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ABSTRACT

Research supporting improved anomaly detection performance benefits a wide range of technical applications.
Thus, the definition of anomalies and the subsequent means to detect them are wide-ranging. This treatment
presents an overview of the development of an anomaly detection approach based on spectral signatures obtained
with hyperspectral unmixing. Anomaly Detection is a binary classification that does not require prior information
about the anomaly. For example, an anomaly detector applied to hyperspectral imaging (HSI) would take a
hyperspectral image with hundreds of channels as an input and output a two-dimensional image map of pixel
intensities based on a threshold procedure applied to the probability of that pixel being an anomaly. There have
been many advancements in the field of HSI Anomaly Detection. Our ensemble method algorithm, presented
here, addresses some of the shortcomings of current state-of-the-art techniques. We present details about the
extracted end-members and use them for effective anomaly detection. Our current ensemble method opens the
path for future machine-learning processes. We evaluated our method on multiple datasets and reported the
Fl-macro score. We suggest that the Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve should not be used in Hyperspectral anomaly detection as an evaluation metric.
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1. INTRODUCTION

The electromagnetic spectrum of visible light is 380 nm to 700 nm, and the typical computer image uses RGB
channels from this visible light spectrum. RGB images consist of Red, Green, and Blue channels. It is sometimes
hard to distinguish similarly colored objects using eyes and computer vision in RGB images. Hyperspectral
cameras can aid difficult computer vision tasks such as object discrimination because they can capture information
from a wide range of bands extending from ultraviolet (350 nm) to infrared (2500 nm). A Hyperspectral Image
contains data from the electromagnetic spectrum, hundreds of channels, and additional information per pixel,
increasing the possibility for each object to possess a unique measured signature. We can use this unique
signature to identify each object’s material, making it possible to recognize any anomalous object in the image.!
Anomaly Detection has immense potential in agriculture, metallurgy, surveillance, and versatile applications like
quality control, process control, object sorting, and remote sensing. Materials reflect, absorb, and transmit the
electromagnetic radiation emitted by the sun in unique ways. The measure of electromagnetic energy reflected
or bounced back from a material is called the reflectance of the material.! Figure 1a demonstrates the difference
in reflectance between different materials.

It is essential to talk about the endmembers in the field of hyperspectral imagery. Endmembers are the
unique spectra that represent the material in a hyperspectral image. A pixel in a hyperspectral image is termed
a pure pixel if it only contains/represents the spectral signature of one material or endmember. Conversely,
the pixel’s spectral signature can result from a linear or non-linear combination of more than one endmember,
and in this case, it is called a mixed pixel.? Spectral unmixing is a process that decomposes the measured
spectra into a collection of endmembers while indicating the proportion of each endmember in the pixel.> The
spectral unmixing process starts with identifying/extracting the number of representative endmembers in the
hyperspectral image; then an endmember estimating algorithm is used to identify those unique endmembers.
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Figure 1: HSI used in remote sensing can result in information about the reflectance properties of materials and
the abundance map, after spectral unmixing.

Once all endmembers are found, an algorithm to obtain the abundance map can be utilized.?> The result of
spectral unmixing is often called an abundance map, as shown in Figure 1b. For example, the Indian Pines
dataset contains Hyperspectral images represented by 16 unique endmembers. This resulted in the abundance
map shown in Figure 1b where the intensity of each pixel in the 16 individual squares indicates the presence of
each endmember.

In this treatment, anomaly detection is defined as a classification problem with two classes that do not
require previous knowledge about the anomalies and aim to find the abnormalities in the hyperspectral image.*
An anomaly detection algorithm subsequently classifies each pixel in the HS image into an anomaly class or a
background class. The issue with some anomaly detection methods is that they make Gaussian assumptions
about the hyperspectral data when the algorithm is developed. Still, hyperspectral images captured in the
natural world show strong non-linearity and non-gaussianity.” A Gaussian assumption means that anomalies
tend to be the small and less frequently occurring objects in the image.* If we have an image of the sea, and only
one ship in the middle of the water, then the Gaussian assumption will work, and the ship would be considered
the anomaly. However, real-life scenarios are much more complicated than this, which is why many anomaly
detectors fail at identifying anomalies.

This paper mentions a few state-of-the-art (SOTA) Anomaly Detectors (AD), and these methods do not
always perform well. An ensemble model will be presented that combines some of these methods and performs
better than each SOTA ADs. We considered the performance of each of these SOTA ADs and chose the best
three based on their average F1 score on all airports of Airport-Beach-Urban (ABU) Datasets.’

