
On the Aggregatability of Router Forwarding Tables
Xin Zhao∗

zhaox@email.arizona.edu
Yaoqing Liu†

yliu6@memphis.edu
Lan Wang†

lanwang@memphis.edu
Beichuan Zhang∗

bzhang@arizona.edu

Abstract—The rapid growth of global routing tables has raised
concerns among many Internet Service Providers. The most
immediate concern regarding routing scalability is the size of the
Forwarding Information Base (FIB), which seems to be growing
at a faster pace than router hardware can support. This paper
focuses on one potential solution to this problem – FIB aggrega-
tion, i.e., aggregating FIB entries without affecting the forwarding
paths taken by data traffic. Compared with alternative solutions
to the routing scalability problem, FIB aggregation is particularly
appealing because it is a purely local software optimization limited
within a router, requiring no changes to routing protocols or router
hardware. To understand the feasibility of using FIB aggregation
to extend router lifetime, we present several FIB aggregation
algorithms and evaluate their performance using routing tables
and updates from tens of networks. We find that FIB aggregation
can reduce the FIB table size by as much as 70% with small
computational overhead. We also show that the computational
overhead can be controlled through various mechanisms.

I. I NTRODUCTION

The global Internet routing table has been growing at an
alarming rate ([23], [14], [22]), driven in part by the increasing
number of organizations connected to the Internet, and in
part by the increasing practices of multi-homing and traffic
engineering. This rapid increase in routing table size appears to
outpace the increase in memory size, especially for the typeof
memory used in line cards for fast lookup. Moreover, it forces
ISPs to upgrade their routers at a faster pace, which not only
causes higher operational cost to the ISPs, but also makes issues
such as power consumption and lookup speed more prominent.

This routing scalability problem has raised concerns in both
industry and research communities, as documented in the report
from the IAB Workshop on Routing and Addressing [23].
Several solutions have been proposed under the IRTF RRG [3]
and IETF GROW [2] working groups. To address the root cause
of the scalability problem, fundamental changes to the Internet
routing architecture and protocols are called for. However,
deploying architectural changes is likely to take a long time,
as illustrated by past examples like IPv6. While architectural
changes may benefit the Internet in the long run, short-term
solutions are needed as the problem is serious and imminent.
In particular, ISPs urgently need to reduce their forwarding
table size. Forwarding tables are derived from routing tables
and router configurations, thus their size increases as routing
tables grow. However, forwarding tables use high performance
memory that is more expensive and more difficult to scale than
the memory used to hold routing tables. Therefore, their size
is a more immediate concern to ISPs and vendors.

∗Computer Science Department, The University of Arizona, USA.
†Computer Science Department, The University of Memphis, USA.

This paper investigates the feasibility of a purely local
solution: FIB aggregation, which is to combine multiple entries
in the forwarding table without changing the next hops for data
forwarding. This approach is particularly appealing because it
can be done by a software upgrade at a router and its impact
is limited within the router. It does not require changes to
routing protocols or router hardware, nor does it affect multi-
homing, traffic engineering, or other network-wide operations.
It is important to note that FIB aggregation is not a replacement
for the long-term architectural solutions because it does not
address the root causes of the routing scalability problem.
Instead,FIB aggregation is a local solution that can be quickly
implemented and deployed in the short-term, and in the long
run, it can co-exist and complement architectural solutions.

The idea of FIB aggregation is rather intuitive, but to our best
knowledge, no study has systematically evaluated its potential
benefits or costs. FIB aggregation is an opportunistic technique
– its effectiveness depends on what prefixes are present in
the table, how many of them can be numerically represented
by a single prefix, and how many of them share the same
next-hop. The benefits of FIB aggregation come with certain
costs, such as extra CPU cycles. The costs also depend on
the actual aggregation algorithms, and how routing changesare
handled to update the aggregated forwarding table. A thorough
understanding of FIB aggregation is needed in order to decide
whether it is a viable solution.

This paper conducts a systematic analysis and evaluation
of FIB aggregation to understand its gains and costs. We
recognize that there can be different levels of aggregation, each
representing different tradeoffs between table size reduction
and computation complexity. We design and implement five
algorithms at different aggregation levels, and evaluate them
using publicly available routing tables from tens of networks.
The results show that the lowest-level aggregation can reduce
table size by 30%-50%, making the table same size as two and
half years ago, while the highest-level aggregation can reduce
the table size by 70%, making the table same size as eight
years ago. The computation time of one aggregation run ranges
from tens of milliseconds to a few hundred milliseconds on a
commodity Linux machine. Although these numbers may not
reflect the computation time on a router, they reflect the relative
speed of different levels of aggregation. To handle routing
changes, we design and implement algorithms to incrementally
update the aggregated FIB upon a change. The full aggregation
algorithm is only invoked when the router CPU load is low or
the FIB size becomes above a threshold, thus its computation
time is amortized over time. The evaluation using one-month
BGP routing updates shows that compared with unaggregated

Fig. 1. RIB and FIB

FIB, the computation overhead of maintaining aggregated FIB
over time is small.

Our algorithms have assumed a generic tree structure to
store the routing tables, and we have not attempted to optimize
either the algorithm or the implementation. Our goal is to show
that, without special optimization, FIB aggregation in general
is a viable solution to the scalability problem with good table
size reduction and small computational overhead. When FIB
aggregation is adopted in real networks, the algorithms and
implementations can always be optimized for specific hardware,
operating systems, and routing table data structures.

The rest of the paper is organized as follows. Section II
gives an overview of FIB aggregation, why it may be effective
and what tradeoffs are involved. Section III presents various
aggregation techniques and algorithms. Section IV evaluates
the full aggregation algorithms as well as its incremental update
techniques. Section V discusses related work, and Section VI
concludes the paper.

