

1

Abstract—We identify the security threats facing a sensor

network for wireless medical monitoring, and we propose a
public-key architecture using elliptic curve cryptography to
address these issues. We also present a preliminary protocol for
securely establishing pairwise symmetric keys between a sensor
and a base station using ECC. To evaluate our protocol, we are
working on an implementation of ECC for the Moteiv Tmote Sky
platform. Our initial release performs competitively with
existing implementations for the Crossbow MICA.

I. INTRODUCTION
URING the past few years, wireless sensor technology
has shown great potential as an enabler of the vision of

ubiquitous computing. One promising application of wireless
sensor networks (WSNs) is healthcare. In a traditional
hospital setting, a patient is attached to a number of medical
sensors that convey information on his or her vital signs to a
bedside monitoring device. However, because these
connections are generally wired, such a setup is cumbersome
for the patient and limits mobility, especially for long-term
care. Recent advances in sensor technology have enabled the
development of small, lightweight medical sensors such as
pulse oximeters and electrocardiogram leads [12] that can be
worn by the patient while wirelessly transmitting data. This
frees the patient from the confinement of traditional wired
sensors, allowing him or her to move about the hospital area at
leisure and increasing comfort.

Medical sensor networks present several challenges. First,
while most previous research assumes stationary sensors, a
medical sensor network may contain a large number of mobile
sensors due to the mobility of patients. Second, the timeliness
and reliability of data delivery is crucial in detecting and
diagnosing health problems, but wireless sensor networks
generally have limited bandwidth and high loss rate. The
most fundamental challenge is the security and privacy of
sensitive patient data. Because the data is transmitted
wirelessly, it is easy for an eavesdropper with a properly tuned
receiver to intercept the data. Encryption must be done to
ensure the confidentiality of the data. At the same time, a
sensor receiving a query from a base station (and likewise a
base station receiving data from a sensor) needs to have some
way of verifying the identity of the other party, and of
ensuring that the data has not been altered from its source.
Hence, mechanisms must exist for data authenticity and
integrity. What makes security uniquely challenging for
WSNs is that the computational, memory and bandwidth costs
must be carefully balanced against the limited resources of the
individual nodes.

 We have recently started a project called SNAP (Sensor
Network for Assessment of Patients) to address the above
challenges. As our first step, we explore potential solutions to
the security concerns based on elliptic curve cryptography
(ECC). Although the prevailing sentiment in the research
community has been that public-key schemes such as ECC are
infeasible for WSNs due to their high computational cost,
recent work has shown that performing public-key
computations on resource-constrained devices, while
relatively expensive, is certainly not impossible. ECC in
particular is promising because it offers a similar level of
security to RSA for a much smaller key length, thus allowing
more efficient operations.

Our current work on SNAP focuses on the following
security aspects:

• An in-depth analysis of the specific security threats to
a medical sensor network.

• Development of a secure protocol using ECC for key
establishment and updates in medical sensor
networks, which takes into account the unique
requirements of sensor networks in this environment.

• ECC implementation on the Moteiv Tmote Sky
platform rather than the Crossbow MICA popular in
the literature. We believe that the Tmote Sky offers
the potential for superior performance to the MICA.

II. RELATED WORK
The CodeBlue project at Harvard has proposed a sensor

network platform for medical care [12]. Although the authors
acknowledge the need for security in a medical environment
and have considered ECC in [3], their work has yet to
adequately address all the security requirements. Their ECC
implementation over the binary field

!

F
2
163 (i.e. key length of

163 bits) takes 34.2 s to compute a public-private key pair and
another 34.2 s to compute a shared secret via ECDH [3].

Early work on sensor network security focused on applying
symmetric cryptography (e.g. [1]), as it was felt that
asymmetric cryptography schemes are too computationally
expensive to be feasible in resource-constrained sensor nodes.
However, symmetric schemes offer less flexibility for key
management, and key distribution becomes a formidable
challenge.

