IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON FUTURE NETWORKS: ARCHITECTURES, PROTOCOLS, AND APPLICATIONS

Received January 29, 2017, accepted February 14, 2017, date of publication January 4, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2789330

A Secure Link State Routing Protocol for NDN

LAN WANG 1, (Senior Member, IEEE), VINCE LEHMAN?, A. K. M. MAHMUDUL HOQUE3,
BEICHUAN ZHANG#, YINGDI YU5, AND LIXIA ZHANGS, (Life Fellow, IEEE)

I'The University of Memphis, Memphis, TN 38152, USA
2ReTrans, Memphis, TN 38120, USA

3 Amazon, Toronto, ON M5J 0A1, Canada

4The University of Arizona, Tucson, AZ 85721, USA
SFacebook, Menlo Park, CA 94025, USA

(’Universily of California, Los Angeles, CA 90095, USA

Corresponding author: Lan Wang (lanwang @mempbhis.edu)

This work was supported by NSF under Grant 1040036, Grant 1039615, Grant 1040868, Grant 1344495, Grant 1345142, Grant 1345318,

Grant 1629009, Grant 1629769, and Grant 1629922.

ABSTRACT The Named-data Link State Routing protocol (NLSR) is a protocol for intra-domain routing
in Named Data Networking (NDN). It is an application level protocol similar to many IP routing protocols,
but NLSR uses NDN’s interest/data packets to disseminate routing updates, directly benefiting from NDN’s
built-in data authenticity. The NLSR design, which was first developed in 2013 and deployed on the NDN test
bed in August 2014, has undergone significant changes. Following an application-driven design approach,
NLSR’s development helped drive the development of the trust/security functionality of NDN libraries as
well as a number of features in NDN’s forwarding daemon and ChronoSync. In this paper, we describe the
current design and implementation of NLSR, with emphasis on those features that differentiate it from an
IP-based link state routing protocol: 1) naming: a hierarchical naming scheme for routers, keys, and routing
updates; 2) security: a hierarchical trust model for routing within a single administrative domain; 3) routing
information dissemination: using ChronoSync to disseminate routing updates; and 4) multipath routing: a
simple way to calculate and rank multiple forwarding options. Although NLSR is designed in the context
of a single domain, its design patterns may offer a useful reference for future development of inter-domain

routing protocols.

INDEX TERMS Routing protocols, next generation networking, computer security.

I. INTRODUCTION

Named Data Networking (NDN) [1]-[3] is an information-
centric Internet architecture addressing network usage and
unsolved problems in the existing TCP/IP Internet. NDN
changes the network service model from ‘‘delivering packets
from one endpoint to another” to “fetching named data™.
By explicitly naming and signing data and by maintaining a
stateful forwarding plane [4], NDN provides several desirable
functions that are difficult to realize in IP, such as in-network
caching, multicast delivery, multi-path forwarding, and data
provenance.

An NDN routing protocol propagates routing updates and
computes routes to name prefixes. Because NDN names are
hierarchically structured and NDN’s forwarding semantic is
a superset of IP’s, NDN’s best route computation can use
any of the routing algorithms that work for IP, e.g., link-
state or distance-vector. However, an NDN routing protocol
must be able to offer multiple next hops for packet forwarding
to support NDN’s multipath forwarding, where the multiple

paths can be toward either one data producer or multi-
ple producers of the same data.! Moreover, the protocol
needs to propagate the reachability of name prefixes instead
of IP address prefixes, and most importantly, use NDN’s
Interest and Data packets to exchange routing information
instead of IP packets. Doing so also allows the routing
protocol to benefit from NDN’s built-in data authentication
capability.

This paper describes the design and implementation of the
Named-data Link State Routing protocol (NLSR), an intra-
domain routing protocol for NDN. Since we sketched out
the initial design of NLSR in 2013 [5], the design has gone
through substantial revisions over the last four years as we
gain deeper understandings of both NDN and NDN applica-
tion development approaches through real implementations

IThere is a difference between the two architectures’ semantic in prefix
reachability that needs to be taken into account in the routing protocol design
(see [1, Sec. 4.1] and Section II-C of this paper).

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

10470 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7925-7957

L. Wang et al.: Secure Link State Routing Protocol for NDN

IEEE Access

and experimentation. Our goal in this paper is both to demon-
strate the feasibility and benefits of building a routing proto-
col using NDN and to share our experience and observations
with the community at large.

NLSR differs from IP-based link-state routing protocols in
the following three major ways.

A. NAMING

NLSR uses hierarchically structured names to identify
routers, routing processes, routing data, and keys as the rela-
tionship among them is inherently hierarchical. This design
approach not only facilitates routing security (see below),
but also allows NLSR to use all types of communication
channels, e.g., Ethernet, IP, TCP/UDP tunnels, in the same
way, as it has no dependency on specific types of addresses.
In contrast, IP-based link-state protocols such as OSPF [6]
typically use one of the addresses of a router, e.g., the small-
est IP address, as its identifier. This approach has several
drawbacks. First, it introduces a dependency on a particular
type of addresses that are often embedded in router configura-
tion and other management functions. Second, the identifier
is unstable, i.e., it changes as the address changes. Third,
the identifier lacks context information, which is important
for security and management. Furthermore, these protocols
do not explicitly name their routing processes, routing data,
and keys. Without meaningful names identifying these enti-
ties and their relationships, it is much more difficult to mon-
itor the routing system and diagnose its problems.

B. SECURITY

Since every NLSR routing message is carried in an NDN data
packet containing a signature, a router can verify the signature
of each routing message to ensure that it was generated by
the claimed origin router and was not tampered with during
dissemination. We devised a hierarchical trust model for rout-
ing within a single domain, based on common management
structures and operational practices in a domain, to verify the
keys used to sign the routing messages. The names in NLSR
reflect the relationship among routing entities, enabling the
use of NDN trust schemas [7] to automatically derive signing
key names and verify received routing updates, which is
implemented in NLSR.

C. MULTI-PATH FORWARDING

While IP either uses a single best next-hop to forward pack-
ets or limits its forwarding to multiple equal-cost paths in
order to avoid forwarding loops, NDN can utilize multiple
paths freely because it has built-in loop detection in the
forwarding process. NLSR builds FIB entries with multiple
next hops for each name prefix, even if the name prefix is
originated by a single router.

In the remainder of this paper, we first introduce basic
NDN concepts and discuss related work in Section II.
We then articulate the rationales behind our design choices
on naming, trust, LSA dissemination, and multipath routing
calculation (Section III). We also present implementation

VOLUME 6, 2018

details (Section IV) and experiment results (Section V),
as well as share the lessons from our development and
deployment (Section VI). Finally, Section VII concludes our
work.

Il. BACKGROUND AND RELATED WORK

A. NAMED DATA NETWORKING (NDN)

Communication in NDN is driven by receivers, i.e., data con-
sumers, through the exchange of two types of packets: Infer-
est and Data. A consumer puts the name of a desired piece
of data into an Interest packet and sends it to the network.
When a router receives the Interest, the router first checks
the Content Store (CS), which contains previously received
Data, for any matching data. If the matching Data packet
is found, it is sent back on the incoming interface on which
the Interest was received. Otherwise, the router examines the
Pending Interest Table (PIT). If there exists an entry with the
same name as the newly received Interest, the new incoming
interface is added to the interface list so that a copy of the
matching Data packet can be sent on all interfaces from which
the Interest packets arrived. Finally, if the Interest does not
have a matching PIT entry, it is forwarded to the next hop(s).
Once the Interest reaches a node that has the requested data,
the Data packet is returned. With the help of the PIT entries,
this Data packet follows the reverse path of each pending
Interest back to the requesting consumer.

