
Blockchain-based Decentralized Public Key

Management for Named Data Networking

(Invited Paper)

Kan Yang∗, Jobin J. Sunny†, Lan Wang∗

∗Department of Computer Science, The University of Memphis, Memphis, TN, USA
†St. Jude Cloud, St. Jude Children’s Research Hospital, Memphis, TN, USA

Email: {kan.yang, jjsunny, lanwang}@memphis.edu

Abstract—Named Data Networking (NDN) uses public-key
based identities and trust models to achieve data-centric security.
Each NDN data packet is signed by its producer, and any
data consumer can check the data integrity and authenticity
by following a chain of trust to verify that the data is signed
by a public key associated with the data producer. Such trust
chains typically end at an application-specific trust anchor whose
public key is either preconfigured into the software package or
can be verified through some means outside the application. As
these trust anchors play a critical role in ensuring the security
of NDN applications, it is highly desirable to develop a public
key management system to register, query, update, validate,
and revoke their public keys. However, traditional public key
management system such as Public Key Infrastructure (PKI)
and Web-of-Trust (WoT) suffer from various problems. In this
paper, we propose BC-PKM, a public key management system for
NDN that takes advantage of the decentralized and tamper-proof
design features of Blockchains. We further prove that BC-PKM
can resist a variety of attacks from adversaries that compromise
less than half of the public key miners. Moreover, we demonstrate
a prototype that implements the proposed API of BC-PKM.

Index Terms—Blockchain, BC-PKM, NDN, PKI

I. INTRODUCTION

Named Data Networking (NDN [1]) is a new Internet

architecture in which data is retrieve by its name rather than

from a specific address. In NDN, each piece of data has a

unique name and a consumer interested in the data sends a

request for that name to the network. The network forwards

the request to a suitable next hop until the named data is found.

The data will then be delivered back to the consumer along the

reverse path of the request. In contrast to today’s host-centric

data delivery model, NDN data is independent from location,

storage, and means of transportation, which enables efficient

data distribution, multi-party communication, and robust com-

munication in challenging networking scenarios [2].

NDN’s data-centric retrieval model requires securing the

data directly, instead of securing the channel between the

sender and the receiver as in traditional IP networks. Specif-

ically, data-centric security in NDN needs to achieve three

fundamental goals: 1) Data Integrity: data cannot be mod-

ified after it is produced without being detected; 2) Data

Authenticity: data is published by the claimed producer; and 3)

∗Jobin J. Sunny participated in this work when he was a graduate student
at The University of Memphis.

Access Control: only consumers (producers) with appropriate

authorizations can access (publish) the data. Public Key Cryp-

tography has been used extensively in NDN to achieve these

goals. Each piece of data and its associated name are bound by

a cryptographic signature using the producer’s private key [1].

A data consumer checks data integrity and authenticity by

verifying the signature using the producer’s public key. Name-

based Access Control (NAC) scheme [3] controls the access

of named data by distributing data access keys securely using

the public key of each authorized consumer.

The above schemes require validating that a named public

key indeed belongs to an entity authorized to produce the

data in a given name space. Such validation can be based on

application-specific trust models derived from the relationships

among the entities that participate in the applications and

who/what the entities ultimately trust [4]. A trust schema

containing a set of trust rules can be developed for the

application to automatically infer the correct signing key for

each received data (or key) [4]. When a data packet is received,

a verification process uses the trust schema to recursively

retrieve and validate each signing key until it reaches a trust

anchor whose public key is pre-configured in the software or

can be verified through some means outside the application.

Note that the trust anchor here is typically not a public

third-party Certificate Authority (CA), but rather a trusted

entity within a specific application. For example, a university’s

student information system may use the university’s public key

as its trust anchor and a company’s news releases may use the

company’s public key as its trust anchor.

As the application-specific trust anchors play a critical role

in ensuring the security of NDN applications, it is highly

desirable to develop a public key management system to

store and retrieve their up-to-date validated public keys. The

traditional Public Key Infrastructure (PKI) model based on

Certificate Authorities (CA), however, suffers from a serious

problem, i.e., an attacker can compromise a CA to bind a key

name to an unauthorized public key and produce false data

using the fraudulent certificate. Even if there are multiple CAs,

the compromise of one CA can inflict great damage. In fact,

companies have spent significant resources fixing the security

breaches caused by misbehaving CAs [5, 6]. An alternative

model is Web of Trust (WoT) [7, 8] which enables any user

to issue a certificate (i.e., an endorsement) to anyone he or

she trusts. The certificate is then trusted by whoever trusts

this endorser. WoT is a notable step towards decentralizing

trust, i.e., trust is not derived from a single CA. However,

the compromise of a widely trusted endorser in WoT can still

impact many users who trust this endorser. In addition, there

are many practical obstacles to deploying WoT, e.g., the need

to physically attend key signing parties and the security risks

of using third party keyservers (see Section VI).

