
FIFA: Fast Incremental FIB Aggregation

Yaoqing Liu
yliu6@memphis.edu

The University of Memphis

Beichuan Zhang
bzhang@cs.arizona.edu

The University of Arizona

Lan Wang
lanwang@memphis.edu

The University of Memphis

Abstract—The fast growth of global routing table size has been
causing concerns that the Forwarding Information Base (FIB) will
not be able to fit in existing routers’ expensive line-card memory,
and upgrades will lead to higher cost for network operators and
customers. FIB Aggregation, a technique that merges multiple
FIB entries into one, is probably the most practical solution since
it is a software solution local to a router, and does not require
any changes to routing protocols or network operations. While
previous work on FIB aggregation mostly focuses on reducing
table size, this work focuses on algorithms that can update
compressed FIBs quickly and incrementally. Quick update is
critical to routers because they have very limited time to process
routing updates without impacting packet delivery performance.
We have designed three algorithms: FIFA-S for smallest table
size, FIFA-T for shortest running time, and FIFA-H for both small
tables and short running time, and operators can use the one best
suited to their needs. These algorithms significantly improve over
existing work in terms of reducing routers’ computation overhead
and limiting impact on the forwarding plane while maintaining
a good compression ratio.

I. INTRODUCTION

The global routing table size has been increasing faster
than ever in a super-linear trend, mostly due to the practice
of multihoming and traffic engineering [1]. This has caused
serious concerns in both academia and industry ([2][3]). Once
the FIB becomes so large that it can no longer fit in the fast
memory of routers’ line cards, ISPs have to upgrade their
line cards, eventually making Internet services more expensive.
While a number of solutions (e.g., [4][5][6][7][8][9][10]) have
been proposed to solve the routing table scalability problem in
the long run by changing the routing architecture, ISPs need
practical solutions soon, and FIB aggregation is considered one
of the most practical solutions [11].

FIB aggregation reduces FIB size by combining entries
whose prefixes are numerically aggregatable and whose next-
hops are the same. It is a software solution that can be applied
to a single router without upgrading the hardware, changing the
control plane, or affecting packets’ forwarding paths. Thus it
can be deployed incrementally and selectively in a network at
operators’ discretion. One of the fundamental tradeoffs in FIB
aggregation is between aggregated table size and computation
overhead. Spending too much CPU cycles in aggregating the
table will delay the downloading of the table into the line
cards, which may lead to packet loss or incorrect forwarding.
Existing work (e.g., [12][13][14][15]) has demonstrated that
FIB aggregation can reduce table size by as much as 70%
with moderate computation, but these efforts have not focused
on reducing routers’ overhead in all aspects.

The most challenging problem in FIB aggregation is to
quickly apply updates to the already aggregated table and still

This work was supported by NSF Grants 0721645 and 0721863.

maintain good compression ratio. When a router receives a
routing update, it has very limited amount of time to process
the update and install the new FIB. When the FIB is already
aggregated, one routing table change may lead to updating
multiple FIB entries, because it may change the aggregatability
of those entries. In some cases, there can be thousands or even
tens of thousands FIB entries to be updated, even if there is
only a single routing table change. Therefore in this work, we
focus on reducing FIB aggregation’s overhead in the following
aspects: (1) reducing the overall time of processing a stream
of updates; (2) speeding up the process to re-aggregate an
entire FIB, if a scheme requires such re-aggregations; and (3)
reducing the average and maximum number of FIB changes
caused by any individual routing table change, so as to reduce
the time it takes to push those changes to the line card.

To this end, we have designed three algorithms: FIFA-S
for smallest table size, FIFA-T for shortest running time, and
FIFA-H for both small tables and short running time. They take
advantage of some intrinsic properties of an aggregated FIB
trie to speed up the incremental update process. Among them,
FIFA-S and FIFA-H do not need to run full re-aggregations,
and FIFA-T performs fast re-aggregation on the existing ag-
gregated trie. Moreover, they use a prioritized set of next-hop
selection rules to improve the stability of the aggregated FIB,
thus reducing the number of FIB changes per routing table
change. Our evaluation shows that they outperform state-of-
art algorithms in both speed and FIB stability.

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of FIB aggregation. Sections III
presents the design of FIFA. Section IV evaluates the perfor-
mance improvement of FIFA over existing work. Section V
discusses related work, and Section VI concludes the paper.

II. BACKGROUND ON FIB AGGREGATION

A. RIB and FIB

A Routing Information Base (RIB) stores all IP routing
information, and is responsible for next-hop selection from
multiple available routes received from different peers. A
subset of the RIB information, i.e., the address prefixes and
their selected next-hops, are installed in the Forwarding In-
formation Base (FIB) for fast lookup during data forwarding.

Definition 1. Given an IP address d and a FIB F ,
let LPM(F, d) denote d’s Longest Prefix Match, and
nexthop(F, p) denote the next-hops for prefix p. We define
nexthop(F, d) = nexthop(F,LPM(F, d)). It is possible that
d does not have any match in the FIB, i.e., LPM(F, d) =
NULL, and packets destined to d will be dropped.

As an example, Table I(a) shows a FIB F with five
entries. For address 141.225.48.7, LPM(F, 141.225.48.7) =



TABLE I. FIB ENTRIES BEFORE AND AFTER AGGREGATION

(a) Original FIB Entries
Label Prefix Next-hop

A 141.225.0.0/16 1
B 141.225.64.0/18 1
C 141.225.32.0/19 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2

(b) Aggregated FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2

141.225.48.0/20, and nexthop(F, 141.225.48.7) =
nexthop(F, 141.225.48.0/20) = {2}.