Compared to IP routing, NDN’s stateful forwarding plane
changes the basic relationship between routing and forward-
ing [8] — forwarding decisions are made based on not only the
routes and route ranking produced by the routing protocol but
also a few other factors. More specifically, by maintaining a
PIT, the forwarding plane can measure the performance (e.g.,
RTT) of each next hop in retrieving data. When multiple next
hops exist in the FIB entry for an Interest, a “forwarding
strategy”’ matching the Interest’s name decides which next
hop(s) will be used in forwarding the Interest based on routing
ranking, forwarding plane measurements, and local policies.
Note that the routing protocol’s ranking of available next
hops is still important in forwarding the initial Interest to
a name prefix before measurement results are collected and
for exploring alternative routes when the route in use fails to
retrieve data [8].

B. EVOLUTION OF NLSR

The NLSR design has evolved significantly over the last few
years since its first design sketch in 2013 [5]. The earlier
design used the Sync mechanism provided by CCNx [9]
to distribute Link State Advertisements (LSAs) between
routers. However, during extensive testing on an 12-node
testbed, we identified several problems with the CCNx
sync/repo implementation including high memory consump-
tion, inability to delete information from the repo, and failure
to notify NLSR of routing changes when the update rate
is high. These problems prevented us from deploying that
version of NLSR on the NDN testbed in 2013.

10471

IEEE Access

L. Wang et al.: Secure Link State Routing Protocol for NDN

As a new NDN platform [10] with a new forwarder and
libraries was developed in 2014, we redesigned and reim-
plemented NLSR to work on the new platform. Several
major design changes have significantly improved the per-
formance of NLSR including using ChronoSync [11] to dis-
tribute LSAs, advertising all the name prefixes originated
by a router in one name LSA, and detecting link failures
using forwarding plane notifications (see Section III-G for
more information). The new NLSR implementation [12] was
released and deployed on the inter-continental NDN testbed
in August 2014.

C. RELATED WORK

The routing protocol proposed by Dai et al. [13] looks similar
to NLSR on the surface, but it differs from NLSR in the
following important aspects. First, it is not designed to run
in an ICN (Information Centric Networking)/NDN network;
instead, it uses IP packets to deliver routing updates and
did not address routing security. Second, and related, it uses
OSPF as is to collect the topology and compute shortest path
while NLSR uses ChronoSync to disseminate LSAs. Thus
it inherits OSPF’s problems (e.g., lack of naming for man-
agement and security, and computing only equal-cost mul-
tiple paths to each destination). In addition, the ChronoSync
approach is receiver-driven, meaning that a router will request
for LSA content when it has cycles. Thus it is less likely a
router will be overwhelmed by a flurry of updates. Third,
the multi-path forwarding function in Dai et al.’s protocol
is limited to contents announced by multiple producers only,
e.g., supporting anycast among a number of server replicas,
while NLSR can forward Interest packets along multiple
paths toward either the same producer or multiple producers
of the same data.

Several NDN/ICN routing protocols were developed after
our initial NLSR design [5] was published. Link State Con-
tent Routing (LSCR [14]) and Distance-based Content Rout-
ing (DCR [15]) aim to avoid permanent routing loops and to
outperform traditional routing protocols when a name prefix
is replicated at multiple sites in the network. LSCR dissemi-
nates adjacency information in the same way as IP link-state
routing does but propagates prefix information selectively —
among multiple instances of a prefix, a router will propagate
only the nearest instance to its neighbors. DCR provides name
prefix reachability without routers knowing the complete net-
work topology. DCR uses distance information to calculate
paths to prefixes, and similar to LSCR, does not propagate
information about all the name prefix replicas in the network.

One common problem in LSCR and DCR is that selec-
tive forwarding of routing advertisements may cause some
data to be unreachable. In NDN, announcing a name
prefix to the network simply means that the announcer pos-
sesses some data under this name space but not necessar-
ily all the data under it; NDN’s adaptive forwarding plane
can try alternative paths to retrieve all desired data. For
example, an NDN router advertising the /com/cnn prefix
may be able to obtain data under /com/cnn/sports and

10472

/com/cnn/entertainment, but not all the data with
the /com/cnn prefix. In contrast, an IP router advertis-
ing an address prefix means that it can reach all the nodes
under that address prefix. This semantic difference means
that an NDN router needs to propagate advertisements for
the same name prefix originated by different nodes to ensure
data retrieval (see [1, Sec. 4.1]). Furthermore, the selective
prefix advertisement saves bandwidth and CPU only when
a router advertises each prefix in a separate Data packet.
Although [14] and [15] compared favorably with our orig-
inal NLSR design [5], which advertises each name prefix
in a separate LSA, those results are no longer relevant as
the current NLSR advertises all the prefixes originated by
a router in a single LSA. The original design was based on
the concern of having to fragment LSA data when the list
of prefixes gets large. However, since NLSR is designed for
intra-domain routing, the list of prefixes originated by each
router should be usually small enough to fit into a single Data
packet (8800 bytes by default in the current NDN platform
implementation) in most cases. Therefore, we changed the
design to reduce the number of LSA data packets.

Ill. DESIGN

As a link-state protocol, NLSR’s basic functionality is to
discover adjacencies and disseminate both connectivity and
name prefix information. Such functionality may appear to be
straight-forward to design and implement. However, because
NLSR uses NDN'’s Interest and Data packets to propagate
routing updates, the design must shift away from the familiar
concept of pushing packets to given IP addresses (i.e., any
node can send any packet to any other node). Instead, one
must think in terms of data names and data retrieval.

More specifically, we need a systematic naming scheme for
routers and routing updates (Section III-A). We also need to
retrieve routing updates promptly without a priori knowledge
of when an update may be generated, since a topology or
name prefix change can happen any time (Section III-C).
In terms of routing functionality, NLSR distinguishes itself
from previous link-state routing protocols in two aspects:
(a) providing multiple next hops for each name prefix instead
of a single one; and (b) signing and verifying all LSAs to
ensure that each router can originate only its own prefix
and connectivity information. We present our trust model in
Section III-D and route calculation algorithm in Section III-E.

A. HIERARCHICAL NAMING SCHEME

Perhaps the most important piece in our design is a proper
naming scheme for each element in the routing system and its
corresponding public key, which supports a variety of func-
tionality such as automatic routing data validation, system
configuration, and problem diagnosis. Based on the current
network structures and operational practices, a hierarchical
naming scheme best captures the relationship among various
components in the system, thus making it easy to identify
routers belonging to the same network, messages generated
by a given routing process, and keys for each entity.

VOLUME 6, 2018

L. Wang et al.: Secure Link State Routing Protocol for NDN

IEEE Access

In our design, each router is named according to the
network it resides in, the specific site it belongs to, as well as
an assigned router identifier, i.e., /(network)/(site)/(router).
The (router) component contains two parts: a router
tag and a router label, e.g., $Cl.Router/router3
(%C1 is a command marker indicating this is a spe-
cial name component). For example, an ATT router in
a PoP (point of presence) in Atlanta may be named
/ATT/Atlanta/%Cl.Router/router3. This way,
we know that if two routers share the same /(network) prefix,
they belong to the same network; and if they share the same
/(network)/(site) prefix, they belong to the same site. This
naming scheme makes it easy to filter out erroneous routing
messages. The NLSR process on a router has the router’s
name as its prefix, i.e., /(network)/(site)/(router)/NLSR. This
name is used in periodic hello messages between adjacent
NLSR routers to detect the failure of either links or routing
processes themselves (Section III-F).

