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Abstract: An accurate model of building interiors with detailed annotations is critical to protecting the first responders’
safety and building occupants during emergency operations. In collaboration with the City of Memphis, we
collected extensive LiDAR and image data for the city’s buildings. We apply machine learning techniques to
detect and classify objects of interest for first responders and create a comprehensive 3D indoor space database
with annotated safety-related objects. This paper documents the challenges we encountered in data collection
and processing, and it presents a complete 3D mapping and labeling system for the environments inside and
adjacent to buildings. Moreover, we use a case study to illustrate our process and show preliminary evaluation
results.

1 INTRODUCTION

Firefighter casualties and deaths occur every year due
to the difficulties of navigation in smoke-filled indoor
environments. According to the National Fire Protec-
tion Association, in 2018, 64 firefighters and 3,655
people lost their lives, 15,200 people were injured,
and 25.6 billion dollars were wasted (Fahy and Molis,
2019; Evarts, 2019). The National Institute for Oc-
cupational Safety and Health (NIOSH) provides de-
tailed accounts of firefighter fatalities (CDC/National
Institute for Occupational Safety and Health (NIOSH)
website, 2020). One of the most disheartening threads
in these stories is how close to an exit the firefighters
were found, sometimes less than a mere 10 feet away.

A possible technological solution to this prob-
lem is to use high-quality 3D maps of the interiors
of buildings. These maps can be constructed us-
ing LiDAR. A LiDAR sensor transmits laser pulses,
which are reflected by objects in a scene. It mea-
sures the time until each pulse returns, thus determin-
ing the precise distance to the object that reflected
the pulse. The sensor builds a dense 3D represen-
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tation of the scene by measuring millions of points
distributed across the surfaces of all the objects. Ad-
ditional sensors are used to determine the color of
each point and its overall position in the scene. Maps
formed from these so-called point clouds would then
have hazards and other objects of interest to first re-
sponders labeled. The resulting maps could be used
by firefighters or other first responders to navigate the
structure and quickly find important objects during a
crisis event.

As part of a federally sponsored program, we
have been working with the City of Memphis, Ten-
nessee, USA to use LiDAR and other sensing tech-
nologies along with deep learning algorithms to pro-
duce georeferenced RGB point clouds with per-point
labels. We have encountered many challenges, such
as complex spaces for LiDAR, lack of synchroniza-
tion among different sensor data sources, and uncom-
mon objects not found in existing annotated datasets.
While some of these challenges, e.g., synchronizing
data sources, have been (partly) addressed by existing
research, the majority require new methodologies that
are the focus of our current and future work.

In this paper, we describe our approach to produc-
ing georeferenced 3D building models based on point
cloud and image data for public-safety. Our contri-
butions are as follows. First, we document the chal-



lenges we encountered in data collection and process-
ing, which may be of interest to researchers in various
areas such as building information modeling, LiDAR
design, machine learning, and public safety. Second,
we describe our complete 3D mapping and labeling
system for building environments including sensors,
data collection processes, and a data processing work-
flow consisting of data fusion, automatic labeling of
hazards and other objects within the data, clustering,
cleaning, stitching, and georeferencing. Third, we use
a case study to illustrate our process and show prelim-
inary evaluation results.

2 RELATED WORK

Generating large-scale 3D datasets for segmentation
is costly and challenging, and not many deep learn-
ing methods can process 3D data directly. For those
reasons, there are few labeled 3D datasets, espe-
cially for indoor environments, at the moment. Below
we describe two public indoor 3D datasets and sev-
eral deep-learning models for object labeling in point
clouds and images.

2.1 Labeled 3D Datasets

ShapeNet Part (Yi et al., 2016) is a subset of the
ShapeNet (Chang et al., 2015) repository which fo-
cuses on fine-grained 3D object segmentation. It con-
tains 31,693 meshes sampled from 16 categories of
the original dataset which include some indoor ob-
jects such as bag, mug, laptop, table, guitar, knife,
lamp, and chair. Each shape class is labeled with two
to five parts (totaling 50 object parts across the whole
dataset).

Stanford 2D-3D-S (Armeni et al., 2017) is a multi-
modal, large-scale indoor spaces dataset extending
the Stanford 3D Semantic Parsing work (Armeni
et al., 2016). It provides a variety of registered modal-
ities: 2D (RGB), 2.5D (depth maps and surface nor-
mals), and 3D (meshes and point clouds), all with
semantic annotations. The database comprises of
70,496 high-definition RGB images (1080×1080 res-
olution) along with their corresponding depth maps,
surface normals, meshes, and point clouds with se-
mantic annotations (per-pixel and per-point).

