and continues to traverse the tree until all the mismatching
sessions are located and refreshed.

1 ���������� ���� , see Figure 2

Notice there is a tradeoff between the latency of the re-
covery procedure and the transmission efficiency. For ex-
ample, if the tree has many levels, many RTTs are needed
to exchange the digests at all the tree levels in order to find
the leaf-level sessions that contribute to the inconsistency.
However, if speed of convergence is more important than
efficiency, one can stop at an intermediate tree level and re-
fresh all the states represented by the mismatching signature
at that level.

4.5. Time Parameters

There are two time parameters associated with digest
messages: the refresh period between successive digest re-
freshes � and the retransmission timeout � . A node sends
digests at intervals of � , where � is randomly chosen from
the range � � ��� � � � 0���� � ��� . Randomization is used to avoid
the synchronization of digest messages. If an acknowledg-
ment is not received after time � from the transmission of a
digest, the node will retransmit that digest message.

The current RSVP specification [3] states that the default
refresh period for regular RSVP messages is 30 seconds but
the interval “should be configurable per interface”. To be
consistent, digest refreshes are also sent every 30 seconds
by default and this interval should be configurable. As we
mentioned in Section 4.3, digest messages are explicitly ac-
knowledged and therefore there is no need to decrease �
to protect against lost digest messages. However, � af-
fects the frequency of consistency checking between neigh-
bors, so smaller values of � should be used in environments
where prolonged periods of inconsistency are undesirable.
The retransmission timeout � should be proportional to the
round-trip time between two directly connected neighbors.
A node can measure the time interval between a message
and the corresponding ACK and estimate the mean RTT by
performing exponential averaging on the measurements.

Another important time parameter is the state lifetime	
. If state represented by a digest is not refreshed for a

period
	

, it is considered stale and is deleted. The naive
approach would be to set

	
to be equal to the refresh pe-

riod � . This would however lead to premature state time-
outs at the receiving side. There are at least two reasons for
this: first, clocks at neighboring nodes may drift and sec-
ond as we said before the refresh timer is randomly set to a
value in the range � � ��� � � � 0���� � ��� , which means that the
sender may send digests at intervals larger than � . These
examples illustrate that

	
should be larger than � . Fol-

lowing the current RSVP specification we decided to set	�
 !� . � ��� 2 � 0 � � � � , where �
��
.

4.6. Backward Compatibility

The extensions we have introduced are fully compati-
ble with the existing version of RSVP. If an RSVP node

sends a message with a timestamp object and subsequently
receives an “Unknown Object Class” error, it should stop
sending any more messages with attached timestamp object
and start using regular refreshes instead of digest refreshes.
Digest messages do not pose a compatibility problem since
a node will start sending Digest messages only when it dis-
covers that its particular peer is compression-capable using
the procedure outlined in section 4.2.

5. Computation Costs

In this section we focus on the operations applied to the
data structures described in Section 3 and analyze their re-
quirements in terms of processing.

We begin with some definitions. Let the number of ses-
sions be � , the size of the hash table be

�
and the maxi-

mum number of MD5 signatures inside the digest message
be � . Let’s further define the cost of computing the MD5
signature of a message of size � to be � ! � 2 . To determine
the behavior of � ! � 2 , we have to study the algorithm’s be-
havior. Summarizing the description in RFC 1321 [7], the
algorithm divides the input message to 64-byte blocks and
applies a sixty-four step process to each one of these 64-byte
blocks. In each of the sixty-four steps, a number of bit-wise
logical operations are applied to that 64-byte block. The
results of the computation on the � th block are used as in-
put for the computation of the ! � . 032 th block. After all
the blocks have been processed, the message’s signature is
produced. From this description, one can see that � ! � 2 is a
linear function of � , the size of the input message measured
in bytes.

When a session is modified, a new signature for that ses-
sion as well as a new digest of the whole RSVP state has
to be computed. To illustrate this procedure, imagine that
we want to update session

� � inside the hash table of Fig-
ure 1. First, we look up the session inside the hash table.
In our example, we would come up with the index � . If
multiple sessions map to the same hash table slot, we tra-
verse the linked list of sessions until we find the session in
question. Once the session is found and its new MD5 signa-
ture is computed, we have to compute the new MD5 signa-
ture stored at the base of the linked list which represents all
the sessions mapped to that hash table slot. On the average� � # ���

sessions will occupy the same slot. The total time
needed for this operation is therefore � !'0�� � � � # ��� 2 , since
each MD5 signature is 16 bytes long. The next step is to
update the values on the digest tree. We begin by comput-
ing the MD5 signature of the contents of slot � concatenated
with its ��� 0 siblings which will be stored in their parent
node on the digest tree. We continue this procedure until
we reach the top of the tree. Since there are

������� ! � 2 �
levels on the tree and at each level we apply the MD5 al-
gorithm on a message of size 0�� � � (the combined size

of � MD5 signatures), the time spent during this step is! ������� ! � 2 � � 0 2 � � ! � � 0�� 2 . Notice that the term is������ ! � 2 � � 0 since we do not calculate an MD5 signa-
tures out of the N topmost signatures.