OSPF and other traditional routing protocols also need to
identify routers and neighbors, but they do not have such
a systematic naming scheme to identify each entity in the
routing system and their relationships. Moreover, their router
identifier, e.g., the Router ID in OSPF, is usually selected
from the addresses owned by each router, which lacks contex-
tual and semantic information, changes whenever the router’s
address changes, and makes the routing protocol’s operations
dependent on a particular address type.

B. NAMING AND FORMAT OF LSAs

As in other link-state routing protocols, every router in NLSR
collects connectivity and reachability information through
Link State Advertisements (LSA). More specifically, a router
advertises its links to neighboring NLSR routers in an Adja-
cency LSA and its name prefixes in a Name LSA. Note that
the reachability here refers to name prefixes (not address
prefixes) that a router or its directly connected nodes can
reach. In other words, they either produce or host content
with names that fall under the advertised name prefixes.

Each LSA has the name /localhop/(network)/NLSR/LSA/
(site)/(router)/(lsa-type)/(version). The first component con-
tains a name used for scope control — the localhop scope
limits an LSA Interest/Data packet to be forwarded to the
immediate nexthops only (no further propagation). Since
every node sends an Interest to retrieve each LSA, there
is no need to propagate any LSA Interest beyond a node’s
immediate neighbors. The (Isa-type) component can be
name or adjacency. The (router) component identifies the
router that originates the LSA. The (version) component of an
LSA isincreased by 1 whenever a router creates a new version
of the LSA.

The LSA format is shown in Figure 1. A Name LSA con-
tains all the name prefixes registered locally with NLSR and
those injected by connected end hosts. An Adjacency LSA
contains all the active links of a router, each associated with
a neighboring router’s name and a link cost. It is created at
router startup time and whenever there is any status change

VOLUME 6, 2018

Name LSA Adjacency LSA
Nlocalhop/<network>/NLSR/LSA/ flocalhop/<network>/NLSR/LSA/
humber of prefixes number of adjacencies
hame prefix 1 neighbor 1, cost 1
name prefix n heighbor n, cost n
signature signature

FIGURE 1. LSA format.

in a router’s links, as detected by periodic “hello” messages
(Section III-F).

C. DISSEMINATION OF LSAs

Whenever a router establishes or removes an adjacency
with a neighboring router, it disseminates a new version
of its Adjacency LSA to the entire network. Moreover,
it advertises name prefixes from both static configuration
and dynamic registrations. Whenever any name prefix is
added or deleted, the router also disseminates a new Name
LSA. The latest versions of the LSAs are stored in a Link
State Database (LSDB) at each node. Upon receiving any
new LSA, each router recalculates its routes and updates the
FIB (Section III-E).

We consider the LSA dissemination problem as data syn-
chronization of the LSDBs. NLSR uses the ChronoSync pro-
tocol [11] to synchronize changes in the routers’” LSDBs.
ChronoSync maintains all the latest LSA names in each
LSDB as a name set and uses a hash of the name set as a
compact expression of the set. Routers running ChronoSync
use the hashes of their LSA name sets to detect the difference
in the sets. If a new LSA name is detected, ChronoSync
notifies NLSR to retrieve the corresponding LSA. Compared
to flooding a new LSA to the entire network in other link-
state protocols, this approach enables the separation between
the detection of new data names and NLSR’s data retrieval,
meaning that a router can request LSAs when it has CPU
cycles. Thus, it is less likely a router will be overwhelmed
by a flurry of updates.

IP-based link-state routing protocols such as OSPF and
IS-IS [16] also have mechanisms to compare the LSDBs of
two neighboring routers. Typically, the routers send sum-
maries containing identifiers of the LSAs in their LSDBs to
each other. If a router detects a difference, it will either request
the different LSA from the neighbor or send its own LSA.
ChronoSync is much more efficient in this regard — only one
hash, instead of all the LSA names, is exchanged among the
nodes. More importantly, because ChronoSync, or Sync in
general, already provides the functionality to compare two
data sets, NLSR does not have to reinvent the wheel, which
makes the routing protocol design much simpler.

Figure 2 shows how an LSA is disseminated in the network.
To synchronize the digest tree representing the LSAs in the

10473

IEEE Access

L. Wang et al.: Secure Link State Routing Protocol for NDN

NLSR Chronosync | |

1. Sync Interest: /<sync-prefix>/d1

|| Chronosync NLSR

A

2. Sync Interest: /<sync-prefix>/d1

> LSDB Digest d1

3. Sync Reply: /<sync-prefix>/d1 Insert

LSA Added

LSDB Digest d7 Notify | Lontent: LSA's name /localhop/ndn/NLSR/LSA/memphis/%C1.Router/B/1
- «
<

4. Sync Interest: /<sync-prefix>/d2

5. Sync Interest: /<sync-prefix>/d2

6. LSA Interest: /localhop/ndn/NLSR/LSA/memphis/%C1.Router/B/1

LSDB Digest d2

7.LSAData: /localhop/ndn/NLSR/LSA/memphis/%C1.Router/B/1

Router A

FIGURE 2. LSA dissemination via ChronoSync.

LSDB, the ChronoSync protocol on each node periodically
sends Sync Interests with the hash of all the LSA names in
its LSDB to all the other nodes (step 1 and 2). Note that
NDN aggregates Interests with the same name into one PIT
entry and forwards only one of them, so there is at most one
Sync Interest pending on each link in each direction when
all the nodes are synchronized. When an LSA is added to
B’s LSDB, the LSA name is updated in B’s LSA name set.
ChronoSync responds to the Sync Interest from A with a
Sync Data packet containing the new LSA name (step 3).
A’s ChronoSync receives the Sync Data, notifies NLSR of the
new LSA name, and updates its LSA name set. Both B and A
compute a new hash for the set and send a new Sync Interest
with the new hash (step 4 and 5). Since the NLSR process
on A has been notified of the new LSA name, NLSR sends
an LSA Interest to retrieve this LSA (step 6). B responds to
this Interest with the requested LSA data (step 7). When A’s
NLSR receives the LSA data, it inserts the LSA into its LSDB.
Now both routers’ LSDBs are synchronized.?

Because link-state routing relies on LSAs to bootstrap
routing calculation, it has no way to calculate routes for
the LSA interests. Therefore, the name prefix of LSAs
(/localhop/(network)/NLSR/LSA) is configured with a mul-
ticast forwarding strategy that allows the Inferest for an
LSA to be forwarded to all the neighbors of a node. If any
of the neighbors have a copy of the LSA in its Content
Store or NLSR process, the neighbor will return it. Otherwise,
the Interest is discarded due to the localhop scope restriction.

In order to remove obsolete LSAs caused by router crashes,
every router periodically refreshes each of its own LSAs by
generating a newer version. When the new version of an
LSA is received, any earlier version is removed from the
LSDB. Moreover, every LSA has a lifetime associated with
it and will be removed from the LSDB when the lifetime
expires, which means that if a router crashes, its LSAs will
not persist in other routers’ LSDBs. Note that after the router
crashes, its neighbors will update the status of their LSAs so
traffic will not be directed over those links connected to the

2Please see [11] for details about ChronoSync (e.g., hash calculation and
difference resolution).

10474

Router B

crashed router. Therefore, correct routing does not rely on the
periodic refreshes and LSA lifetime to remove the obsolete
LSAs. However, having an LSDB mostly free of obsolete
LSAs can still help management and problem diagnosis.
As such, the LSA lifetime and refresh period should be set to
a relatively long interval, e.g., on the order of hours or even
days, to reduce the associated message and processing
overhead.