While the above datasets contain a variety of in-
door objects, they do not contain most of the pub-
lic safety related objects needed for our object an-
notation, e.g., fire extinguishers, fire alarms, hazmat,
standpipe connections, and exit signs. Therefore, they
are not immediately useful to our work.

2.2 Object Labeling in Point Clouds

PointNet (Qi et al., 2017a) is a deep neural net-
work that takes raw point clouds as input, and pro-
vides a unified architecture for both classification and
segmentation. The architecture features two subnet-
works: one for classification and another for seg-
mentation. The segmentation subnetwork concate-
nates global features with per-point features extracted
by the classification network and applies another two
Multi Layer Perceptrons (MLPs) to generate features
and produce output scores for each point. As an im-
provement, the same authors proposed PointNet++
(Qi et al., 2017b) which is able to capture local fea-
tures with increasing context scales by using metric
space distances.

At the beginning of our work, we experimented
with PointNet++ on our point clouds, but found that
many public safety objects, such as fire alarms and
fire sprinklers, are too small for it to segment and clas-
sify correctly. This motivated us to use images to de-
tect and annotate the objects first (Section 5.1) and
then transfer the object labels from the images to the
corresponding point clouds to obtain per-point labels
(Section 5.2).

2.3 Object Labeling in Images

Faster R-CNN (Ren et al., 2016) is a deep convolu-
tional neural network (DCNN) model for object de-
tection in the region-based convolutional neural net-
work (R-CNN) machine learning model family. It
produces a class label and a rectangular bounding
box for each detected object. Huang et al. (Huang
et al., 2017) reported that using either Inception
Resnet V2 (Szegedy et al., 2017) or Resnet 101 (He
et al., 2016) as feature extractor with Faster R-CNN
as meta-architecture showed good detection accuracy
with reasonable execution time.

As we needed obtain per-point labels, a rectangu-
lar bounding box was not sufficient. He et al. (He
et al., 2017) extended Faster R-CNN to create Mask
R-CNN which additionally provides a polygon mask
that more tightly bounds an object. It has a bet-
ter overall average precision score than Faster R-
CNN and generates better per-point labels in our point
cloud data. This observation motivated us to adopt
Mask R-CNN in our work.

3 OVERVIEW

We have surveyed seven facilities with 1.86 million
square feet of indoor space that are of interest to pub-



Table 1: List of Buildings
Name Sqft Use

Pink Palace 170,000 Museum, Theaters, Public Areas, Planetarium, Offices and Storage
Memphis Central Library 330,000 Library, Public Areas, Storage, Offices, Retail Store

Hickory Hill Community Center 55,000 Public Area and Indoor Pool
National Civil Rights Museum 100,000 Museum

Liberty Bowl Stadium 1,000,000 Football Stadium with inside and outside areas
FedEx Institute of Technology, U. Memphis 88,675 Reconfigurable Facility with Classrooms, Research labs, Offices, Public Areas

Wilder Tower, U. Memphis 112,544 12-Story Building with Offices, Computer labs, and Public Areas

lic safety agencies (see Table 1). All the buildings are
located in Memphis. Some of the buildings, e.g., the
Pink Palace, have undergone many renovations which
make it difficult for first responders to obtain accurate
drawings. Some buildings, e.g., the Memphis Central
Library, have historical artifacts and important doc-
uments to protect. Others such as the Liberty Bowl
and Wilder Tower have a large number of occupants
to protect in the case of an emergency.

3.1 Challenges

The buildings in our survey represent a wide variety
of structures including a museum, library, nature cen-
ter, store, classroom, office, sports stadium, residence,
lab, storage facility, theater, and a planetarium (Ta-
ble 1). They also vary significantly in their age, size,
and height. The sizes of the facilities range between
50,000 and 1,000,000 sq ft. Most of the buildings are
between 1 and 4 stories tall, while the Wilder Tower
has 12 floors in addition to a basement and a pent-
house.

The LiDAR and other equipment we used (Sec-
tion 4.1) are not designed specifically for an indoor
survey and therefore present several indoor usage
challenges. For instance, it is difficult to scan tight
spaces as the field of view of the LiDAR is too small
to generate a complete point cloud. We found the Li-
DAR operator must be at least 1.5 meters away from
the walls, which is hard to achieve in tight spaces. Ad-
ditionally, repeatedly scanning the same space while
turning corners during scanning leads to errors in the
Simultaneous Localization And Mapping (SLAM) al-
gorithm. This occurs when the algorithm cannot rec-
oncile two views of the same scene, so the views
appear randomly superimposed on each other and
the data becomes unusable, requiring the scan to be
restarted. Errors are also likely to occur when open-
ing doors or moving through a doorway, so routes are
planned to minimize these activities. Furthermore,
small errors accumulate as a scan progresses, so scan-
ning must be stopped and restarted, and the pieces
combined later, to avoid the error becoming too large.

