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Abstract—We identify the security threats facing a sensor 

network for wireless medical monitoring, and we propose a 
public-key architecture using elliptic curve cryptography to 
address these issues.  We also present a preliminary protocol for 
securely establishing pairwise symmetric keys between a sensor 
and a base station using ECC.  To evaluate our protocol, we are 
working on an implementation of ECC for the Moteiv Tmote Sky 
platform.  Our initial release performs competitively with 
existing implementations for the Crossbow MICA. 

I. INTRODUCTION 
URING the past few years, wireless sensor technology 
has shown great potential as an enabler of the vision of 

ubiquitous computing.  One promising application of wireless 
sensor networks (WSNs) is healthcare.  In a traditional 
hospital setting, a patient is attached to a number of medical 
sensors that convey information on his or her vital signs to a 
bedside monitoring device.  However, because these 
connections are generally wired, such a setup is cumbersome 
for the patient and limits mobility, especially for long-term 
care.  Recent advances in sensor technology have enabled the 
development of small, lightweight medical sensors such as 
pulse oximeters and electrocardiogram leads [12] that can be 
worn by the patient while wirelessly transmitting data.  This 
frees the patient from the confinement of traditional wired 
sensors, allowing him or her to move about the hospital area at 
leisure and increasing comfort. 

Medical sensor networks present several challenges.  First, 
while most previous research assumes stationary sensors, a 
medical sensor network may contain a large number of mobile 
sensors due to the mobility of patients.  Second, the timeliness 
and reliability of data delivery is crucial in detecting and 
diagnosing health problems, but wireless sensor networks 
generally have limited bandwidth and high loss rate.  The 
most fundamental challenge is the security and privacy of 
sensitive patient data.   Because the data is transmitted 
wirelessly, it is easy for an eavesdropper with a properly tuned 
receiver to intercept the data.  Encryption must be done to 
ensure the confidentiality of the data.  At the same time, a 
sensor receiving a query from a base station (and likewise a 
base station receiving data from a sensor) needs to have some 
way of verifying the identity of the other party, and of 
ensuring that the data has not been altered from its source.  
Hence, mechanisms must exist for data authenticity and 
integrity.  What makes security uniquely challenging for 
WSNs is that the computational, memory and bandwidth costs 
must be carefully balanced against the limited resources of the 
individual nodes. 

 We have recently started a project called SNAP (Sensor 
Network for Assessment of Patients) to address the above 
challenges.  As our first step, we explore potential solutions to 
the security concerns based on elliptic curve cryptography 
(ECC).  Although the prevailing sentiment in the research 
community has been that public-key schemes such as ECC are 
infeasible for WSNs due to their high computational cost, 
recent work has shown that performing public-key 
computations on resource-constrained devices, while 
relatively expensive, is certainly not impossible.  ECC in 
particular is promising because it offers a similar level of 
security to RSA for a much smaller key length, thus allowing 
more efficient operations. 

Our current work on SNAP focuses on the following 
security aspects: 

• An in-depth analysis of the specific security threats to 
a medical sensor network. 

• Development of a secure protocol using ECC for key 
establishment and updates in medical sensor 
networks, which takes into account the unique 
requirements of sensor networks in this environment. 

• ECC implementation on the Moteiv Tmote Sky 
platform rather than the Crossbow MICA popular in 
the literature.  We believe that the Tmote Sky offers 
the potential for superior performance to the MICA. 

II.  RELATED WORK 
The CodeBlue project at Harvard has proposed a sensor 

network platform for medical care [12].  Although the authors 
acknowledge the need for security in a medical environment 
and have considered ECC in [3], their work has yet to 
adequately address all the security requirements.  Their ECC 
implementation over the binary field 
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163  (i.e. key length of 

163 bits) takes 34.2 s to compute a public-private key pair and 
another 34.2 s to compute a shared secret via ECDH [3]. 

Early work on sensor network security focused on applying 
symmetric cryptography (e.g. [1]), as it was felt that 
asymmetric cryptography schemes are too computationally 
expensive to be feasible in resource-constrained sensor nodes.  
However, symmetric schemes offer less flexibility for key 
management, and key distribution becomes a formidable 
challenge. 