II. FIB A GGREGATION

There are two types of tables used by routers:Routing
Information Base (RIB)for routing andForwarding Informa-
tion Base (FIB) for forwarding. RIB is stored in the main
memory of a route processor. The route processor receives and
processes routing update messages and runs routing protocols,
e.g., OSPF [24] and BGP [26], to compute the RIB. Each RIB
entry contains the destination IP prefix and associated route
information. For example, BGP maintains full AS path and
many other attributes for each prefix in RIB. FIB is derived
from RIB and router configurations. It is stored in line cards,
whose job is to forward data packets. Therefore, FIB usually
uses high performance memory, which is more expensive and
more difficult to scale. For each destination IP prefix, the FIB
has an entry to store the next-hop IP, next-hop MAC address and
outgoing interface for fast data forwarding. Figure 1 illustrates
these different components in a router.

Despite growth constraints such as strict address allocation
policies [23], the routing tables in the default free zone (DFZ)
have been growing at an alarming rate in recent years. Cur-
rently, a DFZ router stores hundreds of thousands of routes
or even a million in tier-1 ISPs. This is in part due to the
sheer growth of the Internet, and in part due to the lack of

aggregation. When a customer network multi-homes to multiple
providers for resilient Internet connectivity, the customer’s
address prefix(es) must be visible in the global routing table in
order to be reachable through any of its providers, thus breaking
down provider-based aggregation [8]. Traffic engineering is
another contributing factor. For example, a network may tryto
influence the paths of specific incoming traffic flows by splitting
its prefix into several longer ones and injecting them at different
network attachment points. Splitting prefixes is also used as a
defense mechanism against prefix hijacking. Growing table size
leads to increasing FIB tables, RIB tables, and routing churns.
Among these problems, ISPs and vendors are more concerned
about the FIB size than RIB size, because it is more difficult to
scale up the memory in line cards than in route processors [14].

The conventional way of reducing routing table size is to
aggregate the RIB, which will also reduce FIB size. However,
RIB aggregation has very limited adoption in the Internet. At
a prefix’s origin network, there is little incentive to aggregate
the prefix, because the gain of aggregating a small number
of self-originated prefixes does not make much difference to
the table size. At the same time, the origin network actually
has incentives, such as multi-homing and traffic engineering,
to split the prefix. At a remote site, aggregation opportunity is
limited since two prefixes must have the samepath attributesin
order to be aggregated in RIB. Otherwise their path information
will be lost and protocol functions may be affected. Forcing
aggregation of prefixes that have different paths would also
defeat multi-homing and traffic engineering intended by the
prefix origin networks.

FIB aggregation eliminates and aggregates entries in a
FIB based on the next-hop router information while ensuring
forwarding correctness. For example, it can remove prefixP1

from the FIB if its super-prefixP2 uses the same next-hop as
P1. It may also introduce a new entry to the FIB after removing
multiple entries that share the same next-hop.

FIB aggregation may be more effective than RIB aggregation
since it only requires prefixes to have the samenext-hopin order
to be aggregated. For example, considering that a Los Angeles
router connects to a Tokyo router, which in turn connects to a
Beijing router and a Shanghai router. The Los Angeles router
may reach prefixes announced by China Telecom via different
paths, some via Beijing and some via Shanghai. However, in its
FIB, most these prefixes take the Tokyo router as the next-hop,
making them aggregatable.

The effectiveness of FIB aggregation depends on how pre-
fixes are distributed over next-hop routers. Generally speaking,
the fewer neighbors a router has, the better aggregation it
may achieve. In the extreme case that all prefixes share the
same single next-hop, aggregation is maximized. According
to Li et al. [20], although some routers have high degrees
up to a couple of hundreds, most connections are with their
end-customers, which represent only a small percentage of the
address space. The routers still use a small number of transit
neighbors to reach most address prefixes.

Besides sharing the same next-hop, prefixes also need to be

numerically aggregatable. This is possible due to two factors.
First, in IP address allocation, large blocks of Internet addresses
are first allocated to Regional Internet Registries and thenthey
further allocate the addresses to networks within the same
region. Thus prefixes announced out of the same regions tend
to be numerically aggregatable. Second, for prefixes split for
traffic engineering or other purposes, a router near the origin
network is likely to take different next-hops, but a router further
away from the origin network is more likely to have the same
next-hop towards these numerically aggregatable prefixes.

Therefore, although FIB aggregation is opportunistic and the
aggregation degree varies from router to router, there are in-
herent properties of the Internet that can make FIB aggregation
effective. If FIB aggregation is indeed effective in reducing
table size, its most appealing feature is that the impact is limited
within a router’s data plane. It does not change any routing
protocols, or any router’s routing decisions. Data traffic still
flows on the same router paths. Therefore, it can co-exist with
almost any new routing protocols, including those architectural
solutions to the routing scalability problem in the long run.

The idea of FIB aggregation is not new. It was mentioned
as a potential strategy in “Preliminary Recommendation fora
Routing Architecture” [21]. Through personal exchanges, we
have learned that one small vendor has implemented a simple
FIB aggregation scheme (similar to our Level-1 aggregation).
There is also a patent for a FIB aggregation algorithm [9].
Draveset al.designed an optimal aggregation algorithm when
no extra routable space is allowed [11]. However, to our best
knowledge, we are the first to present an in-depth analysis of
different levels of FIB aggregation, and systematically evaluate
its effectiveness and overhead.

III. FIB A GGREGATIONTECHNIQUES ANDALGORITHMS

There are two main questions in designing FIB aggregation
techniques: how to aggregate the full FIB and how to update an
aggregated FIB upon a routing change. We consider four levels
of full FIB aggregation, each associated with different tradeoffs.
We also propose a few techniques to reduce the computation
time in updating the FIB. The algorithms presented in this
section assume the routing table is stored in a tree structure.
Though our implementation uses patricia trie, the algorithms
should apply to any tree data structure. Note that our algorithms
do not build any additional trees just for aggregation; we simply
use the existing trees that the RIB and FIB already have. For a
network device that uses non-tree data structure to implement
routing tables, the general techniques discussed here still apply,
but the algorithmic implementation will differ.