Moreover, to avoid stretching our survey over
many days for the larger buildings, we surveyed them

during part of their business hours when there were
occupants in the buildings. This presents an inter-
esting challenge to our data processing algorithms,
i.e., the need to identify and remove humans from the
data. Objects that move during the scan, like humans,
cause further difficulty by appearing duplicated be-
cause they are identified as multiple separate objects.

In addition, we encountered difficulties in fusing
LiDAR point clouds and camera images (Section 5.2).
First, we color and assign labels to the points in the
point clouds using the camera images, so they need
to be synchronized precisely. However, the two types
of data are generated by different hardware and soft-
ware, each with its own clock skew. Second, we found
that many points were assigned incorrect labels when
we projected a 2D image to a 3D point cloud. For
example, a window label may be assigned to an ob-
ject behind a window if the object is not labeled in the
image and is visible through the window.

Finally, one challenge associated with object la-
beling is that there are not enough labeled images for
public safety objects because existing datasets focus
on common objects such as chairs and tables (Sec-
tion 5.1). Therefore, identifying fire hydrants, hazmat
signs and other public safety objects of interest re-
quires additional data and training because the state-
of-the-art object detection algorithms have not been
pre-trained on them.

3.2 Approaches

Figure 1 shows our overall process. We use the GVI
LiBackpack 50 which uses a Velodyne VLP-16 Li-
DAR sensor (GVI, 2018) to collect 360 degree Li-
DAR data (Section 4). We modified the LiBackpack
to mount an Insta360 Pro 2 camera (Insta360 Pro 2
Camera, 2018) that collects 360 degree image data.
The two datasets are collected simultaneously which
facilitates the association of RGB information from
the camera with points from the LiDAR (Section 5.2).
For object detection and segmentation, we use Mask
R-CNN with Inception-ResNet-v2 and ResNet 101 on
our images (Section 5.1). This deep learning network
is trained using the MS COCO dataset (Lin et al.,
2014) and our own labeled images. We then transfer



Figure 1: Data Collection and Processing Workflow

the RGB colors and labels from the images to the cor-
responding point clouds (Section 5.2), apply cluster-
ing to the labels in the point clouds, and manually re-
move the falsely labeled objects’ labels (Section 5.3).
Finally, we stitch together all the point clouds for a
building and georeference the final point cloud (Sec-
tion 5.4).

4 DATA COLLECTION

In this section, we present our approach to collecting
extensive LiDAR and video data in the surveyed fa-
cilities. We describe our equipment, data types, data
collection workflow, and strategies to overcome the
challenges we faced.

4.1 Hardware

The complete list of hardware is below (Figure 2):

• GreenValley International LiBackpack 50

• Velodyne VLP-16 LiDAR

• Surface Pro Tablet

• Insta360 Pro 2 Camera

• Aluminum Tubing

• Reach RS+ RTK GNSS Receiver (GPS receiver)

The LiBackpack’s carbon fiber tubing was re-
placed with interchangeable sections of aluminum
tubing to allow the sensors to be placed at different
heights. These aluminum pipes connect the LiBack-
pack to the bottom of the camera, then the top of the
camera to the Velodyne LiDAR sensor, allowing the
sensors to be worn and operated by one person. This
setup rigidly fixes the camera to the LiDAR, which
enables the data to be properly fused.

The Surface Pro tablet, which is connected to
the LiBackpack via an Ethernet cable, controls the
LiBackpack software and displays the in-progress
scan result for evaluation during scanning. With the

Figure 2: Modified GVI LiBackpack

in-progress scan result, it is easy to see whether the
entire area has been scanned or identify problems that
may require rescanning the area.

4.1.1 Video

The video recorded by the camera is stored onto seven
separate SD cards: six SD cards with full resolution
recordings of each of the six lenses, plus one more
SD card with low-resolution replicas, data from the
camera’s internal IMU (inertial measurement unit),
and recording metadata. The video from the six cam-
eras is stitched into a single equirectangular video by
the manufacturer’s proprietary software. This stitched
video has a resolution of 3840×1920@30FPS and is
used for all further video processing. Additionally,
this video contains the IMU data, which is used for
time alignment during data fusion.