In this paper, we propose a decentralized public-key man-

agement system, BC-PKM, for managing application-specific

trust anchors and other important keys in NDN. This system

allows geographically and politically disparate entities to reach

consensus on the state of a shared public-key database. To

achieve this goal, we employ Blockchain [9], a decentralized

ledger technology that enables the recording of transactions or

any digital interactions in a secure, transparent, and auditable

way. The main idea is to build a public key blockchain for

each namespace in NDN (e.g., /com, /edu, /edu/memphis, and

/edu/memphis/cs), which is maintained by multiple miners that

validate the principals behind public keys and create blocks

containing the validated keys. Due to blockchain’s properties

and our validation mechanism [9]), our public key manage-

ment system is tamper-proof and can tolerate t(t < (n+1)/2)
compromised miners out of n total miners. The contributions

of this paper are summarized below:

1) We design a blockchain-based decentralized public key

management system (BC-PKM) for NDN which can

be used to register, query, update, validate, and revoke

public keys of important principals.

2) We prove that, by employing the majority rule of princi-

pal validation and the chaining structure and consensus

mechanism of blockchain, our design can resist a variety

of attacks from adversaries that compromise less than

half of the public key miners.

3) We further implement a prototype of BC-PKM to

demonstrate its functionality and feasibility in practice.

We note that the objective for this work is to sketch out

a high level design for BC-PKM. While we use specific

blockchain mechanisms, e.g., proof-of-work [9], to explain the

functionality of the miners, the BC-PKM design is not tied to

a specific blockchain implementation. In fact, one of the open

research issues is to design a blockchain that is efficient and

suitable for public key management.

The remainder of this paper is organized as follows. We

introduce NDN’s public key management problem in Section

II. We present BC-PKM In Section III and analyze its security

in Section IV. In Section V, we show a prototype implementa-

tion of BC-PKM. Finally, we present related work in Section

VI and conclude the paper in Section VII.

II. PROBLEM DESCRIPTION

A. Public Key Management in NDN

The nature of data-centric communication in NDN requires

its security to be data-centric as well, because traditional

NLSR NLSR NLSR NLSR NLSR NLSR NLSR

router1 router2 router3 router4 router5 router6 router7

operator1 operator2 operator3

site1 site2

root

Fig. 1. Trust Model in Named-Data Link State Routing Protocol [10]

session-based security solutions (e.g., TLS and IPSec) are

no longer applicable as there is no concept of session in

NDN. To achieve both data integrity and data authenticity,

NDN requires that every data producer create a cryptographic

signature for each piece of data with its private key to bind

the data name and content together. Any data consumer can

verify the signature using the public key of the producer. If

the verification is successful, the consumer can make sure that

the received data has not been changed (i.e., data integrity)

and is from the producer (i.e., data authenticity). NDN also

provides a name-based access control scheme [3] to control the

access of named data in NDN by distributing data access keys

securely using the public key of each authorized consumer.

In order to authorize a producer to produce data in a

given namespace, each application defines a trust model and

the corresponding trust schema [4] that allows a consumer

to check the following: 1) the key locator field in the data

contains a key that is expected by the schema; 2) the key can

be retrieved using information contained in the key locator;

and 3) the signature matches the data name and content based

on the retrieved public key. The verification process repeats

these steps until it reaches an application-specific trust anchor.

Figure 1 shows the trust model used in the Named-Data

Link State Routing Protocol (NLSR), an intra-domain routing

protocol for NDN [10, 11], where the trust anchor is the root

key of an entire autonomous system, e.g. the NDN testbed or

AT&T’s network. The trust anchor’s key may be preconfigured

and distributed in the software package or manually configured

by the administrator. However, it is difficult to update such

keys when they expire or are revoked, and they must be

protected against malicious attacks that modify them in transit

or in storage. It is desirable to have a public key management

(PKM) system that provides validation and lookup service for

these important keys. As shown in Fig. 2, this system needs

to provide the following five basic functions:

• Register: it allows a principal to register its public key by

submitting a pair of (name, public key).