FIB aggregation should ensure packet delivery and not
change the paths that packets take, which we callforwarding
correctness. We define two types of forwarding correctness as
follows.

• Strong Forwarding Correctness: The longest-match lookup
of any destination address should end up with the same
next-hop before and after the aggregation.

• Weak Forwarding Correctness: For destination addresses
that have non-NULL next-hops before the aggregation,

longest-match lookup should end up with the same next-
hop after the aggregation.

There are four levels of FIB aggregation. The first two sat-
isfy strong forwarding correctness, the last two satisfy weak
forwarding correctness. We will discuss the tradeoffs and
implications after presenting the aggregation techniques.

A. Full FIB Aggregation

a) Level 1 Aggregation:this technique is illustrated in
Figure 2(a). The simplest form of aggregation is to remove
prefixes that share the same next-hop with their immediate
ancestor prefixes, in which case we say that the “covered
prefix” has the same next-hop as the “covering prefix” and
can be removed from FIB. Addresses that previously match
the covered prefix now will match the covering prefix and still
get the same next-hop. Previously non-routable packets, whose
table lookup ends up with NULL next-hop, will still be non-
routable. This aggregation does not introduce any new prefix
nor extra routable space into the table.

The algorithm implementing this technique simply traverses
the tree recursively from the root node inpostorder. When
it arrives at a node with a prefix, it compares this prefix’s
next-hop with its immediate ancestor prefix’s next-hop. If they
have the same next-hop, it labels the current node NON-FIB,
otherwise labels it IN-FIB. The immediate ancestor prefix’s
next-hop is updated and remembered during the tree traversal.
Eventually every prefix node is labeled as either NON-FIB or
IN-FIB, and all IN-FIB prefixes comprise the aggregated FIB.
The aggregation is done recursively throughout the entire table.
The computation time is O(n), where n is the total number of
nodes in the tree.

b) Level 2 Aggregation:this technique is illustrated in
Figure 2(b). In addition to performing Level 1 aggregation,
Level 2 combines sibling prefixes that share the same next-hop
into a parent prefix. If the parent node already has a prefix with
a different next-hop, then the aggregation cannot be done. Or
if the parent node already has a prefix with the same next-hop,
then it is part of Level 1 aggregation. Therefore, Level 2 is
done when the parent node has no prefix. The net result is to
introduce a new prefix to cover two sibling prefixes, but there
is no extra routable space introduced,i.e., the aggregated FIB
covers the exact address space as the unaggregated FIB.

The algorithm implementing Level 2 aggregation traverses
the tree recursively from the root node inpostorder. Besides
doing Level 1 aggregation, when it arrives at a node without
a prefix, it compares this node’s two children. If both children
have prefixes and use the same next-hop, then both children
are labeled NON-FIB, and this current node is assigned the
parent prefix and labeled IN-FIB. The aggregation is done
recursively throughout the entire table. The computation time
is O(n), where n is the total number of nodes in the tree.

c) Level 3 Aggregation:this technique is illustrated in
Figure 2(c). In addition to performing the Level 1 and 2
aggregation, Level 3 aggregates a set ofnon-siblingprefixes
that have the same next-hop into a super prefix. Between
these non-sibling prefixes, non-routable space is allowed.For

A

AA

(a) Level 1: Removing
covered prefixes

A A

A

(b) Level-2: Combining
sibling prefixes

AA

A

(c) Level-3: Allowing extra routable
space

AA

A

B B

(d) Level-4: Allowing holes in the aggre-
gate

Fig. 2. Different Levels of FIB Aggregation. The binary treerepresents part of the IP address space. Nodes labeled with letters are prefixes in the routing
table, and the letter represents the next-hop for the prefix.Nodes without labels do not have their corresponding prefixes in the routing table. Filled nodes are
extra routable space introduced by the aggregation.

example, in Figure 2(c), at the bottom level of the tree, there
are two nodes with address prefixes (real nodes) sharing the
same next hop. However, these two nodes are separated in
the tree by two nodes without address prefixes. The prefixes
of the two real nodes can be aggregated into a grandparent
prefix. A side effect is that this newly inserted prefix covers
previously non-routable space, therefore some previouslynon-
routable traffic (which would have been dropped by this router)
will be forwarded along the next-hop of the aggregate prefix.
All previously routable traffic is still routed along the same path
as before. This behavior satisfies weak forwarding correctness
but not strong forwarding correctness.

Level 3 aggregation must be implemented with care to ensure
its forwarding correctness. For example, in Figure 2(c), two
grandchildren prefixes are aggregated into one grandparent
prefix. This would be incorrect if there is already a great-
grandparent prefix (not shown in the figure) covering the
subtree with a different next-hop B, because that means the two
middle nodes at the bottom level are not non-routable space and
their next-hops would change from B to A after the aggregation.
In order to handle this case without introducing much compu-
tation overhead, we decide that in our implementation we only
apply this type of aggregation to prefixes that do not have any
existing ancestor prefix. In a typical DFZ routing table, about
half of all the prefixes have no ancestor and the other half have
ancestors. The prefixes that have ancestors can be aggregated
by Level 1 and Level 2, therefore our choice does not lose too
much aggregation capability.