4.1.2 LiDAR

The backpack stores the raw LiDAR and IMU data
(from its IMU, separate from the camera’s) in the
open-source ROS (Quigley et al., 2009) bag file for-
mat. The manufacturer’s proprietary on-board soft-
ware performs real-time SLAM processing using this
data to generate a point cloud in PLY format. Because



the bag file contains all the data required for SLAM
processing, it can be used to generate an off-board
SLAM result later.

4.2 Data Collection Work Flow

To scan an area, the hardware components are first as-
sembled by mounting the LiDAR to the camera, then
mounting the camera to the backpack. Before starting
a scan of a particular area, the operator plans a route
through the space. As discussed in the challenges
above, the operator plans to maximize the distance
from the walls and minimize passage through doors
and crossing previously scanned paths. The scanning
team opens the doors and ensures there are no other
obstacles to the operator, then marks down the area of
the building and the start time of the scan. Once peo-
ple, including the scanning team, are removed from
the space as much as possible, the operator starts the
scan with the tablet and walks through the area, and
stops the scan once finished. The scanning team then
determines which area should be scanned next and the
process is repeated.

5 DATA PROCESSING

In this section, we present how we process the raw
data collected from buildings to create 3D point
clouds with RGB color and object annotation. First,
we annotate video frames using a machine learning
model. Second, we fuse the labels and RGB data from
video frames with the corresponding point clouds.
Next, we apply a clustering algorithm to identify in-
dividual objects present in the point clouds and man-
ually remove the falsely identified objects. Finally,
as we scan in parts, we stitch the individual point
clouds into a complete 3D building structure and ap-
ply georeferencing to place it on the world map cor-
rectly. The final 3D model can be used in first re-
sponse planning, training, and rescue operations, vir-
tual/augmented reality (VR/AR), and many other ap-
plications.

5.1 Annotation

As our point clouds have a resolution of a few cen-
timeters, it is not possible to identify any objects
smaller than that. To address this issue, we instead
apply deep learning to label the objects in the 360-
degree camera images (video frames) and later trans-
fer the labels to the point cloud. We have identified 30
label classes (Table 2) with high priority, e.g., hazmat,

utility shut-offs (electric, gas, and water), fire alarm
and switch, fire hydrant, standpipe connection, and
fire suppression systems (sprinkler and extinguisher),
from the requirements we collected from first respon-
ders and other stakeholders. However, there are two
challenges in annotating the images – lack of good
lighting and cluttered areas. We leverage the im-
provements in object detection algorithms to handle
these challenges. In particular, for the object detec-
tion and segmentation task, we use Mask R-CNN (He
et al., 2017), an extension of Faster R-CNN (Ren
et al., 2016), to create a bounding box and an accu-
rate segmentation mask of each detected object. We
use the Tensorflow official model repository for object
detection (Huang et al., 2017), with initial weights
borrowed from their detection model zoo for trans-
fer learning. Figure 3 shows our image annotation
pipeline.

5.1.1 Image Projection

The Insta360 Pro 2 camera has six fisheye lenses.
The video from these lenses is stitched into a 360-
degree equirectangular video with a resolution of
3840×1920 with a field of view (FOV) of 360×180
degrees. We initially reprojected the images into a
cube map, which provides six 960×960 images each
with a 90×90 degree FOV. The cube map projection
increased the accuracy by avoiding the significant dis-
tortion inherent in the equirectangular image. How-
ever, with advancements in our data collection and
manual labeling techniques, we were able to increase
the size of our training dataset, which helped the deep
learning model handle the distortion in equirectangu-
lar projection, leading to similar performance as the
cube map projection. The equiretangular projection
also reduces the processing time significantly as there
are six times fewer frames to annotate compared to
the cube map projection.

5.1.2 Manual Annotation

To produce training data for our neural network, we
manually annotated selected frames of video using
LabelMe (Wada, 2016) (Figure 4). Our primary goal
was to annotate at least 100 images from each build-
ing. We have divided the manually annotated images
into training, validation, and test datasets.

5.2 Data Fusion

The hardware has two independent sensors: the video
camera, which records color information, and the
LiDAR, which records depth information. The fu-



Table 2: List of High Priority Objects

Priority Label Class Priority Label Class Priority Label Class
5 hazmat 4.2 elevator 3.6 fire door

4.8 utility shut offs - electric 4 fire alarm 3.6 extinguisher
4.8 utility shut offs - gas 4 fire wall 3.6 sign exit
4.8 utility shut offs - water 4 mechanical equipment 3.2 emergency lighting
4.6 building entrance-exit 3.8 sprinkler 3.2 sign stop
4.6 door 3.8 sprinkler cover/escutcheon 3.2 smoke detector
4.6 fire hydrant 3.8 interior structural pillar 3 Automated External Defibrillators
4.4 fire escape access 3.8 standpipe connection 3 Individual First Aid Kit
4.4 roof access 3.8 window 2.4 server equipment
4.4 stairway 3.6 fire alarm switch 2 person

Figure 3: Image Annotation Pipeline

Figure 4: Manual Annotation Example

sion process transfers RGB and labeled data from the
video frame to the LiDAR point clouds.