• Query: it returns the corresponding public key (validated

and latest) for a name.

• Validate: it verifies whether a pair of (name, public key)

is valid or not.

• Update: it enables a principal to update its public key.

!"#$%&'(

)&*+,&()&-$./&'(01&'2(345$64/&(7864/&(

!"#$%&'"("&!$()*+,-./&

0123-4&5$6&7"."/$#$.(&

Fig. 2. Public Key Management and NDN

• Revoke: it revokes a principal’s public key from the

system.

Upon receiving a data packet, a consumer first verifies

whether the data’s signing public key is expected based on

the application’s trust schema and whether the signature in the

data can be verified using the associated public key. It then

queries the PKM for the trust anchor’s public key and uses the

trust schema to verify whether the producer’s public key can

be verified all the way to the trust anchor. The trust anchor’s

key can be cached for some time so that it does not have to

be repeatedly retrieved for other data in the same application.

One may ask how the consumer can obtain the trust schema.

If the consumer is part of the application, then the trust

schema is embedded in the application, e.g, specified in the

configuration. The application developer may also publish the

schema using a well-defined name based on the application’s

namespace and sign it using the trust anchor’s public key. In

this way, if the consumer is not part of the application, e.g.,

a router in the network, it can retrieve the trust schema and

verify it using the trust anchor’s public key.

In principle, a PKM can be used to manage public keys

generated by any entity, not just trust anchors. For example,

all the public keys of universities, students, their devices, and

software processes running on those devices can be stored in

the PKM. The question is whether the PKM, rather than a

simple trust chain, is needed for managing specific keys deep

in an application’s namespace as there is overhead associated

with running such a system. This is an open question that

requires further study. In the rest of this paper, we simply use

the word “principal” to represent an entity that desires to use

the PKM to manage its key.

B. Compromised CA Problem in Public Key Management

Traditional public key management systems (e.g., PKI)

suffers from the Compromised CA Problem, because each CA

has unconstrained privilege to certify new keys. Specifically,

a compromised CA can launch the following attacks:

• Register Public Keys for Ilegitimate Principals: the com-

promised CA can issue a certificate to a principal that

cannot be authenticated correctly in practice. For exam-

ple, a web server that does not belong to The University

of Memphis may obtain a certificate in the university’s

namespace from this CA.

• Update Public Keys for Existing Principals: the com-

promised CA may arbitrarily change a public key for a

principal that registered its public key under this CA.

• Revoke Public Keys for Legitimate Principals: the com-

promised CA may maliciously revoke a public key, which

is still valid and up to date, for a legitimate principal.

The Compromised CA Problem is one of the most chal-

lenging security problems in public key management. In this

paper, we aim to solve this problem by splitting the privilege

of public key validation among multiple validators.

III. BC-PKM: BLOCKCHAIN-BASED DECENTRALIZED

PUBLIC KEY MANAGEMENT

In this section, we propose a blockchain-based decentral-

ized public key management system, called BC-PKM, for

NDN. For each namespace, a number of designated PKMiners

validate the principals that submit their public keys in that

namespace and maintain a blockchain containing validated

public keys. To counter attacks from compromised PKMiners,

we employ a majority rule for the public key validation. As

long as at least half of the PKMiners are honest, the longest

blockchain will not contain an invalid public key record.

The chaining structure and consensus model of blockchain

further ensure that the blocks containing public key records

are tamperproof and consistent among the PKMiners, which

is different from a traditional distributed database. To support

NDN, we use NDN data names for the blockchains in BC-

PKM.

A. Design

As shown in Fig. 3, instead of relying on individual CAs to

issue certificates, we create a blockchain to manage the public

keys. This blockchain can be updated only by the PKMiners,

but it can be retrieved by anyone and the PKMiners provide

services for public key management: Register, Query, Validate,

Update, and Revoke.

• Register(name,pk)→ Success/Fail. Any principal can

register a name and bind a corresponding public key to

this name. The principal is the entity behind the name.

To register a pair of name and public key in the system,

the principal will first generate a public-private key pair,

then sign the record (name, pk) using the private key to

bind the public key to the name. As shown in Fig. 4, the

registration consists of the following steps:

1) The record (name, pk) is sent to the multicast name

prefix shared by all the PKMiners that maintain the

blockchain.