The main contributions of this paper can be divided into three parts:
1. The design of a robust ensemble method that outperforms SOTA Anomaly detectors.
2. Integrating spectral unmixing and target detection as part of the ensemble anomaly detector.

3. Results demonstrating why Area Under Curve(AUC) is not the optimal evaluation metric for Anomaly
Detection tasks.



2. RELATED WORKS
2.1 Hyperspectral Target Detection With Endmembers and Abundances

Higher-resolution multispectral images have successfully made whole-pixel classification possible. However, addi-
tional analysis of substances in the pixel was limited due to the limited number of spectral bands in multispectral
images.® In addition, pixels may be a combination of multiple materials has created the need to unmix those
materials.?

As mentioned above, hyperspectral (HS) images have significantly more bands than their multispectral coun-
terparts. However, images in HSI also suffer from lower spatial resolution. As s result, an HS image pixel can be
a pure pixel consisting of spectral characteristics of a single material, or a mixed pixel representing a mixture of
two or more distinct materials has a higher probability of occurrence. This mixture could be due to the spectral
sensor’s limitation, resulting in a low spatial resolution, and mixed pixels can result from a homogeneous mixture
of materials.?

Spectral unmixing decomposes each pixel into unique spectra called endmembers and their estimated con-
tribution or abundances.? The first step in the spectral unmixing process is estimating the number of unique
spectra or endmembers. This can be accomplished by an algorithm such as the noise-whitened Harsanyi Farrand
Chang method.”

Once the number of endmembers in the hyperspectral image is known, the N-FINDR algorithm can estimate
those individual spectra .® Figure 2a displays the endmember estimated using the N-FINDER algorithm® on
ABU-Airport-I hyperspectral image. In ABU-Airport-I, there are 14 endmembers, and thus there are 14 unique
spectra in the endmembers graph.
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Figure 2: Our complete method to get target abundance using target endmember. Our target endmember is a
specific reference spectrum extracted from a reference HS image. The process of extracting target abundance is
similar to object detection.

Once the endmembers have been estimated in an HS image, then the Fully constrained least-squares (FCLS)?
method could be applied to estimate the abundance map of the unique spectra in the hyperspectral image. This
method unmixes an HS image into the fractional abundance of each material in each pixel. The area of this
abundance map is the same as the input HS image and has the same number of abundance maps as the number
of estimated end-members in the HS image. Each endmember contributes to the HS image structure in a
corresponding and dedicated smaller square. An abundance map is shown in Figure 1b.

Further analysis of the HS image can be done using the spectral similarity information divergence algorithm
(SID), which can measure the spectral similarity between pixels and specific reference spectra.” The particular
reference spectra could be a part of the same image or be extracted from another reference HS image. In this
case, the process is similar to object detection. FCLS® assigns a probability distribution to each class as an



abundance map. We have shown our process in Figure 2b. The class with the highest probability is normalized
to 1 and classified as that pure material spectrum. We use this normalized target abundance for our work.

2.2 Hyperspectral Anomaly Detection

This section discusses the current state-of-the-art hyperspectral anomaly detection algorithms.

2.2.1 Reed-Xiaoli (RX) Anomaly Detector

The RX algorithm utilizes the Mahalanobis distance!'® to calculate the distance between the pixel under test and
the background pixel. A pixel is considered an anomaly if the Mahalanobis distance exceeds a certain threshold.
The background of the hyperspectral image is characterized by the covariance and mean of the hypercube.!! 12
Equation 1 below shows the square of the Mahalanobis distance:

D? = (x—m)T.C7'.(x — m), (1)

where, x is the vector of the observation, m is the vector of mean values of independent variables and C'~!
is the inverse covariance matrix of the independent variables.

RX algorithm became popular due to its ability to detect anomalies without requiring labeled data. Since
labeled HS images may be considered scarce, RX was widely adopted to overcome the shortage of labeled data
in the hyperspectral field. There are multiple versions of RX have been introduced over time. Kiigiik, S., and
Yiiksel, S. E.'3 evaluated multiple versions of the RX algorithm, which we used in our consideration in selecting
methods.