5.2.1 Coloring LiDAR Point Clouds

The fusion process finds the pixel on the video frame
corresponding to each point in the point cloud and ap-
plies its color to that point. Calculating this corre-
spondence is straightforward because the transforma-
tion between the LiDAR and the camera is known and
fixed. This correspondence is only valid if both sen-
sors capture the depth and pixel information simul-
taneously, thus ensuring they are viewing the same
object. If the system moves too much over the time
between when the depth point and pixel are captured,
the coloring appears blurry and shifted.

We found that reducing this time to 0.05s or less
produced good quality coloring. Unfortunately, we
could not find a reliable way of enforcing this. Time
synchronization methods between the LiDAR and
camera were not supported (e.g. hardware trigger
in/out) or would not work in our situation (e.g. GPS
time is not received indoors). However, we can per-

form a coarse synchronization to within 20 seconds
or so by assuming the clocks within the camera and
LiDAR are reasonably accurate. This is enough to
determine which video was being recorded while a
particular LiDAR scan was in progress and provide an
initial guess at what time in that video. Performing the
0.05s alignment is then possible using the IMU data
recorded by both the camera and LiDAR. Because
both IMUs experience the same motion, the time of
maximum correlation between the IMU streams ends
up being the correct alignment around 90% of the
time. The other 10% of the time, the alignment ends
up wildly incorrect, which is obvious during manual
inspection and can then be corrected.

We still had difficulties ensuring the clocks were
accurate. The clock in the tablet, used to timestamp
the LiDAR scans, drifted severely, so we had to regu-
larly connect it to the Internet and force a clock syn-
chronization. The clock in the camera could only be
set by connecting it to a phone and hoping a syn-
chronization occurred as it could not be forced. The
camera also frequently forgot the time during battery
changes. We overcame this problem by ensuring the
camera saw the tablet’s clock during each recording,
then correcting the timestamp if it was wrong by read-
ing it from the image of the clock.

5.2.2 Assigning Labels to Points

The annotation process creates label masks for objects
in the camera images. A mask contains all pixels of an
image that are a part of a particular object, along with
the label of that object and the annotation algorithm’s



confidence in the label. Each pixel is labeled as the
label of the mask that contains it. If multiple masks
contain the pixel, the label with the highest confidence
is used. Some pixels may not be a part of any mask
if they are not part of a recognizable object with a
known label.

In theory, labels can then be applied to the points
in the same way as color. Besides taking the RGB
color of a point’s corresponding pixel, we also take
the label generated from the masks. However, the
implicit mapping of 2D image labels to 3D points
presents some challenges which must be addressed to
improve the final labeling quality.

Objects with holes are problematic because the la-
bel masks include the pixels in the object’s holes. For
example, the pixels in a window’s panes are labeled
”window” even though another object might be visi-
ble through them. To address this, we find the point
in each mask that is closest to the LiDAR and only
apply the label to points that are not more than 0.5m
farther than that one. We determined experimentally
that objects visible through other objects, like items
visible through windows, almost always exceed this
distance, so incorrect labels for them are effectively
rejected.

Objects in the point cloud are a result of many Li-
DAR captures and camera frames from different times
and positions, so some points of an object may not
be labeled if the corresponding camera frame was far
away or blurry. To ensure such missed points are la-
beled, we ”expand” the point labels to neighboring
points. For each unlabeled point in the final labeled
cloud, the closest labeled point within 50mm is lo-
cated. Once all such points have been located, if an
unlabeled point has a close labeled point, its label is
transferred to the unlabeled point. This effectively
ensures all points of an object are labeled, and also
extends the labeled border which helps make smaller
objects more obvious.

5.3 Label Clustering and Manual
Cleaning

We developed an interactive editing tool using
Open3D (Zhou et al., 2018) to enable a user to re-
move falsely labeled objects easily from a 3D point
cloud. It uses DBSCAN (Ester et al., 1996) to cluster
all the points with the same label into individual clus-
ters. This way the users have to deal with only tens
or hundreds of clusters instead of millions of points.
After a user selects and removes the falsely labeled
clusters, the editing tool maps the removed clusters
to the original point clouds and exports the corrected
point clouds. Finally, it merges all the corrected point

clouds (one for each label class) into one point cloud.