2) Upon receiving the record (name, pk), each

PKMiner validates the principal using channels spe-

cific to the namespace, e.g., verify the university is-

sued ID and email of the principal if the namespace

)*+',!"#$%"&'()*+,!

)*+',!"#$%"-#-&)+."&'()*+,!

)*+',!"#$%"-#-&)+."*/+(#"$*0*!

-#./'./,(

012.*/%"',(

3'45#&*/#",("#$%"-#-&)+."*/+(#"123(

4*/+(#5!&'*/+(#6!

47875!&'7876!

4()*9/+#5!&'()*9/+#6!

:#9'/#!;880!

<*.)!8=!>9#?+8%.!@/8('!

A*-#B>1!;#(89$.!

C+-#.0*-&! A8,(#!

;#D+.0#9! E%#9F! G*/+$*0#! H&$*0#! ;#?8'#!
I>J.K!

"#$%"-#-&)+."&'()*+,"L%#9F"*/+(#!

>1:+,#9.!

>1:+,#9.!

)*+',!"9880"&'()*+,!

>1:+,#9.!

Fig. 3. BC-PKM Framework

!"#$%&'"(

)*+',!"#$%"&#&'()*"'+,(-).!

/-0),#1!'+-0),#2!

3#4+0#!5667!

8-*(!69!:4#;)6%*!<06,+!

=-&#>:?!5#,64$*!

@)&#*7-&'! =6.,#!

5#A)*7#4!B:C!

"#$%"&#&'()*"'+,(-)."4#A)*7#4"/-0),#1!'+-0),#2!

:?3).#4*!

DE!:4).,)'-0!

!F-0)$-G6.!

HE!3-I64)7J!B,,#'7#$!

KE!:-,+-A#!L!3).#!

ME!<46-$,-*7!!

=#N!<06,+!

O4*7!O.$!.6.,#!

PE!<46-$,-*7!/-0),#1!'+-0),#2!

Fig. 4. An Example of BC-PKM Registration

belongs to a university. Then each PKMiner will

notify all the other PKMiners its validation result.

3) If more than half of the PKMiners have positive

results, the principal is considered legitimate.

4) The PKMiners then put the record (name, pk) into

a block and start to mine it. If the blockchain uses

hash-based proof-of-work for chaining and consen-

sus, the PKMiners will compute the nonce such that

the hash of the block is less than a threshold.

5) The PKMiner that first completes the mining can

append this block to the blockchain and notify all

the other PKMiners of the new block.

When the record is added into the blockchain, the princi-

pal receives the result Success, otherwise it receives Fail.

• Query(name)→ pkname/NotFound. The query function

returns the latest and valid public key corresponding to

a given name. A node can retrieve the whole chain and

store the up-to-date validated name/key pairs in a hash

table. For a less capable node, it can send a request to

the PKMiners’ name prefix to fetch the key.

• Validate(name,pk)→ Valid/Invalid. Given a pair of

name and public key (name, pk), the verification function

returns whether this pair is valid or invalid. It calls the

Query funtion with the name, then compares the output

with the given public key pk. If they are the same, it

returns Valid. Otherwise, it returns Invalid.

• Update(name,pk∗)→ Success/Fail. This update function

enables any principal to update the corresponding public

key for a registered name. Because the blockchain is

tamperproof, we cannot modify the content in previous

blocks. Instead, we attach a new block to the blockchain

to indicate the update of the public key. When updating a

public key for a given name, the (name, pk∗) is sent to all

the PKMiners, which will redo the principal validation.

With this validation, if the public key update is requested

by a compromised PKMiner instead of the principal,

the principal will be aware of this unexpected public

key update. When the updated public key is appended

to the blockchain, the Update function returns Success,

otherwise it returns Fail.

• Revoke(name,pk)→ Success/Fail. If a public key is

compromised, it needs to be revoked. However, one

cannot delete the records for that public key, as the

blockchain is tamper-proof. Similar to the update oper-

ation, we add a revoking record to indicate the pair of

(name, pk) is revoked. Before competing to add the record

to the blockchain, more than half of the PKMiners must

agree that the public key should be revoked. If the record

is successfully added into the blockchain, the function

returns Success. Otherwise, it returns Fail.