B. FIB Aggregation and Forwarding Correctness

FIB aggregation is to aggregate a FIB into one with fewer
number of entries while ensuring “forwarding correctness”,
i.e., the aggregated FIB should not change the next-hops
that packets take to reach their destinations. All the FIB
aggregation algorithms proposed in this paper satisfy strong
forwarding correctness as defined below. Note that even if two
algorithms satisfy the same type of forwarding correctness,
they may reduce a FIB into different sizes depending on what
aggregation opportunities they exploit.

Definition 2. Given a FIB F , another FIB F ′ satisfies Strong
Forwarding Correctness with respect to F if and only if the
following conditions hold: (1) any non-routable address in F
will remain non-routable in F ′, i.e., if LPM(F, d) = NULL,
then LPM(F ′, d) = NULL; (2) the next-hop of any routable
address in F will remain the same in F ′, i.e., if LPM(F, d) �=
NULL, nexthop(F ′, d) = nexthop(F, d). If only the second
condition holds, we say that F ′ satisfies Weak Forwarding
Correctness with respect to F (this means a non-routable
address in F can become routable in F ′).

C. Optimal Routing Table Constructor (ORTC)

Our algorithms are based on the Optimal Routing Table
Constructor (ORTC) [12], a one-time aggregation algorithm
that minimizes the FIB size with strong forwarding correctness.
The basic ORTC algorithm uses a binary tree to store FIB
entries and traverses the tree three times to produce the
aggregated FIB. As we will show in Section III-A, ORTC
can be implemented using a patricia trie [16] with two tree
traversals. However, for ease of illustration, we describe the
basic ORTC algorithm using a binary tree and three passes.

We use the FIB in Table I(a) as our example. Figure 1(a)
shows the initial binary tree with seven nodes. Five of the
nodes, A, B, C, D, and E, correspond to the FIB entries in
Table I(a). We call them “real” nodes, while the other two
nodes, F and H, are called “auxiliary” nodes.

The first pass is a depth-first traversal in pre-order to
normalize the tree, so that all the nodes have zero or two
children. The expanded nodes have the same next-hops as their
nearest ancestors that are real nodes. Figure 1(b) depicts the
process for pass 1. Node G, I, J and K are the expanded leaf

Fig. 2. Relationship between FIFA and other router components

nodes, and they have the same next-hops as their nearest real
ancestors A, C, A, and B, respectively.

The second pass is a depth-first traversal in post-order to
merge next-hops, in which two children merge their next-hop
sets to form their parent’s next-hop set. If the two children
have one or more common next-hops, the merging uses an
intersection operation, otherwise, it uses a union operation.
Figure 1(c) depicts the merging process. For example, E and
I have no common next-hops, so their parent C’s next-hop set
is {1,2}, the union of {1} and {2}. Another example is H ,
whose next-hop set {1} is the intersection of C’s next-hop set
{1,2} and G’s next-hop set {1}.

The third pass is a depth-first traversal in pre-order to select
each node’s next-hop and form the aggregated FIB. The root
node’s next-hop is randomly selected from its next-hop set (the
original next-hop may be preferred for stability). From then on,
if a node’s selected next-hop h appears in its child’s next-hop
set, then the child should have h as its selected next-hop, so
that the child will not be loaded into the FIB. Otherwise, the
child’s next-hop is randomly selected from its next-hop set,
and the child will be loaded into the FIB.

Figure 1(d) shows the results after pass three. Root A has 1
as its selected next-hop. Since its children F and H have 1 in
their next-hop set, they also have 1 as their selected next-hops
and, as such, they will not appear in the aggregated FIB. On
the other hand, D’s selected next-hop (2) is different from that
of its parent B (1), so it must be put into the aggregated FIB.
Table I(b) shows the final prefixes and their next-hops.

III. DESIGN

We aim to develop FIB aggregation algorithms that are
practical to use in a real production network. First, they should
reduce the FIB size sufficiently to postpone the upgrading of
FIB memory in line cards by several years. Second, they should
handle route changes fast as a router may need to handle a
large number of routing changes during routing convergence.
Third, they should not incur a large number of FIB changes
per routing update. According to Francois et al. [17], the time
required to update a FIB entry in a real router is about 100µs.
Since one route change may result in multiple FIB changes on
an aggregated FIB, it would be desirable to minimize such FIB
changes. Finally, we would like to maintain strong forwarding
correctness (see Section II) to avoid potential looping problems
associated with weak forwarding correctness.



(a) Initial Tree (b) After pass 1 (c) After pass 2 (d) After pass 3

Fig. 1. ORTC Aggregation Algorithm. There are four fields for each node from left to right: original next-hop, selected next-hop, FIB status (Y: IN FIB, N:
NON FIB), and next-hop set. A bold font denotes a field updated in the current step. A solid rectangle denotes a real node from the unaggregated FIB. A
dashed rectangle denotes an auxiliary node generated either as a glue node or for optimization purposes. A grey node denotes a node with IN FIB status.

When a router starts up, FIFA uses our improved version of
ORTC ([12] and Section II) to build the initial aggregated FIB.
When a new routing update arrives, first the routing protocol
will update the RIB and then FIFA will apply each resulting
route change to the aggregated FIB, which may generate one
or more FIB changes. FIFA then installs these FIB changes in
the line card. Figure 2 illustrates this process.

FIFA is composed of three algorithms, FIFA-S, FIFA-T and
FIFA-H, and ISPs can choose one based on their concerns.
FIFA-S keeps the FIB size smallest among the three, with
very light FIB bursts and no FIB re-aggregation. FIFA-T is the
fastest among the three, with relatively small number of FIB
changes and fast re-aggregation. FIFA-H is a hybrid approach
combining the advantages of both FIFA-S and FIFA-T. It has
medium time cost compared to the other two schemes, and
much lighter FIB burst than FIFA-T. Moreover, it does not
perform any re-aggregations.