5.4 LiDAR Data Stitching and
Georeferencing

For better data quality, we divided each of the build-
ings surveyed into sections and scanned each part sev-
eral times, allowing us to pick the best scan of each
part. To generate a complete building, the selected
parts must all be stitched together. To do this, we used
the “Align by point pair picking” function provided
by the open-source CloudCompare software (Cloud-
Compare v2.10.0, 2019). We choose the larger point
cloud as a reference and use this tool to transform the
smaller point cloud to match the larger one. The tool
calculates the correct transformation once at least 3
pairs of homologous points are picked. We repeat this
process for each piece until we have one point cloud
which contains all parts of the building.

We measure the GPS coordinates of several points
around the building’s exterior using our REACH RS+
device (REACH RS+, 2018). With these points, we
use the alignment tool again to georeference the build-
ing. We chose the WGS 84 / UTM 16N projection
(EPSG:32616) because the point cloud data is already
in meters. The georeferenced data then can be loaded
into ArcGIS Pro (ESRI, 2020) and visualized on a
map.

5.5 VR Visualization

Assessing the quality of the point clouds, including
their color and annotations, is difficult on a computer
monitor. Because the clouds are large and dense 3D
structures, viewing them on a 2D screen shows only
a small part of the story. Rapidly forming an intuitive
understanding of the geometry is difficult. Complex
areas are often mistaken for problematic areas. Iden-
tifying and isolating particular objects requires com-
plex slicing and viewport manipulation.

Since the point clouds are scans of reality, using
virtual reality (VR) to view them seemed natural. To
do this, we use an Oculus Rift S (Oculus VR, 2019)
and the free PointCloudXR (Hertz, 2018) software.
The point clouds are scaled up to real size so that
1 meter in the scan represents 1 meter in VR. This
enables them to be virtually walked through. With
the data presented like it is in reality, examining the
clouds is much easier. With knowledge from watch-
ing the video used for coloring, objects and rooms
can be immediately identified. Inconsistencies and
glitches stand out and are easily examined.

VR is also a convenient method to effectively
communicate our results. With a minute or so of in-



troduction, stakeholders and other interested users can
examine the clouds themselves and intuitively under-
stand the similarities and differences between the scan
and reality. This lets them get a feel for the advantages
and drawbacks of our methods and the current state of
our work.

Because a good VR experience requires rendering
at very high resolutions and framerates, scans must
usually be downsampled or sliced before they can be
feasibly viewed in VR, which reduces perceived qual-
ity. The software landscape for point clouds in VR
is not mature, and capabilities such as dynamic load-
ing and quality scaling, any form of editing, and most
forms of viewing annotations, are not yet available.
VR is currently just used as a guide to locate and un-
derstand problems so that those areas can be found
and fixed with conventional point cloud editing soft-
ware. Development of more advanced VR software is
one of our future research areas.

5.6 3D Building Maps and Public Safety

A 3D building map with annotations can be viewed on
a computer, tablet, smartphone, or VR headset, serv-
ing a variety of applications in public safety, architec-
ture, computer gaming, and other areas. Below we
elaborate on a few of its usages in public safety.

First, these maps can help first responders perform
pre-incident planning more effectively, as they pro-
vide a much more detailed and accurate representa-
tion of indoor space than 2D floor plans. First respon-
ders and incident commanders can calculate the best
entry/exit points and routes based on the specific type
and location of an incident before dispatching and on
the way to the incident.

Second, they can be used in 3D simulations to
train first responders more safely and less costly. First
responders can put on VR headsets to practice res-
cue operations in their own stations, instead of phys-
ically going into a building under dangerous condi-
tions. Fire, smoke, obstacles, and other digital effects
can be overlaid on the map to simulate different emer-
gency situations.

Third, during a real incident, first responders can
use the maps for indoor localization and navigation.
The maps can be viewed through a 3D display in-
tegrated into a first responder’s helmet, giving them
sight and information in otherwise dark or smoke
filled environments. The first responders woud also
be outfitted with trackers that show their position on
the building map. The 3D display will show them
the safest way out of the building or the fastest way
to reach a specific location. An incident commander
outside the building can also use map data to locate

responders and guide them inside the building.
Finally, a 3D building map can help building oc-

cupants escape safely in case of an emergency. It can
also help visitors navigate in an unfamiliar building
more easily.

6 CASE STUDY

In this section, we use the Hickory Hill Commu-
nity Center (HHCC) as a case study to show how we
scanned the building, applied a deep learning model
to annotate collected video frames, and fused the ob-
ject labels with the point cloud. We present the per-
formance of the deep learning model on the image
data and the performance of the object labeling on the
point cloud after the data fusion.