The use of public-key cryptography (PKC) addresses the
issue of key distribution. We can use PKC techniques to
securely establish a shared secret between two parties, who
then use the secret to encrypt and decrypt transmitted data
with a traditional symmetric scheme. Hence the
computational burden of PKC is limited to initial key

SNAP: An Architecture for
Secure Medical Sensor Networks

Kriangsiri Malasri and Lan Wang, Computer Science Dept., University of Memphis

D

2

establishment and key updates. Recent work on PKC in the
context of sensor networks has included implementations of
both RSA [2] and ECC [3][4][5]. Blaβ and Zitterbart [4]
implemented various ECC schemes over the binary field 113

2
F

(key length of 113 bits), reporting times of 6.9s and 24.2s for
ECDSA signature generation and verification, respectively.
Liu and Ning [5] opted to use prime fields rather than binary
fields, implementing ECC over various 160-bit prime fields
(equivalent to a 1024-bit RSA key) recommended by SECG
[10]. They report times of 6.1s and 12.2s for ECDSA
signature generation and verification.

Gupta et al [6] went so far as to create a Web server
implementing an ECC version of SSL runnable on sensor
motes. Their results are by far the most impressive, taking
less than 4 seconds to complete an entire SSL handshake.
However, this scheme uses ECDH to derive a shared key,
which requires both the client and the server to have public
keys. Our work does not assume that each sensor has a public
key, as explained in the next section.

III. SECURITY REQUIREMENTS
The particular threats facing a medical sensor network

include: (1) eavesdropping on data by an unauthorized third
party; (2) modification and injection of data by a third party
without the knowledge of the source or destination; (3) replay
of previous queries/data; (4) spoofing of a base station to
obtain illegitimate access to data; (5) spoofing of a sensor to
report forged data; (6) compromise of sensors (or the patients
may simply lose their sensors while moving around); (7)
compromise of base stations; and (8) compromise of relay
nodes. We consider all these threats in our work. However,
we realize that in certain cases the most we can do is to limit
damage (e.g. compromised relay nodes may simply drop
packets).

Our SNAP architecture is shown in Fig. 1. Each patient has
one or more wireless sensors attached to his or her body.
There are a number of wireless relay nodes throughout the
hospital area that can receive and forward data. These relay
nodes may be supplied with continuous power (unlimited
power) or powered by batteries (limited power). Queries for
patient data can be made from a number of base stations,
which may be operated directly by medical professionals or
connected to remotely. Both queries and the resulting patient
data response travel through the network of relay nodes. All
the queries and data are encrypted on an end-to-end basis.

While on the surface our architecture is similar to the one
proposed by CodeBlue [12], there are several key differences
due to our emphasis on security.

First, the sensors only accept queries from the base
stations. This is because in a large hospital, it would be
difficult for the sensors to authenticate individual users
(doctors, nurses, staff, etc.). Each sensor would have to
maintain complete access control information about which
users have the authorization to receive its data as well as the
users’ identity information (e.g. public key or password). The
sensors simply do not have the memory resources to maintain
all this information. Moreover, it would be infeasible to
update the access control information in every sensor.
Therefore, we decide to authenticate the users at the base
stations and have the base stations issue the queries to the
sensors on behalf of the users. Second, in order to handle
spoofing of the base stations, the sensors are equipped with
the base stations’ public keys. However, we do not assume
that each sensor has its own public/private key pair. Since
there may be a large number of sensors compared to base
stations, requiring each sensor to have its own public key
would force the base stations to maintain a large number of
sensor public keys, thus resulting in poor scalability.
Furthermore, individual sensors are relatively easy to
physically compromise. Doing so when the sensor possesses a
permanent private key allows an attacker to easily decrypt pre-
captured data of that sensor. Third, a base station will not
accept data from a sensor until the sensor is attached to a
patient registered in the system. To verify that a sensor is
attached to a registered patient, each sensor will be integrated

with a small fingerprint reader (similar to [13]), so that the
sensor can transmit the patient’s fingerprint signature to the
base station. We assume the base stations are equipped with a
list of valid patient fingerprint signatures.