D. SECURITY

Every NDN Data packet is digitally signed and the signature
is part of the Data packet. The signature covers the name,
the content, and the metadata for signature verification. One
piece of the metadata is the key locator [17], which indicates
the name of the public key used to sign the packet. The data
consumer can fetch the key to verify the signature [3]. It also
needs to verify that the key is trusted to sign the LSA, which
requires a trust model for key authentication. NDN uses pub-
lic keys, certificates, and local trust anchors extensively for
data and key authentication, following a distributed security
model proposed in SDSI [18].

‘ operator1 ‘

‘ operator3 ‘

‘ operator2 ‘

I | I |
‘routeﬂ ‘ ‘routerz‘ ‘router3‘ ‘router4‘ ‘routerS‘ ‘routere‘ ‘router7

[NLSR | [NLSR | [NLSR | [NLSR | [NLSR | [NLSR | [NLSR

FIGURE 3. NLSR trust hierarchy.

1) TRUST MODEL

NLSR uses a five-level hierarchical trust model reflecting
the administrative structure of an intra-domain routing pro-
tocol, as shown in Figure 3. At the top level, there is a
root authority local to the network, called the trust anchor,
which is responsible for issuing certificates to the sites, e.g.,
departments in an organization or PoPs in an ISP. Each site

VOLUME 6, 2018

L. Wang et al.: Secure Link State Routing Protocol for NDN

IEEE Access

39 type name 74 key-locator
Isecurity 40 regex " ["<NLSR><LSA>] *<NLSR>< 75 {
2 { LSA> 76 type name
3 wvalidator 41 } 7 hyper-relation
4 | 2 checker 78 {
5 rule 43 { 79 k-regex " (["<KEY><%Cl.
6 { 44 type customized Operator>]«*)<%Cl.
7 id "NLSR Hello Rule" 45 sig-type rsa-sha256 Operator>["<KEY>] x<KEY
8 for data 46 key-locator ><>$
9 filter 47 { 80 k-expand \\1
10 { 48 type name 81 h-relation equal
11 type name 49 hyper-relation 82 p-regex (["<KEY><%Cl.
12 regex [<NLSR><INFO>]*<NLSR>< 50 { Router>]*)<%Cl.Router
INFO><><>$ 51 k-regex " (["<KEY><NLSR>])< >["<KEY>] *<KEY><><><>$

13 } NLSR><KEY><>$ 83 p-expand \\1
14 checker 52 k—expand \\1 84 }
15 { 53 h-relation equal 85 }
16 type customized 54 p-regex “<localhop>([“<NLSR 86 }
17 sig-type rsa-sha256 ><LSA>]) <NLSR><LSA 87 }
18 key-locator > (<>%) <><><><>S 88
19 { 55 p-expand \\1\\2 89 rule
20 type name 56 } 90 {
21 hyper-relation 57 } 91 id "NLSR Hierarchical Rule"
22 { 58 } 92 for data
23 k-regex " (["<KEY><NLSR>]x*)< 59 } 93 filter

NLSR><KEY><>$ 60 94 {
24 k-expand \\1 61 rule 95 type name
25 h-relation equal 62 { 96 regex " ["<KEY>]*<KEY><><><>$
26 p-regex " (["<NLSR><INFO>]x*) 63 id "NLSR Hierarchy Exception Rule 97 }

<NLSR><INFO><><>$ " 98 checker
27 p-expand \\1 64 for data 99 {
28 } 65 filter 100 type hierarchical
29 } 66 { 101 sig-type rsa-sha256
30 } 67 type name 102 }
31 } 68 regex " ["<KEY><%Cl.Router>]*<% 103 }
32 Cl.Router>[" <KEY><NLSR>] *x< 104
33 rule KEY><><><>$ 105 trust-anchor
34 { 69 } 106 {
35 id "NLSR LSA Rule" 70 checker 107 type file
36 for data 71 { 108 file-name "root.cert"
37 filter 72 type customized 109 }
38 { 73 sig-type rsa-sha256 1o}

Listing 1. Schema for hello and LSA validation.

TABLE 1. Key and data names.

Key/Data Name

Network Key | /<network>/KEY/<key>

Site Key /<network>/<site>/KEY/<key>

Operator Key | /<network>/<site>/<operator>/KEY/<key>

Router Key /<network >/<site>/<router>/KEY/<key>

NLSR Key /<network>/<site>/<router>/NLSR/KEY/<key>

LSA Data /localhop/<network>/NLSR/LSA/<site>/<router>/<Isa-
type>

has one or more operators who collectively manage a number
of routers belonging to a site. Each router can create an NLSR
routing process that produces LSAs. This hierarchical trust
model enables one to establish a chain of keys to authenticate
LSAs —an LSA must be signed by a valid NLSR process run-
ning on the same router where the LSA originates. To become
a valid NLSR process, the process key must be signed by the
corresponding router key, which in turn should be signed by
one of the operators of the same site. Each site operator’s key
must be signed by the site key, which must be certified by the
trust anchor using its self-signed root key.

The name of a key explicitly expresses the role that the
key plays in the system, as shown in Table 1.3 The trust

3Both routers and operators have names under /<network>/<site>/.
To differentiate between router keys and operator keys, we use differ-
ent tags in their names — the <router> component contains a router tag,
%$C1.Router, and a router label, while the <operator> component contains
an operator tag, $C1.Operator, and an operator label.

VOLUME 6, 2018

relationship between these keys can be expressed using a trust
schema [7] as shown in Listing 1, which limits the privilege
of each key to a small scope. For example, an operator can
only certify routers belonging to his own site — any other
keys certified by the operator will be treated as invalid. The
restricted privilege limits the impact of key compromise.
Moreover, the multi-level key hierarchy reduces the use of
each key, further mitigating the risk of key exposure.

2) KEY RETRIEVAL

In NDN, a public key is simply another type of data and can be
retrieved using Interest/Data exchange similar to how LSAs
are retrieved (Section III-C). In other words, a router can
express an Interest with a key name to retrieve the key.* The
network will forward the Interest towards the data containing
the corresponding public key. However, because one must be
able to retrieve keys to verify routing updates before routes
are established, NLSR requires a key retrieval mechanism
that does not rely on FIB entries, in the same way as LSA
retrieval is independent of routing. We use the DirectFetch
mechanism for this purpose — when a router receives an
LSA, it sends an Interest for the signing key back to the
face from which the LSA is received. Since the neighbor that

4Note that the last component of a key name is a KeyID that distinguishes
different keys with the same prefix, so that the name always matches a
specific key. By default, the KeyID is a hash of the key.

10475

IEEE Access

L. Wang et al.: Secure Link State Routing Protocol for NDN

sent the LSA has verified the data, it must have retrieved the
key which can satisfy the router’s Interest. Once the key is
received, the router can store it for future use to avoid fetching
it again.

The above process is repeated multiple times to retrieve
all the keys up to the trust root following the trust model
described in Figure 3 in order to verify the LSA signing
key (i.e., NLSR process key). To speed up the key fetch-
ing and verification process, the router that originated the
LSA can package all the keys in a “Key Bundle” and
other routers can fetch the Key Bundle instead of individual
keys.

E. MULTIPATH CALCULATION

Based on the information available in the Adjacency LSAs,
each NLSR node builds a network topology. It then runs the
following simple extension of Dijkstra’s algorithm to produce
multiple next hops to reach each node. It first removes all
immediately adjacent links except one and uses Dijktra’s
algorithm to calculate the cost of using that link to reach
every node in this topology. This process is repeated for every
adjacent link. Afterwards, it ranks the next hops for each node
based on their cost to reach the node. Since we know which
name prefixes are associated with which nodes based on the
Name LSAs, we can obtain a list of next hops to reach each
name prefix.