In the rest of this section, we describe our improved version
of ORTC and the three FIFA algorithms.

A. Improving ORTC Efficiency

FIFA is based on the ORTC algorithm, but it addresses
two inefficiencies in the latter: (1) the basic ORTC algorithm
traverses the FIB tree three times, so it can be quite slow for a
large FIB; and (2) ORTC uses a binary tree structure that could
consume more memory than necessary when there are large
gaps between address prefixes and the large number of tree
nodes means slower tree traversals. We improved ORTC using
two passes on a Patricia Trie [16]. A Patricia Trie is a space-
optimized tree in which a child prefix can be longer than its
parent prefix by more than one, thus eliminating unnecessary
internal nodes. For example, Figure 3(a) shows the Patricia
Trie representation of Table I(a) – node C has a prefix length
19 while its parent F has a prefix length of 17. We tested both
implementations using RouteView’s data [18]. For the routing
table of router 4.69.184.193 on 1/1/2011 (332,588 entries), our
implementation is 2.5 times faster and uses only 44% of the
memory consumed by the original implementation.

In order to distinguish the patricia trie-based ORTC algo-
rithm from the basic ORTC, we use Round One (Figure 3(b))
and Round Two (Figure 3(c)) to represent its new passes.
Round One is a depth-first traversal in post-order to merge
next-hops (as in pass two) without normalizing the tree (other-
wise we get a complete binary tree). Round Two is a depth-first

(a) Initial Trie (b) After round one (c) After round two

Fig. 3. Improved ORTC Aggregation Algorithm using Patricia Trie

traversal in pre-order to select next-hops (as in pass three) and
it adds new tree nodes to maintain forwarding correctness.

For Round One, in order to merge the next-hops correctly
without expanding the trie, we compute a node’s next-hop set
by merging what would be the next-hop sets of its imaginary
children if there is a complete binary tree. Let S(n) be the
next-hop set of node n, Sl(n) and Sr(n) be the next-hop set of
n’s imaginary left and right child, respectively. Then S(n) =
merge(Sl(n), Sr(n)). In Figure 3(b), S(n) is the last value
associated with each node.

Below we explain how to compute Sl(n). Let H(n) be
the original next-hop of n, and d be the difference between
the prefix length of a node and that of its actual left child.
There are four possible cases: no left child, d = 1, d = 2,
and d > 2. In each case, the calculation follows a simple
rule explained below (all the examples refer to the FIB tree in
Figure 3(b)). The rules can be proven by expanding the part
of trie that includes the parent and the child into a complete
binary structure and applying the merging rules to it.

1) No left child: Sl is derived from the original next-hop
of the parent node, since the child was to be created
from tree normalization. For example, C has no left
child, so Sl(C) = {H(C)} = {1}.

2) d = 1: Sl is the next-hop set of the actual left child.
For example, d = 1 for A and F , so Sl(A) = S(F ) =
{1}.

3) d = 2: Sl is the merged next-hops of the parent’s
original next hop and the actual left child’s next-
hop set. For example, d = 2 between F and C, so
Sl(F ) = {H(F )} ∩ S(C) = {1} ∩ {1, 2} = {1}.



4) d > 2: Sl is a set containing only the original next-
hop of the parent node.

We then obtain Sr(n) using the same procedure, and
calculate S(n) by merging Sl(n) and Sr(n). For example,
since d = 1 between F and B, Sr(F ) = S(B) = {1, 2}.
Therefore, S(F ) = Sl(F ) ∩ Sr(F ) = {1} ∩ {1, 2} = {1}.

Round Two goes through similar steps as pass three to
select the next-hop of each node. In addition, it creates a
new node when H(n) �= H ′(n), where H(n) and H ′(n) are
the original and selected next-hop of node n, and one of the
following two conditions is satisfied:

1) d ≥ 2: if n has a left (right) child with prefix length
greater than n’s length by at least 2, then a left (right)
child under n is created.

2) One child is missing: if n has no left (or right) child,
then a left (or right) child under n is created.

Otherwise, we do not need to create new nodes. After the two
rounds, we obtain the same set of aggregated FIB entries as
the original ORTC does with much fewer nodes in general.
For example, In Figure 3(c), we did not create any new node
because H(n) = H ′(n) for all the nodes, and only six nodes
are created compared to 11 nodes in Figure 1(d).

B. FIFA-S

FIFA-S keeps the aggregated FIB size optimal after every
update. A naive way to do so is to perform the ORTC
aggregation on the entire FIB trie upon every update, but this
would be too time-consuming. A better approach is to update
only those parts of the FIB trie that may have been impacted
by the update. We follow this approach in both the optimal
size update handling algorithm (BasicOptSize) we proposed in
2010 [14] and FIFA-S, but FIFA-S is eight times faster than
BasicOptSize (see Section IV) and its heaviest FIB burst (i.e.,
number of FIB changes caused by a single route change) is
only 1/10 of that in BasicOptSize. Below we first describe how
BasicOptSize works and then show FIFA-S’ improvements.

The BasicOptSize algorithm goes through the following
steps, after applying the update to the corresponding node:

1) Step A: on the subtree rooted at the updated node,
merge the next-hops using a depth-first traversal in
post-order. This is basically a Round One operation
on a subtree;

2) Step B: for each ancestor node above the updated
node, merge its next-hops until the node’s new next-
hop set is the same as its old next-hop set. We call
this node the “highest changed node”;

3) Step C: on the subtree rooted at the highest changed
node, select the next-hops using a depth-first traversal
in pre-order. This is a Round Two operation on a
subtree.