The algorithm implementing Level 3 aggregation traverses
the tree recursively inpostorder. Besides doing Level 1 and
Level 2 aggregation for all nodes, when it arrives at a prefix
that does not have any ancestor, it checks whether this prefix
has a sibling node that does not have a prefix. If yes, it returns a
pointer of this prefix node to its parent node, which will further
pass this pointer up along the tree. When an upper level node
has two such pointers, one from a left descendant and another
from a right descendant, and these two descendants have the
same next-hop, then a new prefix is created at this upper level
node and labeled IN-FIB, while the two descendant nodes are
labeled NON-FIB. If the two descendants have different next-
hops, then aggregation cannot be done and they remain IN-FIB.
The computation complexity is O(n), where n is the number of
nodes in the tree.

d) Level 4 Aggregation:this technique is illustrated in
Figure 2(d). In addition to performing Level 1, 2 and 3 aggre-
gation, Level 4 aggregates a set ofnon-siblingprefixes with

the same next-hop. The difference from Level 3 aggregation is
that, in Level 4, between the non-sibling aggregated prefixes,
other prefixes with different next-hops are allowed, while Level
3 only allows non-routable space. For example, in Figure 2(d),
a node with next-hop B is allowed to be between the prefixes
being aggregated, punching a “hole” in the aggregate prefix.
This type of aggregation maintains forwarding correctnessand
may also introduce extra routable space as Level 3 does. For the
same reason as in Level 3, our algorithm only applies this type
of aggregation to prefixes that do not have ancestor prefixes.

The seemingly trivial difference between Level 4 and Level
3 actually has significant implication to algorithm design.It al-
lows the maximum flexibility for aggregation. However, taking
full advantage of it may also require significant computation
time. For example, given a set of non-sibling prefixes with
different next-hops, which super-prefix should be inserted?
Which next-hop should the super-prefix take? Finally, how
should the decision be made without too much computational
complexity? In this paper, we present and evaluate two different
Level 4 algorithms described as follows.

The Level 4A algorithm traverses the tree recursivelyoncein
postorder. Besides doing Level 1, 2 and 3 aggregations, when
it arrives at a prefix that does not have any ancestor, it returns
a pointer of this prefix node to its parent, which will further
pass this pointer up along the tree. An upper level node will
receive twolists of its descendants, one from its left child and
the other from its right child. This node combines the two lists
to get all its descendants and their next-hops, picks themost
popularnext-hop as its own next-hop and inserts a prefix at this
node. All the descendants that use the most popular next-hop
will be labeled NON-FIB, and other descendants are labeled
IN-FIB. If multiple next-hops tie for the most popular, then
one of them is randomly selected. The computation time is
O(n), where n is the number of nodes in the tree.

The Level 4B algorithm is based on Herrin’s proposal [5].
It traverses the treetwice. The first step traverses the tree
recursively in postorder, which is like sweeping all tree nodes
from bottom up. During this process, the algorithm calculates
the most popular next-hop among all descendant prefixes of a
node and records this next-hop with the node unless this node
already has a prefix with a different next-hop. The second step
traverses the tree recursively in preorder, which is like going
through all tree nodes from top down. During this process, the
algorithm tries to insert new prefixes with the most popular
next-hop from all descendants (not just immediate descendants
as in Level 4A), as calculated in the previous postorder tree

traversal, and label descendant prefixes NON-FIB or IN-FIB
accordingly. When there are multiple equally popular next-
hops, we randomly select one. Under certain conditions a newly
inserted prefix at a higher level of the tree may be redundant
and will be removed. The computation time is O(n), where n is
the number of nodes in the tree. It tries to do a more thorough
aggregation than Level 4A, but will take longer time since it
traverses the tree twice.

e) Extra Routable Space:The difference between weak
and strong forwarding correctness is that the former (e.g.,
Level 3 and 4 aggregations) introduces new prefixes that cover
previously non-routable space, therefore some previouslynon-
routable traffic (which would have been dropped by this router)
will be forwarded. The impact of extra routable space depends
on how much traffic is destined to that address space. In normal
operational conditions, the volume of such traffic should be
negligible. However, malicious traffic such as port scanning
usually explores such non-routable space and in certain cases
it may become noticeable. Eventually these packets will be
dropped, either because they arrive at a router that does not
have a route for these packets, or because the packet’s time-to-
live expires, but they will consume bandwidth during transit. It
is also possible that traffic to the extra routable space falls in a
loop. Network operators can choose the level of aggregation
that is the best fit to their networks based on the tradeoff
among table size reduction, computation time and extra routable
space. To limit the size of extra routable space, one can stop
aggregation for prefixes whose prefix lengths are shorter than
a threshold. We found that the best tradeoff between table size
reduction and extra routable space size is achieved when the
aggregation stops at prefix length of 15. Moreover, null-routed
prefixes can be inserted to remove the extra routable space.

B. Handling Routing Updates

Internet routes change over time, thus the obvious questionis
how to update the aggregated FIB when there is a change. Re-
run the full FIB aggregation will maintain the best aggregation
all the time, but it will also incur significant computation
overhead. We use the combination of three mechanisms to
make sure that the computation cost of updating aggregated
FIBs is under the control of operators. First, operators can
choose the level of full FIB aggregation that suits their routers
the best. Routers with faster CPU and fewer routing updates
can use higher level FIB aggregation, otherwise they can use
lower level FIB aggregation. Second, we design an algorithm
that updates the aggregated FIB incrementally. The algorithm
tries to minimize the number of tree nodes that have to be
accessed and changed to maintain forwarding correctness after
the routing change. It does not attempt to keep table size
small. Third, the full FIB aggregation is only invoked when
needed,e.g., the table size has crossed a threshold after being
incrementally updated for a while, or when the router has free
CPU cycles to spare,i.e., the router load is under a threshold.