From the discussion above, we can conclude that the total
time needed to calculate the new digest after a session is
modified is given by the following formula, where

�
is the

size of a session in bytes:

� ! � 23. � !'0�� � � � # ��� 23. ! ����� ! � 2 � � 0 2 � � ! � � 0�� 2 (1)

When a new session has to be inserted in the hash table,
we locate the slot this session hashes to and insert the ses-
sion to that slot’s linked list, if one exists. Given that the
list is ordered, the new session has to be inserted in order
inside the list, which means traversing the list until we find
a session whose destination address is larger than the desti-
nation address of the session we want to add and inserting
the new session before that session. Deleting a session, in-
volves finding the slot it hashes to, searching for it inside the
linked list, and “splicing” its predecessor to its successor on
the list.

The computation cost for the creation of the new digest
after an insertion or deletion operation, is almost identical
to the update cost. The only difference is that in the case of
deletion we don’t calculate the MD5 signature of the session
(since we are deleting it). Equations 2 and 3 respectively,
show the insertion and deletion costs.

� ! � 23. � !'0�� � � � # ��� 23. ! ����� ! � 2 � � 0 2 � � ! � � 0�� 2 (2)

� ! 0�� � � � # ��� 2 . ! ������ ! � 2 � � 032 � � ! � � 0�� 2 (3)

We can see from Equations 1, 2 and 3 that when the size�
of the hash table is small compared to the number of ses-

sions � , the cost of updating the linked list of sessions will
be linear to � . In this case, updating the linked list becomes
the most expensive operation, forcing the total cost to also
be linear to � . The size

�
of the hash table should therefore

be comparable to � to avoid increased update complexities.

6. Limitations of our Approach

The ability of two RSVP neighbors to exchange digests
in place of raw RSVP messages relies on the assumption
that the two nodes know precisely all the RSVP sessions that
go through these two nodes in sequence. Whenever a route
change occurs, the upstream node must be able to receive a
notification from the RSVP/Routing interface and synchro-
nize the state with the new downstream node (as well as tear
down the session with the old downstream neighbor). For
multicast sessions, another complication arises if a router
is attached to a broadcast LAN. A router must detect all
changes of membership in the downstream neighbors, for

example when a downstream router on the broadcast LAN
joins or leaves a group, which does not affect the list of out-
going interfaces of the associated RSVP state. Again the
proposed scheme relies on the RSVP/Routing interface to
provide notification of such changes.

Furthermore, we have identified two cases where an
RSVP node must resort to the current refresh scheme.
The first case is when both compression-capable and
compression-incapable downstream neighbors exist on the
LAN. To accommodate the compression-incapable neigh-
bors one must use per session RSVP refresh messages. The
second case is when two RSVP nodes are interconnected
through a non-RSVP cloud as we explained in Section 4.2.

In summary, a seemingly inevitable limitation of the
state compression approach is the loss of RSVP’s auto-
matic adaptation to routing changes. Because refresh mes-
sages for each RSVP session follow the same path as data
flow, RSVP reservation can automatically adapt to routing
changes including multicast group membership changes.
When a node compresses the RSVP sessions currently
shared with a neighbor node to a single digest, however,
RSVP loses the ability to trace down the paths of individual
flows.

7. Related Work

There have been several recent efforts that address the
issues of protocol overhead due to periodic transmission
of refresh messages. The scope of the proposed solutions
vary widely. At one end of design spectrum, proposals such
as [1] wish to convert RSVP’s soft state design to a hard-
state protocol with keep-alive probes. In [1], instead of
refreshing reservation state RSVP neighbor nodes period-
ically exchange hello messages, assuming that the state be-
tween neighbor nodes will remain consistent as long as (1)
all the messages are reliably delivered once, and (2) no link
or node failure is detected. While this proposal avoids the
state refresh overhead problem, it fails to preserve the full
semantics of RSVP’s soft state design with its associated
benefits.

Other proposals, such as the work on “Scalable Timers”
[8], try to limit the total bandwidth consumed by control
traffic. To do so, the length of the refresh period increases
proportionally with the amount of state that has to be re-
freshed. In that respect these approaches are similar to the
solution of increasing the refresh period of RSVP messages.
As we have argued, this approach unfortunately trades off
the protocol latency problem.