Note that NLSR allows an operator to specify the maxi-
mum number of next hops per name prefix to insert into the
FIB, so that the FIB size can be limited when a node has many
neighbors. However, the computational cost is still controlled
by the total number of neighbors, since the algorithm goes
through all available next hops to produce the cost for each
next hop. We plan to investigate more efficient multipath
computation algorithms.

F. ADJACENCY ESTABLISHMENT

Before two NLSR routers can exchange their LSAs, they
first need to establish an adjacency between them. NLSR
sends periodic hello Interests with the name /(neighbor-
router)/NLSR/INFO/(this-router), at a default interval
of 60 seconds, to each neighboring node to detect its status.
If the neighbor responds to the Interest with Data signed
using the neighbor’s NLSR process key and the Data can be
validated based on the trust model, the neighbor is considered
up, or ACTIVE.?

If a hello Interest times out, NLSR will try sending the
Interest a few more times at short intervals in case the Interest
was lost. If there is no response from the neighbor during
this period, the adjacency with the neighbor is considered
down, or INACTIVE. Note that it is impossible to infer
whether the remote NLSR process has died or the link has
failed. However, in either case the link should not be used to

5The hello Data can carry information about the neighbor that allows
the node to adjust its operations accordingly. Although we do not currently
include such information, we plan to add this feature in the near future.

10476

forward traffic. Whenever the status of an adjacency changes,
NLSR rebuilds its Adjacency LSA and distributes it. It also
schedules a routing table calculation.

Note that NLSR continues to send periodic hello Interests
to the INACTIVE neighbor in case the problem is caused by a
link failure. When the link recovers, the two NLSR processes
will receive the next periodic hello Interests and the adjacency
will be set up accordingly.

If the neighboring NLSR process crashes and then recov-
ers, the neighbor will send a hello Interest and receive the cor-
responding hello Data. NLSR will also send a hello Interest
immediately after receiving the message from the INACTIVE
neighbor, rather than waiting to send the next scheduled hello
Interest, in order to speed up the adjacency establishment.
Figure 4 illustrates how Node A detects an adjacency failure
with Node C and a recovery with Node B.

Router C Router A Router B
/ndn/mem/C /ndn/mem/A /ndn/mem/B

| NLSR NFD |

| NLSR NFD | NLSR NFD

, terest
ello” intereSt

e el
i est
spello” inter ndn/me! i
e el + interest
ndn/m anello” interes T
ello” interest mdnme ranmen
™ “helio” data
m
han/me

Declare 'B' as alive

Declare 'C' as dead /ndn/mem/B/IsLg}?’;ﬁ?;;ndn/memm

i a Update Adjacency List

i b Update Adjacency LSA

i c. Install Adjacency LSAto LSDB

i d. Publish Sync update for LSA

i e. Schedule routing table calculation

“hello” interest
/ndn/mem/BINL. SRANF(O/ndn/mem7A >
“hello” data

FIGURE 4. Adjacency failure and recovery detection. T1 is the timeout for
receiving a hello Data packet after which the hello Interest is
retransmitted. Its default value is 1 second. The hello Interest is
retransmitted up to two times by default after the first timeout. T2 is the
interval between periodic hello Interests. Its default value is 60 seconds.
For brevity, we did not include the router tag in the Interest and Data
names.

NLSR also uses face event notifications from NFD (NDN’s
Forwarding Daemon) to quickly respond to a link failure.
When an interface to an adjacency is destroyed, NFD will
send to NLSR a Face Event Notification with a Face ID
corresponding to the interface. NLSR will use the Face ID
to find the adjacency which is reached through this interface,
mark the adjacency as INACTIVE, rebuild its Adjacency LSA,
and schedule a routing table calculation. When a face is
created, NLSR will also receive a notification so that it can
send a hello Interest to set up the adjacency.

G. SUMMARY OF DESIGN CHANGES
NLSR’s initial design was published in 2013 [5]. In the past
four years, we have made major changes to its design and

VOLUME 6, 2018

L. Wang et al.: Secure Link State Routing Protocol for NDN

IEEE Access

implementation, but we still find papers that refer to and com-
pare with the original design. A main reason for publishing
this paper is to highlight the changes and draw attention to
our current design.

One of the most important changes is replacing
CCNSync with ChronoSync. CCNSync was bundled with
CCNx’s Repo, and all the data CCNSync retrieved was stored
in the Repo and could not be deleted. This caused a memory
problem after running NLSR for some time. In contrast,
ChronoSync simply informs NLSR of new data names and
NLSR retrieves the data using the names. Since NLSR only
cares about the latest version of an LSA, it can discard earlier
versions of the LSA which eliminates the memory problems
associated with storing all LSAs.

Another major design change is to advertise all the name
prefixes originated by a router in one LSA. This means fewer
messages are required to collect the name prefix information.
If a router originates many name prefixes, the LSA may
exceed the default packet size in NDN. We have implemented
LSA segmentation to support large LSAs.

Furthermore, we also augmented the adjacency establish-
ment protocol to use face event notifications so that it can
react to link failures and recoveries much faster than relying
on hello interests alone, which by default are sent every
60 seconds.

Finally, we discovered that the unconstrained multicast
propagation of Sync interests and LS A interests caused exces-
sive number of duplicate NACKSs as they loop back to the
original routers that sent the interests. The NACKs also erased
the necessary PIT entries for the Sync interests causing the
Sync data packets carrying new LSA names to be delayed.
To address these problems, we added the /localhop scope to
the Sync and LSA interest names to limit their propagation to
the immediate neighbors only, thus eliminating the duplicate
NACKS and associated problems.

IV. IMPLEMENTATION

The current NLSR design is implemented in C++4 using
the ndn-cxx [19] library to run over NFD [20] (the initial
NLSR design was implemented in C using CCNx [5]). It is
open source [21]. Below we describe some implementation
details.

A. ADJACENCY ESTABLISHMENT PROTOCOL

There are three parameters in NLSR’s configuration file that
can be used to modify the behavior of the Adjacency Estab-
lishment Protocol. The Hello Interest Interval can be changed
to reduce or increase the frequency of periodic hello interests
(default is 60 seconds). The Hello Interest Timeout is used
to specify how long to wait for the Hello data packet before
retransmitting the interest. The default is 1 second as the
round-trip time between two neighboring routers in a network
is usually much less than 1 second. The Hello Interest Retry
Amount specifies the number of times the hello interest can
be resent before determining the adjacency to be down (the
default is 3 times including the first hello Interest).

VOLUME 6, 2018

B. LSA VERSION NUMBERS

The version number for each LSA increases by one after each
change. On start up, NLSR must use version numbers that are
larger than previously used for each LSA type. Otherwise,
other routers in the network will consider the LSAs as obso-
lete. To solve this problem, NLSR records the current version
number for each LSA type and writes them to a file whenever
a version number changes. When NLSR is initialized, it reads
these version numbers from the file and publishes its first
LSAs with version numbers larger than the recorded version
numbers.

C. ROUTING OPERATION DELAYS

Two parameters in the NLSR configuration file can be mod-
ified to balance performance with overhead. Each of the
parameters is used to control the timing of important routing
operations. The Adjacency LSA Build Interval configures the
delay after an Adjacency LSA build has been requested until
the LSA is actually built. A longer delay allows for multi-
ple adjacency changes to be aggregated into one Adjacency
LSA build, reducing the CPU overhead. On the other hand,
the shorter the delay, the faster the router can build an Adja-
cency LSA so that the network can use paths through its
up-to-date adjacencies. The default value is 5 seconds. The
Routing Calculation Interval is used to specify the delay after
a routing table calculation is scheduled until the routing table
is built. A longer wait time allows for multiple changes to
the LSDB to be aggregated into one calculation, but it also
means that the router cannot begin using updated paths until
the calculation is performed. The default value is 15 seconds.