Processing a routing update includes two steps: updating the
RIB and updating the FIB. The second step is straightforwardas
we just need to apply RIB changes to FIB. Thus we will focus

on describing how the RIB is incrementally updated. In general,
when a prefix gets a new nexthop, its nearest descendants
need to be re-aggregated, and when a prefix is withdrawn, its
nearest descendants need to be de-aggregated. The details differ
depending on the level of aggregation. We first define a few
basic operations, and then use them to describe the incremental
update algorithm for each level.

• update-node(p): when an announcement of prefix p is
received, insert the corresponding node if it does not exist
in RIB, otherwise update its nexthop information if nec-
essary. If p was previously generated by the aggregation
process, label it as a real prefix. Let A be p’s nearest
ancestor, if nexthop(A) == nexthop(p), label p as NON-
FIB, otherwise IN-FIB.

• re-aggregate(p): For each D of p’s nearest descendants, if
nexthop(D) != nexthop(p), label D IN-FIB. Optionally, if
nexthop(D) == nexthop(p), label D NON-FIB, which does
not affect forwarding correctness but reduces the FIB size
at the expense of updating more nodes.

• de-aggregate(p): Let A be p’s nearest ancestor. For each D
of p’s nearest descendants, if nexthop(D) != nexthop(A),
label D IN-FIB. Optionally, if nexthop(D) == nexthop(A),
label D NON-FIB, which does not affect forwarding
correctness but reduces the FIB size at the expense of
updating more nodes. When A does not exist, its nexthop
is considered to be NULL and the aforementioned actions
still hold.

Using the above basic operations, we describe the incremen-
tal update algorithm for each level of aggregation as follows.

Level 1: Upon receiving an announcement of prefix p,
update-node(p) and re-aggregate(p). Upon receiving a with-
drawal of prefix p, de-aggregate(p) and remove p from the RIB.

Level 2: Upon receiving an announcement of prefix p,
update-node(p) and re-aggregate(p). Upon receiving withdrawal
of prefix p, de-aggregate(p) and remove p. However, if p’s
nearest ancestor, A, is a generated prefix, we also need to de-
aggregate(A) and remove A to prevent extra routable space.

Level 3: Upon receiving an announcement of prefix p,
update-node(p) and re-aggregate(p). During the re-aggregation,
if any D is a generated prefix and nexthop(D) != nexthop(p),
de-aggregate(D) and remove D. This is needed since in Level
3 aggregation, a generated prefix is not supposed to appear
as a descendant of any real prefix, otherwise the forwarding
correctness may not hold. The processing of withdrawals is the
same as in Level 2.

Level 4: The processing of withdrawals is the same as in
Level 2. The processing of announcements is mostly the same
as in Level 3, except that the de-aggregation will take place
even if a node changes from a generated prefix to a real prefix
with the same nexthop. In Level 4 aggregation, it is possiblethat
a generated prefix covers another generated prefix. Therefore
when a prefix becomes real, its descendants need to be de-
aggregated to make sure that there is no generated prefixes
underneath. While in Level 3 aggregation, a generated prefix
does not cover another generated prefix.

Fig. 3. Next-hop, iBGP neighbor, and next-AS-hop

IV. EVALUATION

We use publicly available routing tables from tens of net-
works to evaluate the various FIB aggregation algorithms for
their table size reduction, computing times, and extra routable
space. We also use BGP routing updates to evaluate our
incremental update algorithm.

A. Methodology

The publicly available BGP routing tables are taken from
route servers [1] and the route-views.oregon-ix.net monitor
of the RouteViews project [6]. Although these routing tables
contain valid next AS hops, they either do not have next-hop
router information or do not reflect the diversity of next-hops
that an operational router typically has, since the route monitors
are not operational routers. Therefore we need to generate
realistic next-hops based on known information. Our guideline
of this process is trying to overestimate the number of next-
hops so that the table reduction results reflect the worst case
scenario, and real routers are likely to have better aggregation
ratio.

Routing tables downloaded from route servers contain the
iBGP neighbor address for each prefix. Assuming intra-domain
routing uses a single best path, prefixes that share the same
iBGP neighbor will share the same next-hop. Thus we use the
iBGP neighbor as the next-hop in evaluations (see Figure 3 for
the relationship between next-hop, iBGP neighbor and next-AS-
hop). This reflects the worst case scenario since prefixes using
different iBGP neighbors may actually use the same next-hop
router in reality, which will improve aggregation.

Routing tables downloaded from RouteViews do not even
contain iBGP neighbor addresses – they contain only the AS
path for each prefix. In this case, we use the next-AS-hop
for each prefix to approximate the next-hop router based on
the assumption thatprefixes sharing the same next-AS-hop are
likely to share the same iBGP neighbor and thus the same next-
hop router. We use tables from route servers to validate this
assumption. For each next-AS-hop, if there is only one iBGP
neighbor, then all the prefixes using this next-AS-hop sharethe
iBGP neighbor. If there are multiple iBGP neighbors, the one
that carries the most prefixes is called “popular,” and we expect
that most of the prefixes use the popular iBGP neighbors. As
shown in Figure 4, more than 90% of the prefixes indeed use the
most popular next iBGP neighbor in all the valid route server
tables. Note that approximating next-hop router using next-
AS-hop tends tounderestimatethe effectiveness of aggregation

 0

 0.1
 0.2

 0.3
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
 1

sunrise.ch

belwue.de

twtelecom
.net

he.net

gt.ca
lg.sp.ptt.brP

er
ce

nt
 o

f P
re

fix
es

 U
si

ng
 P

op
ul

ar
 iB

G
P

 N
ei

gh
bo

r

Route Server

Fig. 4. Prefixes sharing the same next-AS-hop use the same iBGP neighbor.

schemes, since large networks have hundreds to thousands of
neighbor ASes, but the number of real next-hops should be
much smaller.