Equipped with the above API, the blockchain can pro-

vide all the public key management functions. As shown

in Fig. 3, the namespace /edu/memphis has the public key

blockchain named /edu/memphis/pkchain, and /edu has the

blockchain /edu/pkchain. To obtain a key for the prin-

cipal named /edu/memphis/alice, one can issue an inter-

est with the name /edu/memphis/pkchain/query/alice. Other

APIs can use similar names. For example, an interest

/edu/memphis/pkchain/update/(alice, pk) can be used to update

the key for Alice.

Note that the construction of blockchain also needs the

public keys of all the PKMiners, which are used for secur-

ing the communication among them. All the public keys of

PKMiners who maintain /edu/memphis/pkchain are registered

in the blockchain /edu/pkchain. Likewise, the public keys

of PKMiners who maintain /edu/pkchain are registered in

the blockchain /root/pkchain. The public keys of the root

PKMiners are well-known. Since they also use the majority

rule to validate public key records and the blocks they create

are public and tamper-proof, a misbehaving root PKMiner has

limited capabilitiy to cause damage.

B. Discussion

We now discuss a few design questions. First, who can be

the miners/validators? In some public ledgers such as Bitcoin,

anyone in the system can be a miner. However, in a PKM

system, it may not be desirable to enable everyone in the

system to be a validator for public key registration [12]. In

our future work, we will explore this question together with

the design of the consensus mechanism.

Second, how to validate a public key? In Bitcoin, the

verification of a transaction can be done by verifying all

previous transactions related to this transaction. In our design,

the validation needs to use an out-of-band mechanism specific

to a namespace which may require the identity, address, email,

or picture of a principal. An automated validation mechanism

such as Let’s Encrypt [13] can be incorporated into the PKM.

Third, which consensus mechanism should we use? The

consensus mechanism enables all the users in the system

to agree on the same accepted blockchain, which is the

core technique of any blockchain-based system. Bitcoin uses

proof-of-work and longest chain as the consensus mechanism.

However, proof-of-work wastes a huge amount of resources.

We plan to design a more efficient consensus mechanism based

on other consensus mechanisms (e.g., proof-of-stake [14] and

Algorand [15]), for BC-PKM.

IV. SECURITY ANALYSIS

In this section, we show how BC-PKM can counter attacks

from compromised PKMiners, which may register a public key

for an illegitimate principal, and modify or revoke the public

keys of existing principals.

Theorem 1. BC-PKM can resist t out of n (n > 2t − 1)
compromised PKMiners against registering public keys for

fake principals.

Proof. A compromised PKMiner may register a public key for

a name that does not match the principal behind the name. For

example, the PKMiner may register a public key for Eve but

with a name called Bob, i.e., (Bob, pkEve). If the registration

succeeds, the adversary Eve can impersonate Bob to do any-

thing, e.g., sign a document, or receive messages sent to Bob.

In BC-PKM, any registration request will be broadcast to all

the PKMiners for validation. Each PKMiner then validates the

name and principal using some other channels, and broadcasts

the result to all the other PKMiners. If and only if more than

half PKMiners say that the name corresponds to the principal,

the PKMiners can compete to add the block. However, we

assume that the adversary can only compromise less than

half of the PKMiners. Thus, even if all the compromised

PKMiners broadcast a fake “validation succeed” message, the

other honest PKMiners will still reject this registration request.

Suppose the compromised PKMiner does not follow the

protocol, and insists on adding the record to the blockchain.

The blockchain will finally be synchronized among all the

PKMiners by broadcasting the new block to all the other

PKMiners. Then, the honest PKMiners will find that the newly

added block is not correct, as it does not pass the name-

principal validation. They will not add this block to their chain.

Even if the compromised PKMiners continue to fork the chain,

their computing power will be less than the honest PKMiners,

so their chain will eventually be discarded. Similarly, BC-

PKM can also resist DoS attacks in which the compromised

PKMiners deny the validation for legal principals.

Theorem 2. BC-PKM can resist t out of n (n > 2t − 1)
compromised PKMiners against illegally updating public keys

for existing principals.

Proof. In BC-PKM, the method to update the public key of an

existing principal is to add a new block with a record (name,

updated public key). This procedure is the same as registering

a new public key, which requires all the PKMiners to redo the

name-principal validation. During the name-principal valida-

tion, the PKMiner will contact the corresponding principal. If

this update request is launched by a compromised PKMiner,

then the principal will refuse the validation and notify all the

PKMiners of this error. Upon receiving many reports from

different existing principals, the PKMiners will send a notice

to the upper-level blockchain, and the upper-level blockchain

may revalidate the PKMiners.