In the longer version of this paper [19], we prove that the
above steps can keep the aggregated FIB optimal.

To illustrate BasicOptSize, we add a new entry to our
example FIB (H in Table II(a)). Figure 4 shows the FIB trie
after updating node H (its type is changed to REAL and its
next-hop from 1 to 3). Figure 5 shows Steps A, B and C. After

Fig. 4. Updating node H upon receiving a new route

TABLE II. UNAGGREGATED AND AGGREGATED FIB ENTRIES AFTER
AN UPDATE

(a) Original FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
B 141.225.64.0/18 1
C 141.225.32.0/19 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2
H 141.225.0.0/18 3

(b) Aggregated FIB Entries

Label Prefix Next-hop
A 141.225.0.0/16 1
D 141.225.96.0/19 2
E 141.225.48.0/20 2
G 141.225.0.0/19 3

Step C, the aggregated FIB contains three of the five original
entries, A, D, and E, and a new entry G (Table II(b)).

Figure 5 shows that Step B and C need to update the entire
subtree rooted at H and F , respectively. To reduce the number
of nodes visited on these subtrees, FIFA-S takes advantage of
the following two properties (see [19] for their proofs):

Property 1: The result of Step A will be the same without
updating any subtrees rooted at REAL nodes.

Property 2: The result of Step C will be the same without
updating any subtree with these properties: (1) the next-hop
sets did not change in any nodes on the subtree in Step A; and
(2) the selected next-hop of the subtree root did not change.

Moreover, FIFA-S adopts the following rules and it has
considerably fewer FIB changes than BasicOptSize (Sec-
tion IV).

Property 3: In Step C, selecting a node’s next-hop from its
next-hop set using the following prioritized rules can reduce

(a) Step A (b) Step B (c) Step C

Fig. 5. Steps in BasicOptSize



(a) Step A’ (b) Step B’ (c) Step C’

Fig. 6. Steps in FIFA-S

the number of FIB changes: (a) the next-hop selected by the
nearest ancestor with IN FIB status (this is for FIB size
optimization); (b) the old selected next-hop; (c) the original
next-hop; and (d) if none of those are found in the next-hop set,
sort the set and pick the first one instead of random selection.

We call the improved procedures Step A’, B’ and C’.
Figures 5 and 6 show that (1) BasicOptSize and FIFA-S have
the same aggregation results; (2) E was skipped in Step A’;
and (3) D and E were skipped in Step C’.

We present the pseudo code of FIFA-S in Procedures 1 -
6. Function mergeNexthopsBelowNode is Step A’, mergeNex-
thopsAboveNode is Step B’ and selectNexthop is Step C’. Note
that we associate a flag optimal with each node to indicate
whether Step C’ is needed in the subtree of this node.

In the next two sections, we show how Properties 1-3
can be used in FIFA-T and FIFA-H to reduce computation
overhead and keep the aggregated trie stable.

Procedure 1 main(type) function
1: Build initial FIB trie based on unaggregated FIB
2: Run improved ORTC on the FIB trie to obtain aggregated FIB
3: for each update do
4: if Announcement then
5: Lookup the corresponding node and create it if non-existent
6: Update the next-hop of the current node
7: node.type← REAL
8: else
9: Lookup the corresponding node and return if non-existent

10: Remove the next-hop of the current node
11: node.type← AUXILIARY
12: if (type = ALG FIFA T ) ∨ (type = ALG FIFA H) then
13: node.optimal← 0 for all ancestors of the current node
14: switch (type)
15: case ALG FIFA S:
16: FIFA S(node)
17: case ALG FIFA T :
18: FIFA T (node)
19: case ALG FIFA H:
20: FIFA H(node)
21: end switch

Procedure 2 FIFA S(node) function
1: realAncestor← nearestRealAncestor(node)
2: mergeNexthopsBelowNode(node, realAncestor)
3: highestNode← mergeNexthopsAboveNode(node,ALG FIFA S)
4: infibAncestor← nearestINFIBAncestor(highestNode)
5: selectNexthop(highestNode, infibAncestor)

C. FIFA-T

FIFA-T aims to shorten the FIB update time by localizing
the changes on the FIB trie while maintaining strong for-
warding correctness. The trade-off is that the FIB size will

Procedure 3 mergeNexthopsBelowNode(node, realAncestor)

1: node.optimal← 0
2: l← node.l
3: r ← node.r
4: if (l �= NULL) ∧ (l.type �= REAL) then
5: mergeNexthopsBelowNode(l, realAncestor)
6: if (r �= NULL) ∧ (r.type �= REAL) then
7: mergeNexthopsBelowNode(r, realAncestor)
8: if (node.type �= REAL) then
9: node.originalNexthop← realAncestor.originalNexthop

10: node.mergedNexthops← merge(l, r)

Procedure 4 mergeNexthopsAboveNode(node, type)

1: parent← node.parent
2: while parent do
3: if (type = ALG FIFA H) ∧ (parent.length ≤ CAP ) then
4: Return node
5: old← parent.mergedNexthops
6: new ← merge(parent.l, parent.r)
7: if old = new then
8: Return node
9: node← parent

10: parent← node.parent
11: if type = S then
12: node.optimal ← 0
13: Return node

Procedure 5 selectNexthop(node, ancestor)

1: oldStaus← node.status
2: oldNexthop← node.selectedNexthop
3: if ancestor.selectedNexthop ∈ node.mergedNexthops then
4: node.selectedNexthop← ancestor.selectedNexthop
5: node.staus← NON FIB
6: else
7: if oldNexthop ∈ node.mergedNexthops then
8: node.selectedNexthop← oldNexthop
9: else if node.originalNexthop ∈ node.mergedNexthops then