We verify the forwarding correctness of each aggregated FIB
by looking up every original RIB prefix and its sub prefixes
in the FIB, which should give the same next-hop as that in
the RIB. All the results from our FIB aggregation algorithms
and incremental update algorithms have been verified to satisfy
forwarding correctness.

The evaluation has been done on a Linux machine with an
Intel Core 2 Quad 2.83GHz CPU. The implementation uses a
single thread and the thread is bound to a single core at runtime.
The algorithms are implemented in C and no performance
optimization techniques have been attempted. The Patriciatrie
implementation is taken from the C source code of Perl’s
Net::Patricia module [4], which in turn was adapted from
MRTD’s [25] source code.

We use the public BGP routing tables to do the evaluation
because these tables come from a diverse set of networks,
from tier-1 ISPs to small networks. However, in operational
networks, there are other types of routes, such as VPN routes,
which can be of a large number too. The FIB aggregation
algorithms can be applied to these other types of routes as well,
even though this paper does not evaluate the effectiveness of
doing so. We plan to obtain forwarding tables from operational
routers to further validate our results.

B. Table Size Reduction and Overhead

We apply the four levels of aggregation to 36 routing tables
archived at RouteViews on Dec. 31, 2008. Figure 5(a) shows the
ratio of aggregated FIB size over original table size. The routers
are ordered based on aggregation ratio. One can make the
following observations: (1) each level of aggregation can reduce
the FIB size more than the previous level, which is expected;
(2) even with the simple Level 1 aggregation, the FIB size can
be reduced by 30% to 50%; (3) Level 4 aggregation can reduce
the FIB size by 60% to over 90% with the median around 66% –
some of the tables have almost all the prefixes sharing the same
nexthop, leading to very small aggregated table; and (4) Level
4A is slightly better than Level 4B, although the difference
is almost negligible. The results for the tables from the route
servers are similar. They are not included due to the page limit.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 4 8 12 16 20 24 28 32 36

T
ab

le
 S

iz
e

R
at

io
 (

A
gg

re
ga

te
d

F
IB

/R
IB

)

Router ID

Level 1
Level 2
Level 3

Level 4 (A)
Level 4 (B)

(a) RouteViews Tables, 2008/12/31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2001 2002 2003 2004 2005 2006 2007 2008

T
ab

le
 S

iz
e

R
at

io
 (

A
gg

re
ga

te
d

F
IB

/R
IB

)

Year

Level 1
Level 2
Level 3

Level 4 (A)
Level 4 (B)

(b) RouteViews Tables, 2001 - 2008

Fig. 5. Ratio between Aggregated FIB size and Routing Table Size

 0

 50000

 100000

 150000

 200000

 250000

 300000

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

R
IB

 S
iz

e

P
er

ce
nt

 c
om

pa
re

d
to

 2
00

8/
12

/3
1

Time

Size

Fig. 6. Historical RIB size

To evaluate the effectiveness of FIB aggregation over a longer
period of time, we apply it to RouteViews routing tables from
2001 to 2008. For each year, we use all the tables available on
Dec. 31, and plot median aggregation ratio in Figure 5(b). The
result shows an overall slightly decreasing trend, suggesting
that the FIB has become more amenable to aggregation over the
years. One possible explanation is that the increasing practice
of prefix splitting due to multi-homing and traffic engineering
has made a larger percentage of FIB entries aggregatable. We
plan to further investigate this phenomenon in our future work.

To understand the significance of the table size reduction
results, we plot the size of the routing table from 1994 to 2009
(Figure 6) to translate the size reduction into how many years
the clock is turned back for a router. The data is obtained from
bgp.potaroo.net, a site that tracks the growth of the BGP table
size. This figure shows that the FIB size in Nov. 2000 is around
34% of the FIB size on Dec. 31, 2008, which means that if an
ISP uses the Level 4 aggregation algorithm, it will still be able
to use routers that were deployed in late 2000, assuming table
size is the limiting factor.

Figure 7 shows the computing time for each of the 36 routing
tables. The Level 1 to 3 algorithms typically take tens of
milliseconds, while the Level 4 algorithms take at most a few
hundreds milliseconds. An operational router has a different
CPU from our commodity Linux machine, and also specialized
hardware and software. Thus it is hard to infer a router’s
computing time from what we report here. Nevertheless, the

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300
 330
 360
 390
 420
 450
 480

 0 4 8 12 16 20 24 28 32 36
C

om
pu

ta
tio

n
T

im
e

(m
s)

Router ID

Level 1
Level 2
Level 3

Level 4 (A)
Level 4 (B)

Fig. 7. Computing Time (RouteViews Tables)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 4 8 12 16 20 24 28 32 36

E
xt

ra
 R

ou
ta

bl
e

S
pa

ce
 (

/8

 p
re

fix
es

)

Router ID

Level 3
Level 4 (A)
Level 4 (B)

Fig. 8. Extra Routable Address Space (RouteViews Tables)

simplicity of the algorithms and the very short computing time
suggest that the computational overhead in an operational router
may be small. Moreover, the results can be used to compare
the relative speed between different aggregation algorithms.
For example, we can observe that Level 4B algorithm is more
computationally intensive than the Level 4A algorithm since it
traverses the tree one more time.