D. SECURITY

Each key utilized by NLSR’s trust model, except the NLSR
process key, is created using the ndn-cxx [19] ndnsec tools.
A public/private key pair and corresponding certificate are
created for each key owner in the trust model hierarchy. The
certificate for each public key in the key pairs is signed by the
key owner one level higher in the hierarchy.

The NLSR process key is created automatically when
NLSR is initialized using the ndn-cxx security API directly.
On initialization, NLSR generates a key pair and gets the
certificate for the public key signed by the router’s private
key. The NLSR process uses its private key to sign hello
data and LSA data. Whenever NLSR is restarted, the new
NLSR process will generate a new key pair and create a new
certificate.

E. DYNAMIC NAME PREFIX ADVERTISEMENT

AND WITHDRAWAL

A network operator can specify a set of name prefixes to be
advertised by NLSR in the NLSR configuration file. NLSR
builds a Name LSA which includes the set of names and
advertises it to the network. To modify the advertised name
prefixes while the NLSR process is running, a command
Interest can be sent to NLSR to advertise or withdraw a
specific name prefix. The command Interest’s name contains

10477

IEEE Access

L. Wang et al.: Secure Link State Routing Protocol for NDN

the desired action, advertise or withdraw, as well as the name
prefix to be advertised or withdrawn. NLSR will construct
a new Name LSA accordingly and disseminate it to the
network.

V. EVALUATION

This section presents the evaluation results of NLSR in terms
of CPU processing time, routing convergence time, and for-
warding plane performance. All of our experiments were per-
formed using Mini-NDN [22], an NDN network emulation
tool based on Mininet [23]. In Mini-NDN, an entire network
topology can be run on a single machine, and each node in the
topology is executed in a container with its own resources.
The experiments were run on a server with a 2.7Ghz Intel
Xeon E5-2680 CPU.

A. SCENARIOS

Each experiment lasts 600 seconds. First, NLSR is started
on each router in the network and allowed to converge and
stabilize for 300 seconds. The next three events are designed
to test and evaluate the performance of NLSR in different
situations. At the 300-second mark, routers begin to refresh
their LSAs. Note that in order to test the protocol in a short
period of time, we set the refresh timer to be 300 seconds
instead of on the order of days. At 480 seconds, the most
connected node in the topology is brought down and remains
failed for 60 seconds. At 540 seconds, the previously failed
node is brought back up.

To evaluate forwarding performance under single-path and
multipath routing, we run the same scenario, except we run a
ping server on each host in the network and after two minutes,
perform one ping per second between each host in the net-
work for the remainder of the experiment. We generate ping
traffic using the ndnping utility [24]. In addition, to evaluate
the effects of the routing operation delays on routing and
forwarding convergence, we run the experiments with the
default delay values and then no delays.

B. TOPOLOGIES

We run our experiments on four different topologies to mea-
sure the performance of NLSR as topology size increases.
Our first experiment topology is a previous snapshot of the
NDN testbed topology with 22 nodes and 50 links (Figure 5).
The routing cost of each link is set to the delay between
the two neighboring nodes. Our three larger topologies are
realistic Internet-like topologies with an increasing number
of nodes (N = 41, 58, 78), the upper limit constrained by
our computational resources. Since the AS Internet topology
is self-similar [25], meaning that its subgraphs retain all the
structural properties of the original full topology, we extract
subgraphs of the AS Internet topology of differing size N.

C. RESULTS

The first experiment is performed on the NDN testbed topol-
ogy to determine the CPU impact of key authentication
and multpath calculation before scaling to larger topologies.

10478

FIGURE 5. NDN testbed topology.

200 T T T T T T T
Single Path with Security ——
T Single Path without Security
o 150 |- i
[~
@
"]
g 100 - [\ |
o
n
] h
= 50 - -
y L LT
2 ol b~~~ VAN A A YIS
v Router LSA Node Node
S[al[up‘ | . ‘ Refresh ‘ Failure |Recovery
1] 60 120 180 240 300 360 420 480 540 600
Time (s)
a)
200 T T T T T T T T T
Multiple Path with Security ——
'g ‘ Multiple Path without Security
o 150 - N
v
@
] |
g 100 ||| |
a |
L)
< i
g 50 J Y | .
K] LA A
S ol ko iU A
b Router LSA (Nnde Node
Startup Refresh Failure |Recovery
1 | | | |
1] 60 120 180 240 300 360 420 480 540 600
Time (s)
b)

FIGURE 6. Total network CPU utilization for NLSR. a) Single-path Routing.
b) Multipath Routing.

The maximum number of next hops per name prefix is set
to 4 for all the multipath experiments. Figure 6 shows the
CPU overhead of NLSR for all the nodes over time with
key authentication disabled and enabled; the first figure is
with single-path calculation and the second figure is with
multipath calculation.

It is evident from the figure that even with the proposed
trust model, which requires verification of multiple levels of
keys, NLSR hardly incurs much extra processing cost after
router startup. During the startup period, key authentication
adds 29% extra CPU overhead in the single path case and 24%
in multipath. This is due to the fact that by design NDN signs
and verifies all Data packets. The only difference between
the two schemes lies in the key verification, where NLSR

VOLUME 6, 2018

L. Wang et al.: Secure Link State Routing Protocol for NDN

IEEE Access

with the proposed trust scheme requires more time to fetch
multiple keys recursively from the network and verify them;
however, as this is done only once per new key, it incurs
a very low CPU cost after a key is verified and cached.
Figure 6 also shows that with multipath routing, NLSR shows
higher CPU usage than single path. Since the CPU cost due
to messaging is the same in the two schemes, the difference
here is mainly due to the higher cost of multipath calculation.
Multipath calculation adds 23% and 14% CPU overhead total
over the entire experiment without and with security enabled,
respectively.

The next experiment shows how delay parameters
(Section IV-C) in the routing protocol can be used to achieve
a balance between routing convergence time and routing
overhead. While similar trade-off also exists in IP routing
protocols, one should keep in mind that because NDN can
use adaptive multipath forwarding, it does not depend solely
on routing to handle topological changes and as such routing
convergence is not as important in NDN as in IP. Therefore,
an NDN operator can use larger delay parameters to lower
routing overhead.

To measure routing convergence time, we track the number
of LSDB changes over time — when the number reaches 0, it
means the LSDBs have been synchronized and the network
has converged. The experiment is run on all four topolo-
gies with the default values for routing operation delays
(Section IV-C) and with no routing operation delays. Figure 7
shows the average per-node LSDB changes each second.
Without routing operation delays, NLSR converges more
quickly than with the default delays but also has more cumu-
lative LSDB changes. During the startup period, the default
delays generate 19% less LSDB changes than no delays in the
NDN testbed topology and 22% less in the 78-node topology.
During the LSA refresh and node failure periods, default
delays and no delays generate the same number of LSDB
changes in both topologies. After the recovery, the default
delays generate 1% less LSDB changes than no delays in the
NDN testbed topology and 27% less in the 78-node topology.

Moreover, Figure 7 shows that the larger topology takes
longer to converge and incurs more cumulative LSDB
changes per node regardless of whether routing operation
delays are used, which is expected. For example, with the
default delay, the 78-node topology took 23% longer to con-
verge than the NDN testbed topology during router startup,
19% longer during LSA refresh, 40% longer during failure,
and 17% longer during recovery.