The use of public-key cryptography (PKC) addresses the 
issue of key distribution.  We can use PKC techniques to 
securely establish a shared secret between two parties, who 
then use the secret to encrypt and decrypt transmitted data 
with a traditional symmetric scheme.  Hence the 
computational burden of PKC is limited to initial key 
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establishment and key updates.  Recent work on PKC in the 
context of sensor networks has included implementations of 
both RSA [2] and ECC [3][4][5].  Blaβ and Zitterbart [4] 
implemented various ECC schemes over the binary field 113
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(key length of 113 bits), reporting times of 6.9s and 24.2s for 
ECDSA signature generation and verification, respectively.  
Liu and Ning [5] opted to use prime fields rather than binary 
fields, implementing ECC over various 160-bit prime fields 
(equivalent to a 1024-bit RSA key) recommended by SECG 
[10].  They report times of 6.1s and 12.2s for ECDSA 
signature generation and verification. 

Gupta et al [6] went so far as to create a Web server 
implementing an ECC version of SSL runnable on sensor 
motes.  Their results are by far the most impressive, taking 
less than 4 seconds to complete an entire SSL handshake.  
However, this scheme uses ECDH to derive a shared key, 
which requires both the client and the server to have public 
keys.  Our work does not assume that each sensor has a public 
key, as explained in the next section. 

III.  SECURITY REQUIREMENTS 
The particular threats facing a medical sensor network 

include: (1) eavesdropping on data by an unauthorized third 
party; (2) modification and injection of data by a third party 
without the knowledge of the source or destination; (3) replay 
of previous queries/data; (4) spoofing of a base station to 
obtain illegitimate access to data;  (5) spoofing of a sensor to 
report forged data; (6) compromise of sensors (or the patients 
may simply lose their sensors while moving around); (7) 
compromise of base stations; and (8) compromise of relay 
nodes.  We consider all these threats in our work.  However, 
we realize that in certain cases the most we can do is to limit 
damage (e.g. compromised relay nodes may simply drop 
packets). 

Our SNAP architecture is shown in Fig. 1.  Each patient has 
one or more wireless sensors attached to his or her body.  
There are a number of wireless relay nodes throughout the 
hospital area that can receive and forward data.  These relay 
nodes may be supplied with continuous power (unlimited 
power) or powered by batteries (limited power).  Queries for 
patient data can be made from a number of base stations, 
which may be operated directly by medical professionals or 
connected to remotely.  Both queries and the resulting patient 
data response travel through the network of relay nodes.  All 
the queries and data are encrypted on an end-to-end basis.  

While on the surface our architecture is similar to the one 
proposed by CodeBlue [12], there are several key differences 
due to our emphasis on security. 

First, the sensors only accept queries from the base 
stations.  This is because in a large hospital, it would be 
difficult for the sensors to authenticate individual users 
(doctors, nurses, staff, etc.).  Each sensor would have to 
maintain complete access control information about which 
users have the authorization to receive its data as well as the 
users’ identity information (e.g. public key or password).  The 
sensors simply do not have the memory resources to maintain 
all this information.  Moreover, it would be infeasible to 
update the access control information in every sensor.  
Therefore, we decide to authenticate the users at the base 
stations and have the base stations issue the queries to the 
sensors on behalf of the users.  Second, in order to handle 
spoofing of the base stations, the sensors are equipped with 
the base stations’ public keys.  However, we do not assume 
that each sensor has its own public/private key pair.  Since 
there may be a large number of sensors compared to base 
stations, requiring each sensor to have its own public key 
would force the base stations to maintain a large number of 
sensor public keys, thus resulting in poor scalability.  
Furthermore, individual sensors are relatively easy to 
physically compromise.  Doing so when the sensor possesses a 
permanent private key allows an attacker to easily decrypt pre-
captured data of that sensor.  Third, a base station will not 
accept data from a sensor until the sensor is attached to a 
patient registered in the system.  To verify that a sensor is 
attached to a registered patient, each sensor will be integrated 

with a small fingerprint reader (similar to [13]), so that the 
sensor can transmit the patient’s fingerprint signature to the 
base station.  We assume the base stations are equipped with a 
list of valid patient fingerprint signatures. 