Figure 8 shows the amount of extra routable space measured
by the number of equivalent /8 prefixes. Since Level 1 and
2 algorithms do not introduce any extra routable space, they
are not included in the figure. To avoid introducing a large
amount of extra routable space, we do not aggregate short
prefixes. The exact threshold on the prefix length is a tradeoff
between aggregation ratio and extra routable space size. Wefind
that /15 represents a good trade-off,i.e., aggregating prefixes
shorter than /15 will only reduce the table size marginally

Algorithms Total RIB Avg. RIB Total FIB Total FIB Avg. FIB Total Affected No. Prefixes Affected
Proc. Time(s) Proc. Time (µs) Updates Proc. Time(s) Proc. Time(µs) Prefixes in FIB Per FIB Update

Un-Aggregated FIB 4.37 0.60 2914020 2.58 0.89 2914020 1.000
Level-1 Aggregation 4.47 0.62 2904623 2.45 0.84 2921339 1.006
Level-2 Aggregation 4.51 0.62 2901197 2.44 0.84 2933968 1.011
Level-3 Aggregation 4.64 0.64 2900302 2.42 0.83 2940223 1.014
Level-4 Aggregation (A) 4.67 0.64 2897384 2.40 0.82 2941992 1.015
Level-4 Aggregation (B) 6.41 0.88 2913988 2.61 0.77 3388764 1.162

TABLE I
PROCESSINGROUTING UPDATES IN DECEMBER2008

but will introduce a lot of extra routable space. The result
presented in Figure 8 caps the aggregation at /15. Level 3
algorithm introduces less extra routable space than Level 4
algorithms, while Level 4B algorithm has more extra routable
space than the Level 4A algorithm. This is mainly because the
4B algorithm aggregates prefixes from top to bottom, which
introduces more shorter prefixes than the 4A algorithm.

C. Routing Update Handling

To evaluate the incremental update algorithm, we use one
month (December 2008) of BGP updates collected by Route-
Views from a peer router at a large ISP (Level-3 Communica-
tions). There are totally 7,254,478 routing updates duringthis
month, and we make sure there is no BGP session reset or table
transfer in that month.

The processing time is obtained for RIB update and FIB
update separately. The results are summarized in Table I. We
make the following observations: (a) the RIB processing time
per routing update increases from 0.6µs without aggregation to
0.62µs for Level 1 aggregation (3.3% increase) and 0.64µs for
Level 4A aggregation (6.7% increase). The increase is due to
the need to update more than one node in the RIB tree, but the
small increase suggests that the extra overhead for updating
the RIB is minimal; (b) the total FIB processing time (5th
column) decreases by 5% (Level-1) to 7% (Level-4A), despitea
slight increase in the total number of affected prefix nodes (7th
column). This is because each prefix takes less time to update
in an aggregated FIB, leading to a lower total FIB processing
time. The lower FIB update time per prefix is likely due to
the small FIB size after aggregation, which means faster prefix
lookup. In summary, FIB aggregation can reduce both the FIB
size and FIB update time, with minimal extra RIB processing
time.

Among all the updates, 2,914,020 of them cause changes
to unaggregated FIB,i.e., an insertion, removal, or a change
to the next-hop of a FIB entry. Note that there can be fewer
routing updates that cause changes to an aggregated FIB than
the unaggregated FIB (see the 4th column of Table I). For
example, the aggregated FIB from Level 4A algorithm has
16,636 fewer updates than the unaggregated FIB. This is due
to two reasons. First, some of the route withdrawals are for
prefixes already removed from the FIB by the aggregation.
Second, the update algorithm minimizes the number of FIB
updates at the cost of slightly increased FIB size.

Since the update handling algorithm trades off the FIB size
for fewer changes, the FIB needs to be re-aggregated when its

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

12/02/08 12/08/08 12/14/08 12/20/08 12/26/08 01/01/09

F
IB

 S
iz

e

Time

Aggregated FIB Size
Unaggregated FIB Size

Fig. 9. FIB size after applying Level 4A aggregation algorithm initially and
incremental update handling algorithm subsequently

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

12/02/08 12/08/08 12/14/08 12/20/08 12/26/08 01/01/09

F
IB

 S
iz

e

Time

Aggregated FIB Size
Unaggregated FIB Size

Fig. 10. FIB size with periodic re-aggregation

size reaches a certain threshold. To estimate how frequently the
re-aggregation will be triggered, we measure the growth of the
FIB size as our algorithm handles the BGP updates during the
month of Dec. 2008 (see Figure 9). The Level 4A aggregated
FIB has 104,691 entries on Dec. 1, 2008 (39.2% of the full table
size). If the threshold for re-aggregation is set to 150,000entries
(about 55% of the full routing table size), the FIB would be
re-aggregated four days later on Dec. 6, 2008. Considering that
each full aggregation takes at most a few hundred milliseconds
on our commodity PC (perhaps a little longer on a router),
incurring this overhead every few days or so should not be a
concern for an ISP. Figure 10 confirms that with 150,000 as the
threshold re-aggregation indeed happens every few days, for a
total number of seven times within this month.

V. RELATED WORK

The introduction of CIDR [15] in 1993 enabled better
aggregation of address prefixes and slowed down the growth of
routing table size considerably for a period of time. However,
the increasingly pervasive practice of multihoming and traffic
engineering has again led to the routing scalability problem.

In response this problem, the IRTF Routing Research Group
(RRG) [3] was formed in search for a long-term solution.
Many proposals are being discussed on the RRG mailing list
and at RRG meetings. In previous work [19], we classified
the proposed solutions into two categories,separation and
elimination. One of the separation approaches is Map-and-
Encap ([10], [17]). Several recently proposed schemes,e.g.,
LISP [12], APT [18], Ivip [27], TRRP [16], are realizations
of the Map-and-Encap concept. These long-term solutions aim
to reduce the routing table size, which inevitably involves
changes to the routing architecture and protocols. However,
these changes generally take a long time to become a reality.
Moreover, they usually change the traffic paths, and incur extra
packet processing overhead.

The ORTC algorithm proposed by Draveset al. [11]
achieves optimal aggregation when no extra routable space is
allowed. However, they did not include an update handling
mechanism for ORTC. Our work can achieve higher aggre-
gation ratio by introducing a small amount of extra routable
space. We also provide different levels of aggregation with
different tradeoffs so that operators can choose the scheme
best for their routers. Bill Herrin proposed FIB aggregation
as a potential strategy in “Preliminary Recommendation fora
Routing Architecture” [21]. He described the basic idea of our
Level 4B algorithm, which includes our own improvements.