Theorem 3. BC-PKM can resist t out of n (n > 2t − 1)
compromised PKMiners against illegally revoking public keys

for existing principals.

Proof. To revoke a public key, a revoking record will be added

to the blockchain to indicate that the pair of (name, pk) is

revoked. Unlike the Register and Update, there is no need

to do the name-principal validation. Instead, more than half

PKMiners should agree that the public key or the name has

been revoked before competing to add the revoking block

to the blockchain. Because the adversary cannot compromise

more than half PKMiners, the adversary cannot maliciously

revoke those still valid public key for any existing users.

Moreover, it also guarantees that the adversary cannot deny

legal revocation by sending disagree messages.

V. BC-PKM PROTOTYPE IMPLEMENTATION

We implement a BC-PKM prototype to further demonstrate

the functions of public key management system. To implement

this prototype, we choose to use the Node.js framework due

to its asynchronous capabilities and ability to handle peer-

to-peer communications well. Note that, the main purpose

of this prototype is to validate the functions of our BC-

PKM system, so for simplicity, the communication is not

Fig. 5. BC-PKM Menu

implemented via NDN. The framework’s event-driven, non-

blocking I/O model makes it a good fit for our implementation.

To handle the p2p communication, we used a Node.js library

called peer-exchange (https://www.npmjs.com/package/peer-

exchange), which allows for completely decentralized peer

discovery and signaling. The library uses WebRTC for

peer connections. It also provides some security guards

and defenses against attacks. The command line inter-

face was created with the help of a library called Vor-

pal (https://www.npmjs.com/package/vorpal). This framework

helps build interactive CLI applications for Node. We used

the crypto-js library (https://www.npmjs.com/package/crypto-

js) for its SHA256 hash implementation. We chose to use

this popular, well-maintained package to make sure that the

hashing function is efficient and secure.

Fig. 5 shows the menu of our prototype, which consists of

all the functions we defined in Section III. Then, we briefly

demonstrate each function by showing some screenshots of

a demo with three PKMiners: PKMiner1, PKMiner2 and

PKMiner3. In Fig. 5, we successfully register a name-key pair

(John, pk = 1xui45nal) to the blockchain. The added block

in the blockchain is displayed as Block #1 in PKMiner1’s

Window in Fig. 6. We can see that Block #1 consists of

Previous Hash, Timestamp, Name, Public Key, Hash of the

Block, Nonce, Miner ID (indicating which PKMiner adds this

block), and Revoked Status. Block #1 is synchronized among

all the three PKMiners, which can also be seen in PKMiner2’s

Window.

Then, we send a new registration request for Mary (Mary,

pk = bqnas83p2a3iz) from PKMiner2. After successful regis-

tration, Mary’s public key is stored in Block #2, as we can

see in PKMiner1’s Window in Fig. 7. PKMiner3’s Window

in Fig. 7 shows the query functions including query by name

and query by public key.

PKMiner1 in Fig. 7 sends an update request to update John’s

public key. The results are shown in Fig. 8: a new block (Block

#3) with the name and its updated public key is appended to

the blockchain in PKMiner1’s Window. In PKMiner3 Window,

it shows that after John’s public key is updated, we cannot

query the name by the revoked key. It also shows that the

updated public key is returned when querying the name John.

PKMiner1 in Fig. 8 revokes the John’s public key, and the

revoked block (i.e., Block #4) is shown in Fig. 9. As we

can see in Block #4, the revoke status becomes true. Now,

when we query the name John or the public key of John, it

returns that the name of the public key is revoked, as shown

in PKMiner3’s Window. PKMiner2’s Window also shows the

validate function of our BC-PKM.

VI. RELATED WORK

Public Key Infrastructures such as X.509 PKIX [16] and

Web of Trust [7, 8] are designed to certify that a public key

indeed belongs to a name and the principal behind the name.

In X.509 PKIX[16], trusted third-parties (TTPs) called

Certificate Authorities (CAs) are employed to verify the

names/principals and bind the name together with the cor-

responding public key. Due to the unconstrained privileges

of CAs, they become central points of failure of the entire

network. If a CA is compromised, the attacker can bind names

to arbitrary public keys, which may result in severe security

problems.