To understand the benefit of multipath forwarding, which
is enabled by NLSR’s multipath routing calculation, we mea-
sure the RTT of pings in the network during the failure
and recovery events. To take advantage of the multiple next
hops per name prefix, we use a forwarding strategy called
Adaptive SRTT-based Forwarding (ASF) that maintains a
smoothed RTT for each name prefix through each available
next hop [26]. The strategy chooses the highest routing ranked
next hop to forward Interests initially and probabilistically
probes other next hops periodically to learn RTTs (the prob-

VOLUME 6, 2018

25 T T T T T T T
- Default Routing Operations Delay ------
S 20 L No Routing Operations Delay ——— |
v
1]
w
59 15r .
23
"]
€ 5
g s 10 - B
5o
£ _
u 5 A‘ ﬂ ;
o ')
a 0 !‘.. Li A J! I
- Router LSA Node Node
Startup ‘ ‘ ‘) Refresh ‘ ‘ Failure |Recovery
(V] 60 120 180 240 300 360 420 480 540 600
Time (s)
a)
1750 T T T 1 I T T
- Default Routing Operations Delay ------
g 1500 - No Routing Operations Delay ——— 7
® 1250 - e
0]
g 1000 - .
-9
4 750 + :
2
S 500
=
: 250
a 0 A rAﬂ "
ﬂ Router LSA
| startup ‘ ‘ ‘ | Refresh ‘ ‘ Failure |Recovery |
0o 60 120 180 240 300 360 420 480 540 600
Time (s)
b)
1750 T T T T T T T T
- Default Routing Operations Delay ------
5 1500 - No Routing Operations Delay ——— |
@ 1250 - .
("]
@ 1000 [. .
o |
@ 750 |
z |
s 500) P
= i [
v 250 H !
8 o 5 L ¥
ﬂ Router LSA
| startup ‘ ‘ ‘ . Refresh ‘ ‘ Failure | Recovery |
(V] 60 120 180 240 300 360 420 480 540 600
Time (s)
©)
25 T T T T T T T
- Default Routing Operations Delay ------
S 20 L No Routing Operations Delay ——— |
v
Q [l
0 ;
go 151 i i
Q7T]
w8 1
o £ : B
o H
o :
= B "
(V] LA
] \
[=] g
ﬂ Router LSA
Startup ‘ ‘ ‘) Refresh ‘ ‘ Failure |Recovery

o 60 120 180 240 300 360 420 480 540 600
Time (s)
d)

FIGURE 7. NLSR LSDB changes. a) NDN Testbed Topology. b) 41-node
Topology. c) 58-node Topology. d) 78-node Topology.

ability is proportional to the routing ranking). When a next
hop with lower smoothed RTT is found, it switches to that
next hop. This capability is important for handling failures
and recoveries before routing converges. The experiment is

10479

IEEE Access

L. Wang et al.: Secure Link State Routing Protocol for NDN

run on the NDN testbed topology with the default values for
routing operations delay.

° 1.1 [T; T T T T T [_ T]
5 _ 109 Median]
25 108 [.
E 8 107 .
g2 106 .
oS 1.05 -]
ES 1loaf]
P8 Losf .
.E ;." 1.02 j .

- g‘ 1.01 v

§ 2 0 9; ;—-J::;: Node) J
(-3 - L Failure Recovery 4

0.98 1 1 1 1 1 1

480 495 510 525 540 555 570 585 600
Time (s)

a)

— 77—
Single-Path timeouts
Multipath timeouts ------ -

60% —— 11— N

50%
40% - B
30% B

|
#

20%

Loss Rate

10% ;

0% — T
‘0
Node Node

Failure ‘ Recovery
A B R L P IR B

480 495 510 525 540 555 570 585 600
Time (s)
b)

FIGURE 8. Forwarding convergence. a) RTT Ratio between Single Path and
MultiPath. b) Ping Loss Rate.

Figure 8(a) shows the RTT ratio between single path rout-
ing and multipath routing for each pair of nodes every second.
In the case of a timeout, the RTT used in the calculation for the
timed-out packet is equal to 971ms, the weight of the longest
path in the topology. The median of the ratios is graphed along
with the 5th percentile and 95th percentile. During the failure
event, the 95th percentile is much higher due to timeouts
in the single path case while multipath is able to choose a
different next hop for forwarding. Single path is not able to
remedy these timeouts until NLSR recalculates the routing
table and installs a new next hop. Note that sometimes the
ratio is slightly below 1 due to the variations in RTTs caused
by queueing and other factors. Also, the graph’s maximum
Y-value is 1.1, but the 95th percentile extends much higher,
approaching a ratio of 5 for the 20 seconds after the node
failure.

Figure 8(b) shows the loss rate incurred by both single path
and multipath during the failure and recovery events. Single
path experiences a loss rate higher than multipath for the
reason explained above. We can make one more observation:
the higher delay and losses in the single path case happen only
in the first 20 seconds after the node failure. This shows that
NLSR converges soon after the default operations delay, since
once the routing converges, the best next hop in the multipath
case is the same as that in the single path case.

10480

VI. LESSONS FROM DEVELOPMENT AND DEPLOYMENT
NLSR has provided a real use case to drive development of
several NDN features such as the security and trust schema
functionality in the ndn-cxx library, the RIB and prefix man-
agement functionality in NFD, and the Sync mechanism in
ChronoSync. At the same time, these features greatly simpli-
fied our protocol design and implementation. For example,
using ChronoSync to disseminate new LSA names meant that
we did not need to invent a mechanism to get notifications for
new LSAs.

Furthermore, the testbed deployment helped discover
potential problems. For example, the key validator verifies
that received keys and certificates are not created in the
future, but if router clocks are out-of-sync, such situations can
arise. Therefore, we added measures to handle slightly out-
of-sync clocks. However, if any of the testbed machines has
a very different time than others, its LSAs may be rejected
by others or vice versa. This means that the network has
to be roughly time synchronized for the protocol to work.
Another problem is that the sequence number file where
NLSR records its LSA version numbers can become cor-
rupted during operation or during reboot, which can cause
a router to inject LSAs with older version numbers than the
ones already distributed. In this case, the new LSAs will
be discarded by other routers, so this router cannot become
part of the topology. It is our ongoing work to address this
problem.

VIl. CONCLUSION

So far, designing NLSR has served as a great learning
experience in the following aspects: (1) design of the
naming scheme to reflect the relationship among vari-
ous entities in a routing system, (2) development of a
trust model for key verification of a routing protocol, and
(3) mental adjustment to NDN’s new design patterns of
using Interest/Data exchanges to propagate routing update
messages. Furthermore, the use of named data for com-
munication enables the concept of Sync, which facili-
tates robust dataset synchronization in distributed systems,
making NLSR more resilient to losses and conceptually
simpler.

In the near future, we plan to use ChronoSync to distribute
keys similarly to how LSAs are distributed. If keys are proac-
tively distributed in a Sync approach, nodes can immediately
learn new keys after a key rollover which prevents certain
attacks, such as key replay attacks. For a global routing solu-
tion in the long term, we are exploring new types of routing
designs, such as hyperbolic routing [26], to scale routing in
NDN. Since NDN’s adaptive multipath forwarding can han-
dle various packet delivery problems at the forwarding plane,
the convergence delay requirements on the routing plane are
relaxed. This opens the door to new types of routing designs
that have fewer routing updates by trading off convergence
speed.