IV. PROTOCOL FOR SECURE KEY ESTABLISHMENT 
We offer the following preliminary protocol for secure key 

establishment between a patient sensor and a base station (see 
Fig. 2).  When a sensor is attached to a patient, the patient uses 
a fingerprint sensor to initiate the key generation procedure.  
The fingerprint uniquely identifies the patient.  Once the 

 

 
 
Fig. 1.  Architecture of SNAP for wireless medical monitoring. 
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Fig. 2.  Handshake protocol for secure establishment of keys between a sensor 
and a base station. 
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patient’s fingerprint ID (FPID) is obtained, the sensor 
generates a random number r1 and a master key Km. 

Message 1 (KeyGenStart). The sensor sends a message 
to the base station consisting of the following information: a 
node ID (NID) uniquely identifying the sensor, the FPID, a 
session number to prevent replay attacks, Km, and r1.  In 
addition, a message authentication code (MAC) is computed 
over the contents of the message and appended.  This entire 
message is encrypted with the base station’s public key PB.  
Upon receipt of Message 1, the base station decrypts it using 
its private key nB and recomputes the MAC.  If the MAC 
check succeeds and the FPID in the message matches with a 
registered patient’s FPID, the base station generates a random 
number r2.  It uses r1 and r2, in conjunction with Km, to derive 
two new keys Ks and Kmac.  Note that the FPID check 
mechanism assumes that the space of possible FPIDs is large 
enough that it is infeasible for an attacker to spoof a patient by 
a brute-force search of FPIDs. 

Message 2 (KeyGenAck).  The base station replies to the 
sensor with a message containing r2 and a one-way hash of r1.  
This message is unencrypted, but it is signed using nB.  Upon 
receipt of Message 2, the sensor checks that the hash of r1 is 
correct and verifies the signature using PB.  If both checks 
succeed, the sensor uses Km, r1, and r2 to derive Ks and Kmac. 

Message 3 (KeyGenVerify).  The sensor constructs a reply 
to send to the base station containing r1 and r2.  This message 
is encrypted with Ks.  Upon receipt of Message 3, the base 
station verifies that r2 is correct.  If so, data transfer may 
commence using Ks to encrypt/decrypt messages and, if 
desired, Kmac to compute a keyed MAC for each message. 

Updating the shared secret keys Ks and Kmac may take place 
by exchanging new values of r1 and r2.  These key update 
messages can be encrypted with Ks. 

V.  IMPLEMENTATION 
 In order for us to evaluate our protocol, we need an 
implementation of ECC.  This is a work nearing completion; it 
is based largely on TinyECC [5].  TinyECC incorporates 
several optimizations, including Jacobian coordinates for 
minimizing field inversions [11], the sliding window method 
for reducing point additions [8], a fast modular reduction 
algorithm for pseudo-Mersenne field primes [7], and inline 
assembly code for several critical field operations on 
multiprecision numbers.  The authors of TinyECC report 
running times of 6.1 s for ECDSA signature generation and 
12.2 s for signature verification using 160-bit keys, on the 8-
bit Atmel ATmega128 CPU of Crossbow’s MICAz platform. 

We are designing our ECC implementation on the Moteiv 
Tmote Sky, which uses the 16-bit Texas Instruments MSP430.  
The Tmote Sky offers more RAM (10 KB vs. 4 KB) and a 
much larger flash memory for data storage (1 MB vs. 512 KB) 
compared to the MICA, but at the cost of smaller read-only 
program memory (48 KB vs. 128 KB). 

We have modified TinyECC to run on Tmote Sky by 
replacing the ATmega128 assembly code with MSP430 
assembly, making use of the MSP430’s hardware multiplier, 
incorporating a fast modular inversion algorithm involving 
only bit shifts and additions [14], and making some changes to 
the timers used.  Our initial version of the code carries out a 

160-bit scalar point multiplication in 5.3 s, which is 
comparable to TinyECC’s result. 