Another PKI used in practice is PGP Web of Trust [7, 8],

which enables any user to issue a certificate to anyone he

or she trusts. The certificate is then trusted by a party if

he/she can verify that the certificate contains the signature of

someone who is trusted. The PGP Web of Trust is not itself a

PKM, as it does not provide a mechanism for retrieving public

keys or certificate chains. In practice, PGP is implemented

by centralized keyservers that store and answer queries about

certificates. However, the keyservers remain central points of

failure and become bottlenecks when the system grows large.

Due to the complexity of key generation and managements,

some web hosting companies even choose to manage the

creation of these keys by themselves, rather than letting their

clients create their own pairs of secret key and public key.

This leads to major security issues, as it may leak out the

secret keys for all the users if the web hosting company is

compromised. Finally, it is possible that one user may not be

able to find a chain of trust to verify another user’s key, i.e.,

the other user’s key is not endorsed by anyone this user trusts.

To cope with the problem of faulty CAs, a straightforward

solution is to reduce the power of each CA by splitting its

power among multiple distributed CAs and use a majority

rule during the name-principal validation. This method alone

cannot prevent a compromised CA from issuing a certificate

to an invalid principal, because the public key database cannot

be guaranteed to be consistent among all the CAs without a

blockchain.

PKMiner1 PKMiner2

PKMiner3

Fig. 6. View of Block #1 and Register Mary

PKMiner1 PKMiner2

PKMiner3

Fig. 7. Query and Update

A blockchain contains a continuously growing set of data

records, which is decentralized in nature as there is no cen-

tral certifying authority holding the entire chain. Its chain-

ing structure and the consensus mechanism (e.g., proof-of-

work [9] and proof-of-stake [14]) ensure that the blockchain

is tamperproof and consistent. As such, it has been applied in

cryptocurrencies (e.g., Bitcoin [9]) and smart contract systems

(e.g., Ethereum [17]), with promising applications in Internet

of Things [18].

In [19], the authors implement a bitcoin blockchain based

on NDN. The blockchain is also used in [20] to disseminate

the system parameters when a Hierarchical Identity Based En-

cryption (HIBE) is employed to build the data access control

scheme. Due to the advantages of blockchain, it has been used

to implement alternative PKIs [21–27]. In [21], Fromknecht et

al. proposed to utilize the Namecoin [28] to implement a PKI

system. After that, they proposed Certcoin [22], an improved

PKI implementation which can prevent identity retention. In

[26], the authors protect user privacy in Certcoin by employing

a hidden layer that records the real match between the user

Fig. 8. Updated View of Blockchain and Revoke

identity and an offline key pair. In recent work [27], the au-

thors proposed a decentralized public key management system

based on blockchain, where smart contract is utilized to do

revocation. In [25], the authors propose a challenge-response

approach of validation and authentication for WoT. However,

these existing systems did not consider the compromised CA

problem and were not designed for NDN.

VII. CONCLUSION

In this paper, we proposed a decentralized public key man-

agement system (BC-PKM) for NDN based on blockchain,

which can solve the Compromised CA Problem in traditional

public key management systems. The basic idea in BC-PKM

is to split the power of an individual CA among multiple

PKMiners that maintain the public key blockchains. The

majority rule in name-principal validation allows BC-PKM

to resist attacks from compromised PKMiners. Our security

analysis and prototype implementation demonstrate that BC-

PKM is secure and practical. In our future work, we will

implement the prototype on the NDN platform and investigate

efficient blockchain design for PKM. We will also apply BC-

PKM to secure NDNS [29].

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy,

P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang,

“Named Data Networking,” ACM SIGCOMM Computer

Communication Review (CCR), vol. 44, no. 3, pp. 66–73,

Jul 2014.

[2] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo,

D. Saucez, T. Schmidt, and M. Waehlisch, “Information-

centric networking (icn) research challenges,” RFC 7927,

2016.

[3] Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access

control,” NDN TR NDN-0034, University of California,

Los Angeles, Los Angeles, 2015.

[4] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang

et al., “Schematizing Trust in Named Data Networking,”

in Proceedings of the 2nd International Conference on

Information-Centric Networking. ACM, 2015, pp. 177–

186.

[5] L. Whitney, “Comodohacker returns in diginotar inci-

dent,” CNET: News: Security & Privacy. CNET, vol. 6,

2011.

[6] R. Gill, “Trust in the era of hackable certificate

authorities,” Jun. 2016, akami Blog, https://enterprise-

access.akamai.com/blog/trust-in-the-era-of-hackable-

certificate-authorities/, last accessed 4/21/17.