2.2.2 Hyperspectral Anomaly Detection With Attribute and Edge-Preserving Filters (AED)

Anomaly Detection With Attribute and Edge-Preserving Filters (AED) is a two-stage algorithm for anomaly
detection in hyperspectral images. AED is based on two main ideas; the first states that anomalies usually
appear small and have distinct reflectance signatures,® and the second idea states that pixels belonging to the
same class tend to have a high correlation in the space domain.®

In AED, those pixels with unique signatures and small areas are first detected using an attribute filtering
and boolean map-based fusion that generates the initial detection output.® Then this initial output is modified
by using edge-preserving filters that utilize the spatial correlation between adjacent pixels; this leads to the
reduction in false positive anomalies.® The structure of AED is shown in Figure 3 below.
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Figure 3: Schematic of AED Anomaly Detection®
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2.2.3 Hyperspectral Anomaly Detection With Kernel Isolation Forest

Kernel Iforest is mainly based on the idea that anomalies are more prone to isolation in kernel space.'* This
algorithm works by first mapping the data into kernel space. Then a principal component analysis is applied
to the data and the first few components are chosen. Then isolated samples are constructed with the use of
IForest algorithm. The initial detection output is iteratively improved by using locally constructed IForest.!*
The general idea of Kernel Iforest is that if a pixel can be easily isolated in the kernel space, it is most likely to
be an anomaly.'* One of the advantages of using IForest is the fact that it is a good algorithm to detect outliers
or anomalies based on the separability of the datapoint without the need for complex computations compared
to other algorithms that rely on distance or density.'*



Kernel TForest implementations operate upon the assumption that anomalies are points or objects that do
not appear frequently and are distinguishable from other points or objects.'* If a dataset contains normal and
anomaly instances, the goal is to separate or isolate them by constructing a tree that splits the data using
different attributes. The distance between the main node and the last leaf node is the depth of the split. Since
this algorithm assumes that anomalies tend to be different than normal instances, the depth of the split for
anomaly tends to be shorter than normal instances.'*

2.2.4 Local Summation Unsupervised Nearest Regularized Subspace With An Outlier Removal
Anomaly Detector (LSUNRSORAD)

The Local Summation Anomaly Detection (LSAD) algorithm has great performance. Still, because it obtains
local spatial distributions for the neighboring pixels of the pixel under test (PUT) by using multiple sliding win-
dow filters, it becomes time-consuming and computationally expensive.'® In addition, the background statistics
could be contaminated with anomalies when the algorithm uses a single window, causing a high false alarm
rate.'®

In'® the authors present a modified Local Summation Anomaly Detection called LSUNRSORAD.!> The main
idea of this algorithm is that each pixel in the background image can be represented by its neighbors.'® In the
original LSAD method, a correlation matrix represents the correlation between background pixels. During the
calculation process, the matrix is inverted, causing the algorithm to be computationally expensive. The improved
algorithm replaces matrix inversion with a linear combination using addition and multiplication.

LSUNRSORAD uses outlier removal as they affect the accuracy of the algorithm. Outliers are detected by
setting two thresholds; the first being the maximum threshold and the second being the minimum threshold.
A pixel with a value greater than the maximum threshold or smaller than the minimum threshold would be
considered an outlier.'?

3. METHODOLOGY

This paper presents an ensemble learning method that combines multiple anomaly detectors and the abundances
obtained from hyperspectral unmixing to find and classify the target. The ultimate goal behind this hyperspectral
unmixing-based ensemble method is to design an anomaly detector that is more accurate and robust when
compared to the algorithms used individually.

This method uses each algorithm individually to detect anomalies in the hyperspectral image. Then the
output of each anomaly detector is standardized if it is not already a binary image. Finally, applying the
ensemble method combines those results and produces the anomaly detection map.

3.1 Standardize the Anomaly Detector results with Binary

As we have to combine multiple Anomaly Detectors, it is important to standardize the results to reduce bias.
Figure 4 shows the algorithms produce results in different scales and frequencies. The Kernel Isolation Forest
(Figure 4a) has a score range of 0 to 5. The RX algorithm (Figure 4b) produces scores between 0 and 2500.
Feeding these unmodified results into the ensemble-based system would reduce system accuracy; therefore, a
solution to mitigate the impact of the scale mismatch must be identified.

Figure 5 shows a comparison between the raw AED output shown in Figure 5a and the binarized (its values
are either ones or zeros) AED output shown in Figure 5b. After observing both figures, it becomes obvious that
Figure 5a is not user-friendly to visualize and understand the scene, whereas Figure 5b is easier to interpret and
understand.