10: node.selectedNexthop← node.originalNexthop
11: else
12: node.selectedNexthop← node.mergedNexthops[0]
13: node.staus← IN FIB
14: updateF IB(oldStatus, oldNexthop, node)
15: if (oldNexthop = node.selectedNexthop) ∧ (node.optimal = 1)

then
16: Return
17: if node.status = IN FIB then
18: ancestor ← node
19: if (node.l = NULL) ∧ (node.r = NULL) then
20: Return
21: if node.selectedNexthop �= node.originalNexthop then
22: generateNewNode(node)
23: if node.l �= NULL then
24: selectNexthop(node.l, ancestor)
25: if node.r �= NULL then
26: selectNexthop(node.r, ancestor)
27: node.optimal← 1

Procedure 6 updateFIB(oldStatus,oldNexthop, node)

1: if oldStatus �= node.status then
2: if node.status = NON FIB then
3: Delete the prefix and next-hop from FIB
4: else
5: Add the prefix and next-hop to FIB
6: else if oldNexthop �= node.selectedNexthop then
7: if node.status = IN FIB then
8: Update the corresponding next-hop to FIB



not be optimal. As more updates come, the FIB size will
increase until it reaches a threshold, e.g., 90% of the FIB
memory in the line card. At this point, a re-aggregation is
performed on the FIB trie from the root to optimize the FIB
size. On the surface, FIFA-T is very similar to the minimal time
update handling algorithm (BasicMinTime) we proposed [14].
However, there are two important differences that make FIFA-
T more efficient: (a) FIFA-T utilizes the three properties
described in Section III-B; and (b) FIFA-T’s re-aggregation
is performed on the aggregated FIB trie, but BasicMinTime
has to destroy the old aggregated FIB trie, and build a new
one from the unaggregated FIB. Our results show that it uses
40% less time than BasicMinTime and generates only 1.1 FIB
changes per routing update.

FIFA-T works as follows: (1) before the threshold is
reached, perform the following (the less efficient procedures
in BasicMinTime are called Step X and Y) –

• Step X’: on the subtree rooted at the updated node,
merge the next-hops using a depth-first traversal in
post-order, skipping REAL nodes and their subtrees
(based on Property 1);

• Step Y’: on the subtree rooted at the updated node,
select the next-hops (following rules based on Property
3) using a depth-first traversal in pre-order, skipping
REAL nodes with optimal flag set to 1 as well as their
subtrees (based on Property 2).

(2) when the threshold is reached, re-aggregate the trie from
its root incorporating the three properties to obtain an optimal
trie. The pseudo code is in Procedures 1, 7, and 3 - 6.

Procedure 7 FIFA T (node) function
1: if Threshold then
2: Do re-aggregation on the FIB trie from the root
3: else
4: realAncestor← nearestRealAncestor(node)
5: mergeNexthopsBelowNode(node, realAncestor)
6: infibAncestor← nearestINFIBAncestor(node)
7: selectNexthop(node, infibAncestor)

Figure 7 illustrates the differences between BasicMinTime
and FIFA-T, e.g., node E was skipped in Step X’ and Y’.

D. FIFA-H

In addition to FIFA-S and FIFA-T, we propose FIFA-H, a
hybrid scheme that achieve a good balance among aggregation
speed, FIB size and number of FIB changes. In this approach,
a FIB size threshold and a CAP are set at the beginning. For
each update, FIFA-H performs three steps - U, V, W (or W’)
as follows (Figure 8):

• Step U: merge the next-hops below the updated node
(same as Step A’ in FIFA-S and Step X’ in FIFA-T);

• Step V: merge the next-hops above the updated node
up to the highest changed node whose prefix length is
less than or equal to CAP, called the CAP node, which
limits the computation overhead and the number of
FIB changes compared to FIFA-S;

• Step W or W’: if the threshold is not reached, this
step (W) performs next-hop selection on the subtree

rooted at the current updated node (SaveTime mode).
Otherwise, this step (W’) will start from the CAP node
for next-hop selection (ReduceSize mode).

FIFA-H incurs less computation time and fewer FIB
changes than FIFA-S, and has smaller FIB bursts than FIFA-T
(Section IV). It has no lengthy re-aggregations, thus avoiding
potential problems during re-aggregation, e.g., packet losses.

Procedure 8 FIFA H(node) function
1: realAncestor ← nearestRealAncestor(node)
2: mergeNexthopsBelowNode(node, realAncestor)
3: capNode← mergeNexthopsAboveNode(node,ALG FIFA H)
4: if ThresholdReached then
5: node← capNode
6: infibAncestor← nearestINFIBAncestor(node)
7: selectNexthop(node, infibAncestor)

IV. EVALUATION

In this section, we evaluate the performance improve-
ment of FIFA over BasicOptSize, BasicMinTime, as well as
SMALTA [15], another ORTC-based FIB aggregation scheme.
We also compare the three FIFA algorithms so that users can
choose the right algorithm based on their own needs. We
verified the correctness of our results by checking that every
address has the correct next-hop after aggregation.

A. Methodology

We used RIBs and routing updates from 01/01/2011 to
12/31/2011 in the Routeviews [18] route-views2 data archive.
Since the routing updates do not contain next-hop IP address
information, we use next-hop ASes to approximate next-hop
routers (as in [13], [14]) and we have used internal routing
information from a tier-1 ISP to verify that our approach
closely approximates the results using IGP next-hops. In order
to show the worst-case performance, we present the results
from 4.69.184.193, a router in the tier-1 ISP Level 3, because
this router has the most number of AS neighbors (2876 and
3151 on 01/01/2011 and 12/31/2011, respectively) among all
36 routers. In general, more neighbors means more next-hops
the prefixes can have, which may lead to lower FIB aggregation
performance. In practice, a router has tens or at most hundreds
of interfaces.