[7] J. Callas, L. Donnerhacke, H. Finney, , and R. Thaye,

“Openpgp message format,” RFC 1951, 1996.

[8] S. Carfinkel, “Pgp: Pretty good privacy,” OReilly &

Associates, 1994.

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system,” 2008.

[10] L. Wang, V. Lehman, A. M. Hoque, B. Zhang, Y. Yu,

and L. Zhang, “A secure link state routing protocol for

ndn,” IEEE Access, vol. 6, pp. 10 470–10 482, 2018.

[11] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang,

and L. Wang, “Nlsr: named-data link state routing proto-

col,” in Proceedings of the 3rd ACM SIGCOMM work-

shop on Information-centric networking. ACM, 2013,

pp. 15–20.

[12] C. Allen et al., “Decentralized public key infrastruc-

ture - a white paper from rebooting the web of trust,”

www.weboftrust.info/downloads/dpki.pdf, Dec. 2015.

PKMiner1

PKMiner2

PKMiner3

Fig. 9. Revoked View of Blockchain and Validate

[13] J. Aas, “Let’s encrypt: Delivering ssl/tls everywhere,”

Let’s Encrypt, vol. 18, 2014.

[14] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof

of activity: Extending bitcoin’s proof of work via proof

of stake [extended abstract],” ACM SIGMETRICS Per-

formance Evaluation Review, vol. 42, no. 3, pp. 34–37,

2014.

[15] S. Micali, “Algorand: The efficient and democratic

ledger,” arXiv preprint arXiv:1607.01341, 2016.

[16] S. Santesson et al., “X. 509 internet public key infras-

tructure online certificate status protocol - ocsp,” RFC

6960, 2013.

[17] Ethereum, https://www.ethereum.org/, 2017.

[18] K. Christidis and M. Devetsikiotis, “Blockchains and

smart contracts for the internet of things,” IEEE Access,

vol. 4, pp. 2292–2303, 2016.

[19] T. Jin, X. Zhang, Y. Liu, and K. Lei, “Blockndn: A

bitcoin blockchain decentralized system over named data

networking,” in 2017 Ninth International Conference on

Ubiquitous and Future Networks (ICUFN). IEEE, 2017,

pp. 75–80.

[20] N. Fotiou and G. C. Polyzos, “Decentralized name-based

security for content distribution using blockchains,” in

2016 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS). IEEE, 2016, pp.

415–420.

[21] C. Fromknecht, D. Velicanu, and S. Yakoubov, “Certcoin:

A namecoin based decentralized authentication system

6.857 class project,” Unpublished class project, 2014.

[22] ——, “A decentralized public key infrastructure with

identity retention,” 2014.

[23] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau,

and A. Narayanan, “An empirical study of namecoin

and lessons for decentralized namespace design,” in

14th Annual Workshop on the Economics of Information

Security, 2015.

[24] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Block-

stack: A global naming and storage system secured by

blockchains,” in 2016 USENIX Annual Technical Con-

ference (USENIX ATC 16), 2016, pp. 181–194.

[25] B. Leiding, C. H. Cap, T. Mundt, and S. Rashidibajgan,

“Authcoin: validation and authentication in decentralized

networks,” in Tenth Mediterranean Conference on Infor-

mation Systems (MCIS), 2016.

[26] L. Axon and M. Goldsmith, “Pb-pki: A privacy-aware

blockchainbased pki,” in Proceedings of the 14th Inter-

national Joint Conference on e-Business and Telecom-

munications (ICETE 2017), Madrid, Spain, Jul. 2017, p.

311318.

[27] A. Yakubov, W. Shbair, A. Wallbom, D. Sanda et al., “A

blockchain-based pki management framework,” in The

First IEEE/IFIP International Workshop on Managing

and Managed by Blockchain (Man2Block) colocated with

IEEE/IFIP NOMS 2018, Tapei, Tawain 23-27 April 2018,

2018.

[28] A. Loibl, “Namecoin,” in Seminars FI / IITM SS 2014

Network Architectures and Services, 2014.

[29] A. Afanasyev, X. Jiang, Y. Yu, J. Tan, Y. Xia, A. Mankin,

and L. Zhang, “Ndns: A dns-like name service for

ndn,” in 26th International Conference on Computer

Communication and Networks (ICCCN). IEEE, 2017,

pp. 1–9.