As most of the algorithms used do not output a binary image, there was a need to convert the algorithms’
output into a binary image. Initial efforts focused on histograms of the algorithm output, with results indicating
that the values produced followed a skewed normal distribution. We selected thresholds based on percentile
values to account for the skewed nature of the data. Positive thresholds were then tested and applied to each
pixel with the interpretation that pixel values equal to or higher than the threshold would be considered an
anomaly; conversely, if the pixel intensity value were less than the threshold, it would be considered normal.
Table 4 compares the results of two possible thresholds chosen due to their performance on the skewed data. By
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taking the average F1 score for all of the algorithms and comparing the results of the images binarized using
the 95" and 97*" percentiles, the 97" percentile resulted in a higher average F1 score. Thus it was chosen as
the threshold. The output of this binarizing algorithm is called an image map. This image map is a binary
image with the same dimension as the hyperspectral image, and its values can only be 0 or 1. A zero value
represents the background or the nonanomalous class, whereas a one represents an anomaly. Once the output of
all algorithms has been converted into a binary image, we can use them in our ensemble method.

3.2 Hyperspectral Unmixing-based Voting Ensemble Anomaly Detector (HUE-AD)
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Figure 6: Our proposed voting ensemble method anomaly detector with abundance

The ensemble method combines the votes of every Anomaly Detector to output the final result image. Our
ensemble method utilizes equal weights for each anomaly detector and the abundance-based procedure. The
voting is designed to declare a pixel to be anomalous in case: if at least three of the four methods indicate the
pixel is anomalous.



Like the image binarization procedure, the ensemble method utilizes a predefined threshold; if the voting
result is higher than or equal to the threshold, then the pixel under test (PUT) is declared an anomaly. This
approach to ensemble method design ensures that the anomaly detector outperforms individual anomaly detectors
and produces a lower false alarm rate.

The voting process can be summarized using Equations (2) and (3)
total Pixzelvote = IMAED + IMKIforest + IMLSUNRSORAD + IMabundances (2)

where I is an integer value greater than zero and represents the weighted contribution of each algorithm output
to the pixel vote. Equation (2) indicates that equal weight to applied to each method.

M is the algorithm output for the pixel and takes values that are either 0 or 1.

The first three methods were binarized using the percentile method. The abundance-based procedure output
was normalized to 1 by taking the highest probability in the probability distribution of the abundance classes.

Then the thresholding process for each pixel can be summarized as follows:

if (total Pixzelvote)
elsei f (total Pizelvote)

>(N—=1)«1:pizel =1
< (N—=1)«1:pizel =0
Where N is the number of methods used in the ensemble method.

4. EVALUATION
4.1 Datasets

For our evaluation, we have used Airport-Beach-Urban (ABU) Datasets.% 6 The 100 x 100 patches were
manually extracted from large images downloaded from the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Web site.!” Some features of these images are listed in Table 1.

Table 1: Some Features of the ABU Datasets Airport scenes'®

Images Captured place | Resolution | Sensor | Flight time | Band
ABU-Airport-I Los Angels 7.1lm AVIRIS | 11/09/2011 | 205
ABU-Airport-II Los Angels 7.1m AVIRIS | 11/09/2011 205
ABU-Airport-1IT Los Angels 7.1m AVIRIS | 11/09/2011 | 205
ABU-Airport-1V Gulfport 3.4m AVIRIS | 07/07/2010 | 191

As shown in Table 1, most of the images are captured by the AVIRIS sensor except for ABU-Airport-1V,
which is captured by the Reflective Optics System Imaging Spectrometer (ROSIS-03) sensor. Moreover, due to
the different heights of the flights, the spatial resolutions of the images are also different.

4.2 Looking Beyond AUC as an Excellent Evaluation Metric

Multiple metrics apply to hyperspectral anomaly detector evaluation; one of the most adopted ones is the Area
Under Curve (AUC). However, after closely investigating the reliability of AUC to evaluate different anomaly
detection algorithms, it was observed that a higher AUC score does not necessarily mean better performance.