The work closest in spirit to our proposal is [5], where
the authors proposed a scalable naming scheme for SRM.
In SRM each sender creates a namespace that describes the
data it has already multicast to the session. To assure reli-
able data reception, each sender’s namespace is periodically

transmitted in a soft state fashion. Receivers can then detect
whether they have lost any data, and request retransmissions
whenever necessary. Members that joined a multicast ses-
sion late can also learn how much data has been previously
transmitted, and request retransmissions when needed. To
scale the protocol, instead of sending the full namespace de-
scription, in [5] each sender computes an MD5 signature of
its namespace and periodically multicast the signature to the
session.

At first sight the work in [5] seems similar to our RSVP
state compression scheme. There exist, however, funda-
mental differences between the two. While in SRM the
goal is to assure ultimate delivery of the same set of long-
lived data to all the receivers in the multicast session, in our
case the goal is to keep each session’s RSVP state consis-
tent along individual data flows’ paths; the RSVP state one
node shares with different neighbors is different. In addi-
tion, the RSVP state at each node is the result of processing
RSVP messages, one must take extreme care of the signa-
ture computation for each of the neighbors. Furthermore,
RSVP state can be highly dynamic especially in a large net-
work environment, with sessions coming and going all the
time. These difference lead to our digest data structure de-
sign that supports efficient insertions and deletions, as well
as the need to store per neighbor state.

[6] is a recent work that studies the data consistency and
performance tradeoff under different loss rate with soft-state
based data communication. Although this study is carried
out in a different context than ours (data delivery rather
than state synchronization), its result confirms that using
feedback (acknowledgment) can greatly speed up the con-
sistency between data senders and receivers with little cost
of bandwidth usage.

8. Summary

To improve the RSVP performance, in this paper we pre-
sented two changes to RSVP. We let each node compress
aggregate RSVP state to a digest that can be carried in a
single packet, which is then exchanged between neighbor
RSVP nodes. The digest computation is done in a struc-
tured way, so that state inconsistency between two neigh-
bors can be quickly located and repaired. This state com-
pression approach considerably reduces the message over-
head of RSVP. We also enhance RSVP with an acknowledg-
ment option, so that lost messages can be quickly retrans-
mitted. Our work suggests that the acknowledgment mech-
anism should be considered as a complement to, rather than
a conflict with, soft-state protocol designs. Although reli-
able delivery of control messages cannot be used to replace
soft-state refreshes, use of acknowledgment speeds up state
synchronization in case of message losses.

As a next step we plan to explore the feasibility of ap-

plying our approach to other soft-state protocols. For ex-
ample, PIM-SM (Sparse Mode) is also a soft-state protocol.
A PIM-SM node sends periodic messages upstream to re-
fresh each of all the existing multicast trees. One could en-
vision a state compression mechanism, similar to that pro-
posed here for RSVP, be deployed to reduce the PIM re-
fresh overhead. As another candidate to consider, the cur-
rent BGP design uses TCP as the transport mechanism to
achieve efficient operation, so that any routing information
is transmitted once only; in the absence of link or node fail-
ures the routing table state is never refreshed. However op-
erational experience has shown that neighboring BGP state
may occasionally become inconsistent due to unexpected
causes, consequently new mechanism has been proposed to
add route refresh capability to BGP [4].

We would like to explore the possibility of achieving the
same protocol efficiency by using a soft-state approach with
state compression instead of a hard-state protocol such as
TCP.

9. Acknowledgments

The phrase “overhead reduction by state compression”
was first suggested by Van Jacobson. Vern Paxson sug-
gested the use of hashing to simplify Digest computation.
Our design also benefited from discussion with Steve Mc-
Canne regarding the roles of acknowledgment in soft-state
protocol design. We also thank the IETF RSVP working
group for valuable feedback on our initial design.

References

[1] L. Berger, D.-H. Gan, and G. Swallow. RSVP Refresh Re-
duction Extensions. Internet-Draft, work in progress, April
1999.

[2] R. Braden and L. Zhang. Resource ReSerVation Protocol
(RSVP), Version 1 Message Processing Rules. RFC 2209,
Sept. 1997.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Re-
source ReSerVation Protocol (RSVP), Version 1 Functional
Specification. RFC 2205, Sept. 1997.

[4] E. Chen. Route Refresh Capability for BGP-4. Internet-Draft,
work in progress, August 1999.

[5] S. Raman and S. McCanne. Scalable Data Naming for Appli-
cation Level Framing in Reliable Multicast. In Proceedings
of ACM Multimedia 98, Sep. 1998.

[6] S. Raman and S. McCanne. A Model, Analysis, and Protocol
Framework for Soft State-based Communication. In Proceed-
ings of SIGCOMM’99, 1999.

[7] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321,
April 1992.

[8] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson. Scalable
Timers for Soft State Protocols. In Proceedings of the IEEE
INFOCOM 1997, 1997.