6.1 Building Details: Hickory Hill
Community Center (HHCC)

The Hickory Hill Community Center has many com-
plex areas, including an aquatic center with a swim-
ming pool, basketball court with a 2nd floor walking
track, and a large fitness center, along with many other
indoor facilities, rooms and halls. The large halls and
indoor spaces were easy to scan, but at the same time
the close corridors, small storage rooms, and complex
geometry challenged us. After scanning the whole
building, we re-walked the building and identified all
the safety-related objects and their locations to create
a complete ground truth. Although it is the small-
est building that we scanned, it still has a variety of
public safety related objects. It contains mechanical
rooms with equipment, hazmat objects, and electrical
shut offs. We identified other building features such
as the main entry, fire exits, stairways, pillars, doors,
and windows. We also located fire extinguishers, and
a fire hydrant, as well as many fire alarms and fire
alarm switches.

6.2 Annotation

We first identified some images with public-safety ob-
jects from our videos and manually annotated them.
We next trained our Deep Neural Network (DNN)
on these images and used it to annotate all the video
frames. Afterward, we sampled the results to identify
images with false positives and false negatives. Then
we manually annotated these images with the correct
labels, added them to our training dataset (Table 3),
and repeated the process two more times.

We divided the set of manually labeled images
into training, validation, and testing subsets (Table 3).



We report mAP (mean average precision) and mAR
(mean average recall) based on the validation dataset
(the results of the test dataset were similar to those of
the validation dataset so they are not presented in the
paper). These evaluation metrics are described and
used by Lin et al. (Lin et al., 2014). The mAP is aver-
aged over all 10 IoU thresholds and all 30 categories.
The mAR (AR1) is averaged over all images with a
maximum of 1 detection per image.

6.2.1 Deep Transfer Learning vs. Training DNN
from Scratch

We first compared the image annotation performance
with and without transfer learning. As shown in Fig-
ure 5, if we train the neural network from scratch
(blue curve), the mAP increases very slowly and
reaches only 0.15 after 240,000 iterations. If we start
with a model already trained with images from MS
COCO (orange curve), the mAP quickly approaches
0.3 after training with our dataset for only 24,000 it-
erations. Thus, we decided to use the COCO-trained
model, retrain and fine-tune it with our labeled im-
ages, saving computation time and increasing ability.

Figure 5: mAP of Image Annotation with and without
Transfer learning on Validation Dataset (Equirectangular
Projection, Mask R-CNN with ResNet 101)

6.2.2 Impact of Adding New Examples

Table 3: Labeled Image Dataset for Training

Date Training Validation Testing Total
12/13/2019 286 54 0 340
2/13/2020 317 123 125 565
5/5/2020 610 127 128 865

Table 3 shows the change of our training dataset
over time. Figure 6 shows that, as we increased the
number of labeled images in our dataset, the anno-
tation performance as measured by mAP improved
steadily (the blue, green, and red curves correspond
to the 12/13/19, 2/13/20, and 5/5/20 datasets, respec-
tively). mAR also increased with the size of the train-
ing dataset (Figure 7). We also observed that ran-

domly adding more images from the same building
showed no increase or even reduced mAP scores (not
shown in the figures).

Figure 6: mAP of Image Annotation on Different Vali-
dation Datasets (Cube Map Projection, Mask R-CNN with
ResNet 101)

Figure 7: mAR of Image Annotation on Different Vali-
dation Datasets (Cube Map Projection, Mask R-CNN with
ResNet 101)

6.2.3 Impact of Image Projection on Annotation
Accuracy

The panoramas are presented as equirectangular pro-
jection (360 by 180-degree coverage) with a resolu-
tion of 3840×1920. It is a 2:1 rectangle and straight-
forward to visualize. Initially, we used the equirect-
angular projection, and with each iteration, the gain in
mAP and mAR were negligible. Thus, we decided to
explore the cube map projection which produces six
images of resolution 960×960, each of which covers
90×90 degrees.

Figure 8 shows that the mAP performance of the
equirectangular projection (purple and blue curves) is
visibly better than that of the cube map projection (or-
ange and green curves), regardless of the DNN. The
mAR performances are much closer for the two pro-
jections and two DNNs as shown in Figure 9. There-
fore, we decided to use the equirectangular projection
for better mAP performance.