The algorithmic results summarized in Figures 7 and 8 can be used to illustrate the issue. As described above,
the binarized images indicate anomalous pixels with pixel intensity values of one. In both images the Ground
Truth anomalous pixel positions are given in the right-most image. The other images contain the output of other
algorithms with their respective AUCs indicated below. The figures demonstrate that having more false positives
could mean a higher AUC score. This is readily apparent in Figure 8. Figure 8a has more false positives than
Figure 8b, yet it has a much better AUC score. This demonstrates that consideration of AUC score alone is not
recommended for Hyperspectral Anomaly Detection algorithmic evaluation.

These conclusions above can be supported by considering the characteristics of the expected imagery. Hy-
perspectral images have severe imbalances, with most of the pixels belonging to one class and a limited number
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Figure 7. A higher AUC score does not necessarily mean better performance. Subfigures 7b and 7c have more
false positives compared with 7a, yet they have a higher ROC AUC score for the ABU-Airport-I image.

belonging to the other. Specifically, the HSI anomaly detector developed in this paper results in two classes; a mi-
nority class representing anomalies and a majority class representing non-anomalous objects. This is problematic
because a small number of incorrect or correct predictions can lead to a significant change in the AUC score.!?
Figures 7 and 8 illustrate this and demonstrate that ROC AUC is not a reliable way to evaluate classification
tasks when there is a class imbalance.
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(a) AUC = 0.9484 (b) AUC = 0.8385 (c¢) Ground Truth
Figure 8: A higher AUC score does not necessarily mean better performance: 8a has more false positives than
8b, but the latter has a smaller ROC AUC score for the ABU-Airport-II image.

If we examine the Equations (4) and (5) used to create the ROC AUC shown below, we can also provide
additional support the AUC issue.

TP
TPR= ———— 4
B=7p 1 FN )
FP
FPR= —————
B=aniFp (5)

Note that in Equations ( 4) and ( 5) TPR is the True Positive Rate, FPR is the False Positive Rate, TP
is the actual positives that were predicted as positives. TN represents actual negatives that were predicted
as negatives. FP are actual negatives that were predicted as positives. FN are the actual positives that were
predicted as negatives.

Examine equation 5, and note that FPR contains TN in the denominator. In most anomaly detection
applications, TN is a very large number when compared to FP. The implication is that FPR would be a relatively
small number and the corresponding AUC score would be high simply because AUC pays more attention to the
majority class.



4.3 Using Classification metrics

Figure 5 shows a comparison between the raw AED output shown in Figure 5a and the binarized AED output
shown in Figure 5b. It shows that binarized 5b is user-friendly and easier to visualize and understand the scene’s
implications. The image is cleaner and readily conveys the data indicating lower false positives did not result in a
better AUC score. Therefore the need for a better evaluation method for Anomaly Detectors is clearly apparent.

Since hyperspectral anomaly detection is a binary classification task that does not need prior knowledge
about what is defined to be an anomaly,* traditional classification evaluation metrics can be utilized to evaluate
anomaly detectors as long as their output is a binary image map. Some of the algorithms we used do not output
binary images. Thus we used 97" percentile binarization method to convert the output of these algorithms into
a binary image.

Once the output of all algorithms has been converted into a binary image, classical classification evaluation
metrics could be applied to evaluate those methods. A good example of those metrics is the F1 score, which
gives the overall performance by highlighting the trade-off between precision and recall.

The reason behind choosing precision and recall is that they make it possible to evaluate the performance of a
classifier on minority classes.?’ This becomes obvious after looking at the equations for Precision and Recall
shown in equations 6 and 7 :

. TP
Precision = m (6)
TP
Recall = m (7)

Where TP is the actual positives that were predicted as positives. FP are actual negatives that were predicted
as positives. FN are actual positives that were predicted as negatives. This makes precision and recall better
suitable for highly skewed data where ROC provides an extremely optimistic evaluation for the performance.?!

The F1 score is a harmonic mean of precision and recall. It is a more balanced method to measure model
performance.

Precision x Recall
F1_ =2 8
seore ¥ Precision + Recall (8)

Because of class imbalance, the general F1 score will not give us the perfect insight into algorithmic per-
formance. With the need for different metrics understood, we used the macro-averaged F1 score (or Fl-macro
score). It is computed using the arithmetic mean (aka unweighted mean) of all the per-class F1 scores. Here, N
is the number of classes, in our case, two.