IV. PROTOCOL FOR SECURE KEY ESTABLISHMENT
We offer the following preliminary protocol for secure key

establishment between a patient sensor and a base station (see
Fig. 2). When a sensor is attached to a patient, the patient uses
a fingerprint sensor to initiate the key generation procedure.
The fingerprint uniquely identifies the patient. Once the

Fig. 1. Architecture of SNAP for wireless medical monitoring.

Sensor Node Base Station

Collect fingerprint ID
from patient

Generate master key
Km

Generate a random
number r1

Msg1: Node ID, FPID, SessionNum, Km, r1, MAC

Encrypted with base station’s public key

Decrypt Msg1 with
private key

Check MAC and FPID

Generate a random
number r2

Derive a MAC key Kmac

and secret key Ks

using Km, r1, and r2

Msg2: r2, hash(r1)

Signed with base station’s private key

Verify signature on
Msg2 with base
station’s public key

Recompute hash(r1)
and check

Derive a MAC key Kmac

and secret key Ks using
Km, r1, and r2

Msg3: r1, r2

Encrypted with Ks

Decrypt Msg3 with Ks

Check r2

Fig. 2. Handshake protocol for secure establishment of keys between a sensor
and a base station.

3

patient’s fingerprint ID (FPID) is obtained, the sensor
generates a random number r1 and a master key Km.

Message 1 (KeyGenStart). The sensor sends a message
to the base station consisting of the following information: a
node ID (NID) uniquely identifying the sensor, the FPID, a
session number to prevent replay attacks, Km, and r1. In
addition, a message authentication code (MAC) is computed
over the contents of the message and appended. This entire
message is encrypted with the base station’s public key PB.
Upon receipt of Message 1, the base station decrypts it using
its private key nB and recomputes the MAC. If the MAC
check succeeds and the FPID in the message matches with a
registered patient’s FPID, the base station generates a random
number r2. It uses r1 and r2, in conjunction with Km, to derive
two new keys Ks and Kmac. Note that the FPID check
mechanism assumes that the space of possible FPIDs is large
enough that it is infeasible for an attacker to spoof a patient by
a brute-force search of FPIDs.

Message 2 (KeyGenAck). The base station replies to the
sensor with a message containing r2 and a one-way hash of r1.
This message is unencrypted, but it is signed using nB. Upon
receipt of Message 2, the sensor checks that the hash of r1 is
correct and verifies the signature using PB. If both checks
succeed, the sensor uses Km, r1, and r2 to derive Ks and Kmac.

Message 3 (KeyGenVerify). The sensor constructs a reply
to send to the base station containing r1 and r2. This message
is encrypted with Ks. Upon receipt of Message 3, the base
station verifies that r2 is correct. If so, data transfer may
commence using Ks to encrypt/decrypt messages and, if
desired, Kmac to compute a keyed MAC for each message.

Updating the shared secret keys Ks and Kmac may take place
by exchanging new values of r1 and r2. These key update
messages can be encrypted with Ks.

V. IMPLEMENTATION
 In order for us to evaluate our protocol, we need an
implementation of ECC. This is a work nearing completion; it
is based largely on TinyECC [5]. TinyECC incorporates
several optimizations, including Jacobian coordinates for
minimizing field inversions [11], the sliding window method
for reducing point additions [8], a fast modular reduction
algorithm for pseudo-Mersenne field primes [7], and inline
assembly code for several critical field operations on
multiprecision numbers. The authors of TinyECC report
running times of 6.1 s for ECDSA signature generation and
12.2 s for signature verification using 160-bit keys, on the 8-
bit Atmel ATmega128 CPU of Crossbow’s MICAz platform.

We are designing our ECC implementation on the Moteiv
Tmote Sky, which uses the 16-bit Texas Instruments MSP430.
The Tmote Sky offers more RAM (10 KB vs. 4 KB) and a
much larger flash memory for data storage (1 MB vs. 512 KB)
compared to the MICA, but at the cost of smaller read-only
program memory (48 KB vs. 128 KB).