VOLUME 6, 2018

L. Wang et al.: Secure Link State Routing Protocol for NDN

IEEE Access

ACKNOWLEDGMENT

The authors would like to thank Muktadir Chowdhury,
Ashlesh Gawande and Nicholas Gordon for their work on
NLSR and help in revising this paper.

REFERENCES

(1]

[2]
[3]
[4]

[5]

[6]
[71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” in Proc. ACM CoNEXT,
2009, pp. 1-12.

L. Zhang et al., “Named data networking (NDN) project,” Named Data
Networking Project, Tech. Rep. NDN-0001, Oct. 2010.

L. Zhang et al., “Named data networking,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 3, pp. 66-73, Jul. 2014.

C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and
L. Zhang, “A case for stateful forwarding plane,” Comput.
Commun., vol. 36, no. 7, pp. 779-791, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2013.01.005

A. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“NLSR: Named-data link state routing protocol,” in Proc. ACM SIG-
COMM Workshop Inf.-Centric Netw., 2013, pp. 15-20.

J. Moy, OSPF Version 2, document RFC 2328, SRI Network Information
Center, Sep. 1998.

Y. Yu, A. Afanasyev, D. Clark, K. Claffy, V. Jacobson, and L. Zhang,
“Schematizing and automating trust in named data networking,” in Proc.
2nd ACM ICN Conf., 2015, pp. 1-10.

C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “On
the role of routing in named data networking,” in Proc. ACM SIGCOMM
ICN Conf., 2014, pp. 27-36.

PARC. CCNx Open Srouce Platform. [Online]. Available: http://www.
ccnx.org

NDN Project Team. The NDN Platform. [Online]. Available: http://named-
data.net/codebase/platform/

Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proc. IEEE ICNP,
Oct. 2013, pp. 1-10.

N. P. Team. NLSR 0.1.0. [Online]. Available: http://named-
data.net/doc/NLSR/0.1.0

H. Dai, J. Lu, Y. Wang, and B. Liu, “A two-layer intra-domain routing
scheme for named data networking,” in Proc. Next Generat. Netw. Internet
Symp. GLOBECOM, Dec. 2012, pp. 2815-2820.

E. Hemmati and J. Garcia-Luna-Aceves, “A new approach to name-based
link-state routing for information-centric networks,” in Proc. 2nd ACM
ICN Conf. (ICN), 2015, pp. 29-38.

J. J. Garcia-Luna-Aceves, “Routing to multi-instantiated destinations:
Principles and applications,” in Proc. IEEE 22nd Int. Conf. Netw. Protocols
(ICNP), Oct. 2014, pp. 155-166.

Intermediate System to Intermediate System Intra-Domain Routeing Infor-
mation Exchange Protocol for Use in Conjunction With the Protocol
for Providing the Connectionless-Mode Network Service (ISO 8473), Int.
Standard 10589:2002, ISO, 2nd ed., 2002.

NDN Packet Format Specification. [Online]. Available: http:/named-
data.net/doc/ndn-tlv/

R. L. Rivest and B. Lampson, “SDSI—A simple distributed security
infrastructure,” MIT, Cambridge, MA, USA, Tech. Rep., 1996.

N. P Team. NDN-CXX. [Online]. Available: http://named-
data.net/doc/ndn-cxx/

N. P. Team. NFD—NDN Forwarding Daemon. [Online]. Available: http://
named-data.net/doc/nfd/

N. P. Team. Named Data Link State Routing. [Online]. Available: https://
github.com/named-data/NLSR

N. P. Team. NFD—NDN Forwarding Daemon. [Online]. Available: http://
named-data.net/doc/nfd/

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw., 2010, Art. no. 19.

NDN-Tools GitHub. [Online]. Available: https://github.com/named-
data/ndn-tools

M. A. Serrano, D. Krioukov, and M. Boguiid, “Self-similarity of complex
networks and hidden metric spaces,” Phys. Rev. Lett., vol. 100, no. 7,
p. 78701, 2008.

V. Lehman et al., “An experimental investigation of hyperbolic routing
with a smart forwarding plane in NDN,” in Proc. IEEE IWQoS, Jun. 2016,
pp. 1-10.

VOLUME 6, 2018

LAN WANG (SM’10) received the B.S. degree in
computer science from Peking University, China,
in 1997, and the Ph.D. degree in computer science
from UCLA in 2004. She is currently a Profes-
sor and the Chair with the Department of Com-
puter Science, The University of Memphis. Her
research interests include future Internet architec-
ture, Internet routing, network security, network
performance measurement, and sensor networks.

VINCE LEHMAN received the B.S. degree in com-
puter science from The University of Memphis.
He is currently a Software Engineer with ReTrans.

A. K. M. MAHMUDUL HOQUE received the
M.S. degree in computer science from The Uni-
versity of Memphis. He is currently a Software
Engineer with Amazon.

BEICHUAN ZHANG received the B.S. degree
from Peking University and the Ph.D. degree
from UCLA. He is currently an Associate Pro-
fessor with the Department of Computer Sci-
ence, The University of Arizona. He has been
involved in named data networking, green net-
working, and inter-domain routing. His research
interest is in Internet routing architectures and
protocols. He received the Applied Networking
Research Prize in 2011 from ISOC and IRTF, and

the Best Paper Award from the IEEE ICDCS in 2005 and IWQoS in 2014.

10481

IEEE Access

L. Wang et al.: Secure Link State Routing Protocol for NDN

10482

YINGDI YU received the B.S. and M.S. degrees
in electrical engineering from Shanghai Jiao Tong
University in 2007 and 2010, respectively, and
the Ph.D. degree in computer science from the
University of California at Los Angeles (UCLA),
Los Angeles, in 2016. He is currently a Research
Scientist with Facebook. His research interests
were focused on security of the named data net-
working at UCLA.

LIXIA ZHANG (F’06-LF’17) received the Ph.D.
degree in computer science from MIT. She was a
Member of the Research Staff with Xerox PARC.
She is currently a Professor with the Computer
Science Department, University of California at
Los Angeles (UCLA), where she also holds the
UCLA Postel Chair in computer science. Since
2010, she has been leading the effort on the design
and development of named data networking, a new
Internet protocol architecture. She is a fellow of the

ACM. She was a recipient of the IEEE Internet Award.

VOLUME 6, 2018

	INTRODUCTION
	NAMING
	SECURITY
	MULTI-PATH FORWARDING

	BACKGROUND AND RELATED WORK
	NAMED DATA NETWORKING (NDN)
	EVOLUTION OF NLSR
	RELATED WORK

	DESIGN
	HIERARCHICAL NAMING SCHEME
	NAMING AND FORMAT OF LSAs
	DISSEMINATION OF LSAs
	SECURITY
	TRUST MODEL
	KEY RETRIEVAL

	MULTIPATH CALCULATION
	ADJACENCY ESTABLISHMENT
	SUMMARY OF DESIGN CHANGES

	IMPLEMENTATION
	ADJACENCY ESTABLISHMENT PROTOCOL
	LSA VERSION NUMBERS
	ROUTING OPERATION DELAYS
	SECURITY
	DYNAMIC NAME PREFIX ADVERTISEMENT AND WITHDRAWAL

	EVALUATION
	SCENARIOS
	TOPOLOGIES
	RESULTS

	LESSONS FROM DEVELOPMENT AND DEPLOYMENT
	CONCLUSION
	REFERENCES
	Biographies
	LAN WANG
	VINCE LEHMAN
	A. K. M. MAHMUDUL HOQUE
	BEICHUAN ZHANG
	YINGDI YU
	LIXIA ZHANG