We plan to incorporate several additional optimizations in 
our ECC implementation.  One optimization not considered by 
TinyECC is the use of alternate representations of the 
multiplier in a scalar point multiplication, known as non-
adjacent forms or more generally w-NAFs; such techniques 
promise a 10-20% performance improvement [9].  
Additionally, TinyECC does not use Shamir’s method to 
compute the sum of two scalar multiplications in the signature 
verification step of ECDSA.  Implementing this simple 
algorithm will halve the number of point doublings required to 
compute the sum.  One more optimization that may be made is 
to increase the size of the window used in the sliding window 
method of [8], to take advantage of the 1 MB of flash memory 
on the Tmote Sky. 

VI.  SUMMARY 
We have proposed a public-key based architecture and 

security protocol to achieve confidentiality, authenticity, and 
integrity for a medical sensor network.  Our current focus is to 
evaluate the protocol by implementing ECC with the Moteiv 
Tmote Sky platform in mind.  We hope that the 16-bit 
processor on the Tmote Sky, along with the larger RAM and 
flash memory available compared to the Crossbow MICA, 
will allow us to achieve an efficient implementation. 

REFERENCES 
[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: 

Security Protocols for Sensor Networks,” ACM MOBICOM, 2001. 
[2] R. Watro, D. Kong, S.-F. Cuti, C. Gardiner, C. Lynn, and P. Kruus, 

“TinyPK: Securing Sensor Networks with Public Key Technology,” 
ACM SASN, Oct. 2004. 

[3] D. J. Malan, M. Welsh, and M. D. Smith, “A Public-Key Infrastructure 
for TinyOS Based on Elliptic Curve Cryptography,” IEEE Int. Conf. on 
Sensor and Ad Hoc Communications and Networks, Oct. 2004. 

[4] E.-O. Blaβ and M. Zitterbart, “Towards Acceptable Public-Key 
Encryption in Sensor Networks,” Int. Workshop on Ubiquitous 
Computing, ACM SIGMIS, May 2005. 

[5] A. Liu and P. Ning, “TinyECC: Elliptic Curve Cryptography for Sensor 
Networks,” v0.1, http://discovery.csc.ncsu.edu/software/TinyECC/, 
Sept. 2005. 

[6] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C. 
Shantz, “Sizzle: A Standards-Based End-to-End Security Architecture 
for the Embedded Internet,” IEEE Int. Conf. on Pervasive Computing 
and Communication, Mar. 2005. 

[7] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing 
Elliptic Curve Cryptography and RSA on 8-bit CPUs,” Workshop on 
Cryptographic Hardware and Embedded Systems (CHES), Aug. 2004. 

[8] Ç. K. Koç, “High-Speed RSA Implementation,” v2.0, RSA Laboratories, 
Nov. 1994. 

[9] V. Dimitrov, L. Imbert, and P. K. Mishra, “Efficient and Secure Elliptic 
Curve Multiplication using Double-Base Chains,” ASIACRYPT, 2005. 

[10] “SEC 2: Recommended Elliptic Curve Domain Parameters,” v1.0, 
Standards for Efficient Cryptography Group, Sept. 2000. 

[11] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve 
Exponentiation using Mixed Coordinates,” ASIACRYPT, 1998. 

[12] V. Shnayder, B.-R. Chen, K. Lorincz, T. R. F. Fulford-Jones, and M. 
Welsh, “Sensor Networks for Medical Care,” Technical Report TR-08-
05, Division of Engineering and Applied Sciences, Harvard Univ., 2005. 

[13] Fujitsu MBF200 Solid State Fingerprint Sensor, 
http://www.fujitsu.com/emea/services/microelectronics/sensors/. 

[14] S. Chang Shantz, “From Euclid’s GCD to Montgomery Multiplication to 
the Great Divide,” Technical Report TR-2001-95, Sun Microsystems, 
June 2001. 