We have modified TinyECC to run on Tmote Sky by
replacing the ATmega128 assembly code with MSP430
assembly, making use of the MSP430’s hardware multiplier,
incorporating a fast modular inversion algorithm involving
only bit shifts and additions [14], and making some changes to
the timers used. Our initial version of the code carries out a

160-bit scalar point multiplication in 5.3 s, which is
comparable to TinyECC’s result.

We plan to incorporate several additional optimizations in
our ECC implementation. One optimization not considered by
TinyECC is the use of alternate representations of the
multiplier in a scalar point multiplication, known as non-
adjacent forms or more generally w-NAFs; such techniques
promise a 10-20% performance improvement [9].
Additionally, TinyECC does not use Shamir’s method to
compute the sum of two scalar multiplications in the signature
verification step of ECDSA. Implementing this simple
algorithm will halve the number of point doublings required to
compute the sum. One more optimization that may be made is
to increase the size of the window used in the sliding window
method of [8], to take advantage of the 1 MB of flash memory
on the Tmote Sky.

VI. SUMMARY
We have proposed a public-key based architecture and

security protocol to achieve confidentiality, authenticity, and
integrity for a medical sensor network. Our current focus is to
evaluate the protocol by implementing ECC with the Moteiv
Tmote Sky platform in mind. We hope that the 16-bit
processor on the Tmote Sky, along with the larger RAM and
flash memory available compared to the Crossbow MICA,
will allow us to achieve an efficient implementation.

REFERENCES
[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:

Security Protocols for Sensor Networks,” ACM MOBICOM, 2001.
[2] R. Watro, D. Kong, S.-F. Cuti, C. Gardiner, C. Lynn, and P. Kruus,

“TinyPK: Securing Sensor Networks with Public Key Technology,”
ACM SASN, Oct. 2004.

[3] D. J. Malan, M. Welsh, and M. D. Smith, “A Public-Key Infrastructure
for TinyOS Based on Elliptic Curve Cryptography,” IEEE Int. Conf. on
Sensor and Ad Hoc Communications and Networks, Oct. 2004.

[4] E.-O. Blaβ and M. Zitterbart, “Towards Acceptable Public-Key
Encryption in Sensor Networks,” Int. Workshop on Ubiquitous
Computing, ACM SIGMIS, May 2005.

[5] A. Liu and P. Ning, “TinyECC: Elliptic Curve Cryptography for Sensor
Networks,” v0.1, http://discovery.csc.ncsu.edu/software/TinyECC/,
Sept. 2005.

[6] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C.
Shantz, “Sizzle: A Standards-Based End-to-End Security Architecture
for the Embedded Internet,” IEEE Int. Conf. on Pervasive Computing
and Communication, Mar. 2005.

[7] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs,” Workshop on
Cryptographic Hardware and Embedded Systems (CHES), Aug. 2004.

[8] Ç. K. Koç, “High-Speed RSA Implementation,” v2.0, RSA Laboratories,
Nov. 1994.

[9] V. Dimitrov, L. Imbert, and P. K. Mishra, “Efficient and Secure Elliptic
Curve Multiplication using Double-Base Chains,” ASIACRYPT, 2005.

[10] “SEC 2: Recommended Elliptic Curve Domain Parameters,” v1.0,
Standards for Efficient Cryptography Group, Sept. 2000.

[11] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve
Exponentiation using Mixed Coordinates,” ASIACRYPT, 1998.

[12] V. Shnayder, B.-R. Chen, K. Lorincz, T. R. F. Fulford-Jones, and M.
Welsh, “Sensor Networks for Medical Care,” Technical Report TR-08-
05, Division of Engineering and Applied Sciences, Harvard Univ., 2005.

[13] Fujitsu MBF200 Solid State Fingerprint Sensor,
http://www.fujitsu.com/emea/services/microelectronics/sensors/.

[14] S. Chang Shantz, “From Euclid’s GCD to Montgomery Multiplication to
the Great Divide,” Technical Report TR-2001-95, Sun Microsystems,
June 2001.