N
Y oneq Fl_scorey,

F1_ =
macro ~ 9)

4.4 Performance Comparison

Table 2: F1 Score comparison between individual algorithms and Proposed Ensemble method

H Anomaly Detector ABU-Airport-I ABU-Airport-II  ABU-Airport-IIT  ABU-Airport-I1V H
Binarized AED 0.78 0.65 0.71 0.61
Binarized KIFOREST 0.68 0.68 0.70 0.63
Binarized LSUNRSORAD 0.69 0.61 0.72 0.57
Binarized Abundances 0.67 0.75 0.76 0.74
HUE-AD 0.79 0.77 0.77 0.67

Table 2 summarizes the performance of individual methods and our ensemble method. The data indicates
the hyperspectral unmixing-based ensemble method performs better in the majority of the cases. We have



Table 3: F1 Score comparison between Other Algorithms

H Anomaly Detector ABU-Airport-I ABU-Airport-II  ABU-Airport-IIT  ABU-Airport-I1V H
Binarized CSD?? 0.59 0.59 0.65 0.59
Binarized FCBAD? 0.61 0.60 0.61 0.62
Binarized GMRX?* 0.59 0.57 0.55 0.61
Binarized KRX? 0.56 0.66 0.67 0.60
Binarized RX 0.58 0.59 0.65 0.60

considered some other methods as the input for our ensemble methods. However, they did not perform as well as
the methods used in the ensemble method developed in this treatment. Their results are summarized in Table 3
for completeness.

This paper mentions a few state-of-the-art (SOTA) anomaly detectors, and these methods do not always
perform well. Therefore we developed and present an ensemble model that performs better than each of those
SOTA anomaly detectors Individually. Those SOTA anomaly detectors were chosen based on the performance
recorded in Tables 2 and 3. Table 3 contains a performance comparison between other Anomaly Detectors that
were not chosen to be part of the ensemble method. By comparing the algorithms in Table 2 and Table 3, it is
clear that the chosen algorithms outperform those in Table 3. After looking at Table 3, one might wonder why
KRX was not chosen, eventhough it performes well. The reason is that KRX is computationally expensive and
requires a large amount of memory depending on the size of the hyperspectral image. This has led to choosing
LSUNRSORAD over it, as both have comparable F1 scores.

Table 4: F1 Score comparison between 95" percentile and 97" percentile

H Anomaly Detector ABU-Airport-I ABU-Airport-I  ABU-Airport-III  ABU-Airport-IV H
AED with 95" percentile 0.78 0.65 0.71 0.63
AED with 97*" percentile 0.78 0.65 0.71 0.61
KIFOREST with 95" per- 0.65 0.65 0.68 0.61
centile
KIFOREST with 97" per- 0.68 0.68 0.70 0.63
centile
LSUNROD with 95 per- 0.65 0.58 0.69 0.56
centile
LSUNROD with 97" per- 0.69 0.61 0.72 0.57
centile
KRX with 95" percentile 0.56 0.67 0.64 0.67
KRX with 97" percentile 0.56 0.66 0.67 0.60

4.5 Visual Comparison

The images in Figures 9 and 10 highlight the visual differences. Figures 9 and 10 both demonstrate how the
unmixing-based ensemble method outperforms each of the SOTA Anomaly Detectors individually.
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(e) Ours w/out abundances (f) Ours with abundances (g) Ground truth
Figure 9: Comparison between different methods and our proposed ensemble method using ABU-Airport-I

(c) KIFOREST (d) Abundances

(e) Ours w/out abundances  (f) Ours with abundances (g) Ground truth
Figure 10: Comparison between different methods and our proposed ensemble method using ABU-Airport-II
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5. CONCLUSION

This paper describes a hyperspectral unmixing-based anomaly detector approach that classifies anomalous pixels
without prior knowledge. This ensemble anomaly detector method works with abundance (target spectra) and
performs better than other state-of-the-art methods. The results demonstrate that including hyperspectral
unmixing in the ensemble improves algorithmic performance, stabilizes, and produces robust results beyond
individual implementations. Additionally, this paper presents results that do not support the use of AUC ROC
as an evaluation method for anomaly detectors because, in the case of anomaly detection, there is an imbalance
between the two classes, and AUC does not focus on the minority class, which in this case, is the anomaly
class. This paper recommends using the Fl-macro score, however, in order to use the F1 score, the output of
the algorithms needs to have discrete or binary values. There are many well-performing algorithms for anomaly
detection tasks, but many do not output a binary image map. This paper utilizes the 97*" percentile thresholding
method to convert the output of anomaly detectors into a binary image and then evaluates the performance of
all algorithms using the F1 score.
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