We use the following four performance metrics: (1) FIB
Size: total number of entries in FIB; (2) Time Cost: time
to apply routing changes to the FIB including re-aggregation
time, if any; (3) FIB Changes: total number of FIB updates
caused by all routing updates; and (4) FIB burst: number of
FIB changes caused by one route change. The evaluation was
done on a machine with an Intel Core 2 Quad 2.83GHz CPU.

B. Summary of Findings

FIFA-S improves the time efficiency of BasicOptSize by
8.22 times and keeps the FIB size optimal. It is mostly useful
when the FIB memory size is close to its optimal aggregated
size, when FIFA-T will trigger too many re-aggregations.
FIFA-T is the fastest among the three schemes; it is suitable
when the FIB memory is much larger than the optimal aggre-
gated size. FIFA-H is a well-balanced scheme with medium
running time and FIB burst size. Compared with SMALTA,



(a) Step X in
BasicMinTime

(b) Step Y in
BasicMinTime

(c) Step X’ in FIFA-T (d) Step Y’ in FIFA-T

Fig. 7. Steps in BasicMinTime and FIFA-T. Step X and Y are steps for BasicMinTime, while Step X’ and Y’ are steps for FIFA-T.

(a) Step U (b) Step V (c) Step W (d) Step W’

Fig. 8. FIFA-H: the first two steps are Step U and V. The third step is Step W before reaching the threshold and Step W’ after reaching the threshold.

all FIFA algorithms are faster and have smaller FIB bursts.
In addition, FIFA-T and FIFA-H incur fewer total number
of FIB changes than SMALTA. Technically, there are mainly
three factors leading to the fast FIB aggregation in FIFA. First
of all, SMALTA requires rebuilding the FIB aggregation tree
from scratch during re-aggregation, which is time consuming.
In FIFA-T, the re-aggregations are very fast, because it does not
require rebuilding the FIB aggregation. In FIFA-S and FIFA-H,
there is no re-aggregation. Secondly, SMALTA uses a binary
tree data structure, but we use a patricia trie. The binary tree
has many more nodes to traverse than the patricia trie, thus
incurring more computation overhead. Thirdly, FIFA has the
two important features which are not applicable to SMALTA
and they can further help reduce more redundant node accesses
but keep the same aggregated size.

C. FIFA-S vs. BasicOptSize

We first compare FIFA-S with BasicOptSize. Figure 9(a)
shows the FIB size. Since both schemes achieve optimal FIB
size, their lines overlap with each other ending below 150,000.
The top line shows the unaggregated FIB size, which increased
from 332,588 to 378,728 during the year. In other words,
either scheme reduced the FIB size by about 60%. If the
unaggregated FIB size increases at the current rate (about
13.9%), it will take 7.5 more years for the aggregated FIB size
to reach the current unaggregated FIB size (as of 12/31/2011).

Figure 9(b) shows that FIFA-S is more than 8.22 times
faster (108s in total or 2µs/update) than BasicOptSize (888s
in total or 16.4µs/update). The time cost of FIFA-S is very
close to the bottom line, which corresponds to the time cost to
update an unaggregated FIB. This suggests that it is feasible
to deploy FIFA-S in an operational router.

Figure 9(c) shows that the total number of FIB changes
in FIFA-S is only about 1.8 times of that in an unaggregated
FIB, and this ratio is very stable.

Table III shows the FIB burst distribution. In both schemes,
about 98% of the FIB bursts have no more than 10 FIB
changes. Moreover, FIFA-S’ largest FIB burst (568) is less
than 10% of that in BasicOptSize (6,226).

D. FIFA-T vs. BasicMinTime

In Figure 10 and Table IV, we compare FIFA-T with
BasicMinTime and observe the following: (a) their FIB size
oscillates between the optimal size and the configured thresh-
old, and FIFA-T triggers only 9 fast re-aggregations during the
entire year (Figure 10(a)); (b) FIFA-T uses 40% less time than
BasicMinTime (Figure 10(b)); and (c) FIFA-T’s largest FIB
burst is much smaller than that in BasicMinTime (Table IV).

E. Comparison among FIFA Algorithms and with SMALTA

Below we compare FIFA algorithms and SMALTA.

a). FIB Size: Figure 11(a) shows that (1) FIFA-S has the
smallest FIB size; (2) FIFA-T and SMALTA oscillate between
the optimal size and the threshold, and (3) FIFA-H tends to
stay around the threshold with no re-aggregation.

b). Time Cost: Figure 11(b) shows that (1) SMALTA takes
the most time – 237.23s, which includes 11 full tree re-
aggregations (158.62s or 14.3s per re-aggregation); (2) FIFA-T
is the fastest – 66s, which includes 9 fast tree re-aggregations
with 0.2s for each (FIFA-T is 70 times faster than SMALTA in
re-aggregation efficiency); and (3) FIFA-S (108s) and FIFA-H
(100s) have similar time cost.

c). FIB Changes: Figure 11(c) shows that (1) FIFA-T and
FIFA-S have the lowest and highest total number of FIB
changes, respectively; (2) SMALTA has slightly more total
number of FIB changes than FIFA-H.

d). FIB Bursts: Table V shows that (1) most route changes
cause zero or one FIB change, and about 99% FIB bursts have



 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  1000  2000  3000  4000  5000  6000

 0.4

 0.6

 0.8

 1
N

um
be

r 
of

 p
re

fix
es

Number of updates/10000

Normal
BasicOptSize

FIFA-S

(a) FIB Size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  1000  2000  3000  4000  5000  6000