6.2.4 Performance Comparison between DNNs

As we were selecting a neural network for our task,
we found that Faster R-CNN was doing slightly bet-



Figure 8: mAP - Equirectangular vs Cube Map Projection
Projection on Validation Datasets (Purple is for Mask R-
CNN with Inception ResNet and Blue is for Mask R-CNN
with ResNet 101, both with equirectangular projection. Or-
ange is for Mask R-CNN with Inception ResNet and Green
is for Mask R-CNN with ResNet 101, both with cube map
projection.)

Figure 9: mAP - Equirectangular vs Cube Map Projection
Projection on Validation Datasets (Purple is for Mask R-
CNN with Inception ResNet and Blue is for Mask R-CNN
with ResNet 101, both with equirectangular projection. Or-
ange is for Mask R-CNN with Inception ResNet and Green
is for Mask R-CNN with ResNet 101, both with cube map
projection.)

ter than Mask R-CNN. However, as we planned to
transfer our 2D detections to a 3D point cloud, we
chose Mask R-CNN, which provides precise polygon
masks. We then compared two different feature ex-
tractors, Inception-ResNet v2 and ResNet 101, within
Mask R-CNN. Figure 10 and 11 show that Inception-
ResNet v2 and ResNet 101 perform similarly con-
cerning the mAP and mAR metrics.

Figure 10: mAP of Inception-ResNet v2 and ResNet 101 on
Validation Datasets with Equirectangular Projection (Dark
red is for 2/13/20 data and dark blue is for 5/5/20 data, both
with Inception-ResNet v2. Light blue is for 2/13/20 data
and orange is for 5/5/20 data, both with ResNet 101.)

Figure 11: mAR of Inception-ResNet v2 and ResNet
101 on Validation Datasets with Equirectangular Projection
(Dark red is for 2/13/20 data and dark blue is for 5/5/20 data,
both with Inception-ResNet v2. Light blue is for 2/13/20
data and orange is for 5/5/20 data, both with ResNet 101.)

6.3 Performance Measurement on Point
Cloud

The data fusion process (Section 5.2) transfers the an-
notations in our video frames to the corresponding 3D
point clouds. The resulting 3D point clouds have mul-
tiple error types—some errors carried over from the
image annotation and some errors created during the
data fusion process.

We identified the individual objects using the DB-
SCAN clustering algorithm. We adjusted DBSCAN
parameter values, such as the maximum distance be-
tween points and the minimum number of points in a
cluster, for different objects to produce a better clus-
tering result. Afterward, we manually removed the
falsely labeled objects using our editing tool.

Table 4 shows the precision and recall for some of
the higher priority objects in the HHCC point cloud
before the manual cleaning. Some types of objects,
e.g., fire extinguishers and fire alarms, have better per-
formance than the others, e.g., building entrance-exits
and elevators. This phenomenon may be due to (a) the
presence of more labeled objects for certain types and
(b) the difficulty for the neural network to differen-
tiate building entrance-exits and elevators from other
doors. Note that the table does not include some ob-
jects with zero detection (neither true nor false posi-
tive), e.g., hazmat, as there were very few instances of
them in the training dataset.

7 CONCLUSIONS

We have developed a system to collect and annotate
indoor point clouds with 30 types of public-safety
objects. While the data collection and processing
presented many challenges, we overcame these chal-
lenges by leveraging various existing approaches and
our own methods. Our annotation performance is en-



Table 4: Average Precision and Recall of Individual Objects on HHCC Point Cloud
Name Ground Truth True Positive False Positive False Negative Precision Recall F1

building entrance-exit 14 7 54 7 0.115 0.500 0.187
door 69 69 224 0 0.235 1.000 0.381

elevator 2 2 7 0 0.222 1.000 0.364
fire alarm 64 61 31 3 0.663 0.953 0.782

fire alarm switch 14 7 41 7 0.146 0.500 0.226
fire suppression systems - extinguisher 20 19 6 1 0.760 0.950 0.844

server equipment 2 0 13 2 0.000 0.000 0.000
sign exit 37 37 38 0 0.493 1.000 0.661

smoke detector 4 0 10 4 0.000 0.000 0.000
stairway 1 1 51 0 0.019 1.000 0.038

utility shut offs - electric 49 49 14 0 0.778 1.000 0.875
utility shut offs - water 3 1 6 2 0.143 0.333 0.200

couraging despite our limited training dataset. For
the next step, we plan to improve the annotation per-
formance by addressing the following issues: (a) in-
creasing the number of annotated images for the ob-
jects that are lacking in both our dataset and public
datasets; and (b) improving the recognition accuracy
of small objects such as sprinklers and smoke detec-
tors. We also plan to apply machine learning models
directly to point clouds as a complementary process
to improve the overall accuracy and confidence.
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