Another proposed approach to reducing FIB size is Virtual
Aggregation (VA) ([13], [7]). VA designates a small set of
routers (APRs) that announce virtual prefixes, so that other
routers do not need to install more specific prefixes under those
virtual prefixes in their FIB – they just simply forward packets
to the APRs responsible for the corresponding virtual prefixes.
It can be independently deployed by one ISP, and does not re-
quire changes to the routing architecture or protocols. However,
VA requires changes to network-wide router configurations and
specialized routers to announce virtual prefixes. Moreover, it
could introduce extra delays (stretch) in packet delivery.VA
allows operators to control FIB size more explicitly by APR
configuration.

VI. CONCLUSION AND FUTURE WORK

We have presented an in-depth analysis of FIB aggregation
and the results suggest that it is a viable short-term solution
to the problem of growing FIB table size. Our aggregation
algorithms reduces the FIB size by as much as 70% and requires
no hardware changes or network-wide software/configuration
changes, thus reducing the need for ISP router upgrades in
the short term. During this time, the research community and
the industry can design and deploy long-term solutions to
reduce both the routing table and the FIB table. Moreover,
FIB aggregation can co-exist with any long-term solution to
further reduce ISPs’ operational costs. We plan to continue
our research on FIB aggregation in the following areas. First,
we will obtain forwarding tables from operational ISP routers
to validate our results. Second, we would like to examine the
consequences of the extra routable space introduced by Level 3
and 4 aggregations. Third, we plan to implement our algorithms

on a software based router. Finally, we are conducting an
in-depth comparison between our algorithms and the ORTC
algorithm proposed by Draveset al. [11].

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 0721863 and 0721645. We
thank Lixia Zhang, Tony Li, Xiaohu Xu, Keyur Patel, Zartash
Uzmi, William Herrin, John Scudder, Danny McPherson and
the anonymous reviewers for their insightful comments.

REFERENCES

[1] BGP4.net Wiki. http://bgp4.net.
[2] IETF Global Routing Operations (GROW). http://www.ietf.org/dyn/wg/

charter/grow-charter.html.
[3] IRTF Routing Research Group. http://www.irtf.org/charter?gtype=rg\

&group=rrg.
[4] Net-Patricia Perl Module. http://search.cpan.org/dist/Net-Patricia/.
[5] Opportunistic Topological Aggregation in the RIB-FIB Calculation? http:

//www.ops.ietf.org/lists/rrg/2008/threads.html#01880.
[6] Advanced Network Technology Center and University of Oregon. The

RouteViews project. http://www.routeviews.org/.
[7] H. Ballani, P. Francis, C. Tuan, and J. Wang. Making Routers Last Longer

with ViAggre. In NSDI, 2009.
[8] T. Bu, L. Gao, and D. Towsley. On Characterizing BGP Routing Table

Growth. Computer Networks, 45(1):45–54, may 2004.
[9] B. Cain. Auto aggregation method for IP prefix/length pairs. http://www.

freepatentsonline.com/6401130.html, June 2002.
[10] S. Deering. The Map & Encap Scheme for Scalable IPv4 Routing with

Portable Site Prefixes. Presentation, Xerox PARC, March 1996.
[11] R. Draves, C. King, S. Venkatachary, and B. D. Zill. Constructing Optimal

IP Routing Tables. InProc. IEEE INFOCOM, 1999.
[12] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Sep-

aration Protocol (LISP). Work in Progress, http://tools.ietf.org/html/
draft-farinacci-lisp-12, Mar. 2009.

[13] P. Francis, X. Xu, H. Ballani, D. Jen, R. Raszuk, and L. Zhang. FIB
Suppression with Virtual Aggregation. Work in Progress, http://tools.ietf.
org/html/draft-francis-intra-va-01, Oct. 2009.

[14] V. Fuller. Scaling Issues with Routing+Multihoming. http://www.vaf.net/
∼vaf/apricot-plenary.pdf.

[15] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing
(CIDR): an Address Assignment and Aggregation Strategy.RFC 1519,
1993.

[16] W. Herrin. Tunneling Route Reduction Protocol (TRRP).http://bill.herrin.
us/network/trrp.html.

[17] R. Hinden. New Scheme for Internet Routing and Addressing (ENCAPS)
for IPNG. RFC 1955, 1996.

[18] D. Jen, M. Meisel, D. Massey, L. Wang, B. Zhang, and L. Zhang. APT:
A Practical Tunneling Architecture for Routing Scalability. Technical
Report 080004, UCLA, 2008.

[19] D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang, and L. Zhang.
Towards A Future Internet Architecture: Arguments for Separating Edges
from Transit Core. InACM Workshop on Hot Topics in Networks, 2008.

[20] L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach
to understanding the Internet’s router-level topology. InProc. of ACM
SIGCOMM, 2004.

[21] T. Li. Preliminary Recommendation for a Routing Architecture. http:
//tools.ietf.org/html/draft-irtf-rrg-recommendation-02, March 2009.

[22] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. IPv4 Address
Allocation and BGP Routing Table Evolution. InACM SIGCOMM CCR,
Janurary 2005.

[23] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on
Routing and Addressing.RFC 4984, 2007.

[24] J. Moy. OSPF Version 2. RFC 2328, SRI Network Information Center,
September 1998.

[25] MRTD: The Multi-Threaded Routing Toolkit. http://www.mrtd.net.
[26] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol (BGP-4).

RFC 4271, Jan. 2006.
[27] R. Whittle. Ivip (Internet Vastly Improved Plumbing) Architecture. draft-

whittle-ivip-arch-02, August 2008.