T
im

e(
s)

Number of updates/10000

Normal
BasicOptSize

FIFA-S

(b) Time Cost

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0  1000  2000  3000  4000  5000  6000

N
um

be
r 

of
 F

IB
 c

ha
ng

es

Number of updates/10000

Normal
BasicOptSize

FIFA-S

(c) FIB Changes

Fig. 9. FIFA-S vs. BasicOptSize (Normal refers to no aggregation)

TABLE III. FIB BURST DISTRIBUTION COMPARISON BETWEEN FIFA-S AND BASICOPTSIZE

Burst Size Min Max Median =0 ≤1 ≤10 All
BasicOptSize 0 6,226 1 6,914,934 (12.78%) 38,185,015 (70.58%) 52,795,683 (97,59%) 54,095,965 (100%)

FIFA-S 0 568 1 6,961,449 (12.87%) 38,645,578 (71.43%) 53,318,607 (98.56%) 54,095,965 (100%)

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0  1000  2000  3000  4000  5000  6000

 0.4

 0.6

 0.8

 1

N
um

be
r 

of
 p

re
fix

es

Number of updates/10000

Normal
BasicMinTime

FIFA-T

(a) FIB Size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1000  2000  3000  4000  5000  6000

T
im

e(
s)

Number of updates/10000

Normal
BasicMinTime

FIFA-T

(b) Time Cost

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0  1000  2000  3000  4000  5000  6000

N
um

be
r 

of
 F

IB
 c

ha
ng

es

Number of updates/10000

Normal
BasicMinTime

FIFA-T

(c) FIB Changes

Fig. 10. FIFA-T vs. BasicMinTime (Normal refers to no aggregation)

TABLE IV. FIB BURST DISTRIBUTION COMPARISON BETWEEN FIFA-T AND BASICMINTIME

Burst Size Min Max Median =0 ≤1 ≤10 All
BasicMinTime 0 149,815 1 6,080,983 (11.24%) 49,611,562 (91.71%) 53,913,320 (99.66%) 54,095,973 (100%)

FIFA-T 0 69,526 1 6,150,664 (11.36%) 49,704,177 (91.88%) 53,919,736 (99.67%) 54,095,965 (100%)

less than 10 FIB changes; (2) FIFA-T usually has small FIB
bursts, but they can get very large (69,526); (3) with FIFA-S
and FIFA-H, the FIB bursts have at most 568 and 1,182 FIB
changes, respectively; and (4) SMALTA has the largest FIB
burst (72,856).

F. FIB Lookup Performance and Memory Saving Efficiency

We use the software reference design of Tree Bit Map [20]
to obtain FIB lookup time and memory usage. We found
that (1) the FIB lookup time on the aggregated table is
slightly better than that on the full table; and (2) the FIB
aggregation ratio calculated based on actual memory usage
is slightly higher than that calculated based on the number of
FIB entries, but still provides considerable memory savings.
More specifically, the former ranges from 21.2% to 52.2%
with a median of 49.6%, while the latter ranges from 13.28%
to 39.57% with a median of 36.74%.

V. RELATED WORK

Optimal Routing Table Constructor(ORTC) [12] was pro-
posed by Draves et al. 1997. It aggregates a routing table into
its optimal size using three passes over a binary tree, while

maintaining strong forwarding correctness. However, this al-
gorithm does not include any update handling mechanism.

Zhao et al. proposed four aggregation algorithms (Level1
- Level4) [13]. Level1 and Level2 algorithms maintain strong
forwarding correctness, but they do not optimize the FIB size.
Level3 and Level4 achieve weak forwarding correctness, by
introducing extra routable space.

In 2009, Karpilovsky proposed an incremental FIB update
algorithm [21] based on ORTC. This algorithm is similar to
FIFA-S. However, it needs three passes to handle an update,
and it normalizes all affected ancestors of an updated node,
both of which introduce considerable computational overhead.

In 2010, we proposed two incremental FIB aggregation
algorithms [14] based on ORTC. We showed that FIFA-S and
FIFA-T outperform these algorithms in Section IV.

Another very relevant work is SMALTA [15], in which
Uzmi et al. implemented a different update handling algorithm
based on ORTC. They utilize a binary tree rather than Patricia
Trie and update only affected nodes without optimizing the
subtree rooted at the updated node.

Li et al. proposed an FIB aggregation scheme with mul-
tiple selectable next-hops [22], which is geared toward FIBs



TABLE V. FIB BURST DISTRIBUTION COMPARISON AMONG THREE FIFA SCHEMES AND SMALTA

Burst Size Min Max Median =0 ≤1 ≤10 All
FIFA-S 0 568 1 6,961,449 (12.87%) 38,645,578 (71.43%) 53,318,607 (98.56%) 54,095,965 (100%)
FIFA-T 0 69,526 1 6,150,664 (11.36%) 49,704,177 (91.88%) 53,919,736 (99.67%) 54,095,965 (100%)
FIFA-H 0 1,182 1 6,232,328 (11.52%) 48,997,278 (90.57%) 53,784,161 (99.42%) 54,095,965 (100%)

SMALTA 0 72,856 1 4,456,410 ( 8.23%) 48,297,973 (89.28%) 53,873,603 (99.58%) 54,095,976 (100%)

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 0  1000  2000  3000  4000  5000  6000

N
um

be
r 

of
 p

re
fix

es

Number of updates/10000

FIFA-S
FIFA-T
FIFA-H

SMALTA

(a) FIB Size

 0

 50

 100

 150

 200

 250

 0  1000  2000  3000  4000  5000  6000

T
im

e(
s)

Number of updates/10000

Normal
FIFA-S
FIFA-T
FIFA-H

SMALTA

(b) Time Cost

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0  1000  2000  3000  4000  5000  6000

N
um

be
r 

of
 F

IB
 c

ha
ng

es

Number of updates/10000

Normal
FIFA-S
FIFA-T
FIFA-H

SMALTA

(c) FIB Changes

Fig. 11. FIFA Algorithms vs. SMALTA (Normal refers to no aggregation)

with multiple selectable next-hops for each prefix.

Simple Virtual Aggregation [23] installs virtual prefixes
which are shorter than real prefixes, such as /6, to legacy
routers to control FIB size growth. It can reduce the FIB size
on most routers, while the routers that announce the virtual
prefixes still need to maintain many specific prefixes.

VI. CONCLUSION

FIB aggregation is a promising direction in controlling
the growing FIB size. We have proposed FIFA, a suite of
three FIB aggregation algorithms, with significant performance
improvement over existing algorithms in terms of time cost,
total number of FIB changes and FIB burst size. For our next
step, we plan to investigate how to automatically switch among
the algorithms based on a set of constraints, e.g., memory size,
aggregated FIB size and maximum FIB burst size.

VII. ACKNOWLEDGMENT

We thank Zartash Afzal Uzmi for sharing his SMALTA
code with us. We also thank Lixia Zhang and the anonymous
reviewers for their feedback.

REFERENCES

[1] V. Fuller, “Scaling Issues with Routing+Multihoming,” http://www.vaf.
net/∼vaf/apricot-plenary.pdf.

[2] “IRTF Routing Research Group.” [Online]. Available: http://www.irtf.
org/charter?gtype=rg&group=rrg

[3] “IETF Global Routing Operations (GROW).” [Online]. Available:
http://www.ietf.org/dyn/wg/charter/grow-charter.html

[4] R. Atkinson and S. Bhatti, “ILNP Architectural Description,” Work in
Progress, http://tools.ietf.org/html/draft-irtf-rrg-ilnp-arch-06.

[5] D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang, and
L. Zhang, “Towards A Future Internet Architecture: Arguments for
Separating Edges from Transit Core,” in Proc. ACM HotNets, 2008.

[6] D. Jen, M. Meisel, D. Massey, L. Wang, B. Zhang, and
L. Zhang, “APT: A Practical Tunneling Architecture for Routing
Scalability,” UCLA, Technical Report 080004, 2008. [Online].
Available: http://www.cs.ucla.edu/∼meisel/apt-tech.pdf

[7] V. Khare, D. Jen, X. Zhao, Y. Liu, D. Massey, L. Wang, B. Zhang, and
L. Zhang, “Evolution towards global routing scalability,” IEEE Journal
on Selected Areas in Communications, vol. 28, no. 8, pp. 1363–1375,
Oct. 2010.

[8] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID Separation
Protocol (LISP),” Mar. 2009, Work in Progress, http://tools.ietf.org/
html/draft-farinacci-lisp-12.

[9] P. Francis, X. Xu, H. Ballani, D. Jen, R. Raszuk, and L. Zhang, “FIB
Suppression with Virtual Aggregation,” Jul. 2012, Work in Progress,
http://tools.ietf.org/html/draft-francis-intra-va-06.

[10] H. Ballani, P. Francis, C. Tuan, and J. Wang, “Making Routers Last
Longer with ViAggre,” in Proc. NSDI, 2009.

[11] X. Zhao, D. J. Pacella, and J. Schiller, “Routing scalability: an operator’s
view,” IEEE Journal on Selected Areas in Communications, vol. 28,
no. 8, pp. 1262–1270, Oct. 2010.

[12] R. Draves, C. King, S. Venkatachary, and B. D. Zill, “Constructing
Optimal IP Routing Tables,” in Proc. IEEE INFOCOM, 1999.

[13] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the Aggregatability of
Router Forwarding Tables,” in Proc. IEEE INFOCOM, 2010.

[14] Y. Liu, X. Zhao, K. Nam, L. Wang, and B. Zhang, “Incremental
forwarding table aggregation,” in Proc. IEEE Globecom, 2010.

[15] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,
and P. Francis, “SMALTA: practical and near-optimal FIB aggregation,”
in Proc. CoNEXT, 2011.

[16] “Net-Patricia Perl Module.” [Online]. Available: http://search.cpan.org/
dist/Net-Patricia/

[17] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 3, pp. 35–44, Jul. 2005.

[18] Advanced Network Technology Center and University of Oregon, “The
RouteViews project.” [Online]. Available: http://www.routeviews.org/

[19] Y. Liu, B. Zhang, and L. Wang, “Fast Incremental FIB Aggregation
(FIFA),” http://www.cs.memphis.edu/∼lanwang/fifa-tr.pdf.

[20] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap:
hardware/software ip lookups with incremental updates,” SIGCOMM
Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122, Apr. 2004.
[Online]. Available: http://doi.acm.org/10.1145/997150.997160

[21] E. M. Karpilovsky, “Reducing Memory Requirements for Routing
Protocols (thesis),” Princeton University, Technical Report TR-861-
09, 2009. [Online]. Available: http://www.cs.princeton.edu/research/
techreps/TR-861-09

[22] Q. Li, D. Wang, M. Xu, and J. Yang, “On the scalability of router
forwarding tables: Nexthop-Selectable FIB aggregation,” in Proc. IEEE
INFOCOM, 2011.

[23] R. Raszuk, J. Heitz, A. Lo, L. Zhang, and X. Xu, “Simple Virtual
Aggregation (S-VA),” Work in Progress, http://tools.ietf.org/search/
draft-ietf-grow-simple-va-10.


