
Addressing Security in Medical Sensor Networks∗

Kriangsiri Malasri, Lan Wang
Department of Computer Science

University of Memphis
Memphis, TN 38152-3240

{kmalasri, lanwang}@memphis.edu

ABSTRACT
We identify the security challenges facing a sensor network
for wireless health monitoring, and propose an architecture
called “SNAP” (Sensor Network for Assessment of Patients)
to address these challenges. SNAP protects the privacy,
authenticity, and integrity of medical data, with low-cost
energy-efficient mechanisms. We have incorporated the fol-
lowing mechanisms in SNAP: (1) an ECC-based secure key
exchange protocol to set up shared keys between sensor
nodes and base stations; (2) symmetric encryption and de-
cryption for protecting data confidentiality and integrity; (3)
a two-tier authentication scheme for verifying data source.
We have developed a prototype on the Tmote Sky platform
for evaluating the proposed architecture and mechanisms.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection; J.3 [Computer Applications]:
Life and Medical Sciences—medical information systems

General Terms
Security, Human Factors

Keywords
medical sensor networks, elliptic curve cryptography, Tmote
Sky

1. INTRODUCTION
In our aging society, an increasing number of people have

chronic medical conditions such as diabetes and heart dis-
ease. If these people’s health conditions could be monitored

∗This work was supported in full or in part by a grant from
The University of Memphis Faculty Research Grant Fund.
This support does not necessarily imply endorsement by the
University of research conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HealthNet’07, June 11, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-767-4/07/0006 ...$5.00.

continuously and remotely, medical professionals could re-
act to life-threatening situations such as heart attacks much
more quickly. Moreover, since each patient’s data is col-
lected over a long period of time, physicians could provide
more accurate diagnoses and better treatment. Current
monitoring solutions, however, are both cumbersome and
costly. Typically, a patient is attached to a number of med-
ical sensors that convey information on his or her vital signs
to a bedside monitoring device. However, because these con-
nections are wired, such a setup severely limits the mobility
of the patient, making it unsuitable for long-term continuous
health monitoring.

One potential solution is to attach small, lightweight wire-
less medical sensors to patients. Several research groups
(e.g. [8, 20, 17, 22]) have recently integrated medical sen-
sors with wireless motes for health monitoring, such as the
Harvard wireless pulse oximeter [20]. These medical sensors
wirelessly transmit data to physicians and nurses. This frees
the patient from the confinement of traditional wired sen-
sors, allowing him/her to move about at leisure and increas-
ing comfort. Such medical sensor networks can be deployed
in hospitals, long-term care facilities, and homes.

Our work addresses the security challenges in medical sen-
sor networks. We believe that security must be designed into
the architecture from day one rather than being added after
the other issues are addressed, as security requires careful
thought on where functionality should be placed and how
the system components interact with one another.

Existing sensor network research has mainly focused on
monitoring the physical environment. However, a medical
sensor network monitors humans. A human-centered sensor
network has distinct features such as the sensitive nature
of the data, the mobility of sensors, and the proximity to
potential attackers, leading to these security challenges:

• How to ensure the privacy and integrity of the medical
data, given that the wireless channel is easily subject
to many forms of attacks?

• How to ensure that only authorized people can access
the data? The solution should scale to a large num-
ber of users (medical professionals and patients) and
accommodate changes in the users.

• How to prevent someone from using captured sensors
to recover sensitive medical information or inject false
information? Attackers have relatively easy physical
access to these sensors since they are located on pa-
tients. Moreover, the sensors may simply get lost while
the patients are moving around.

The above scenarios may seem somewhat paranoid, but
we have to foresee the possible attack scenarios, as legal and
ethical considerations mandate that medical data be kept
private. Users will not deploy this system if they are not
convinced that their data will be kept confidential, regard-
less of how good the system’s performance is.

What makes securing sensor networks more difficult than
other types of networks is that wireless sensor nodes usually
have limited resources, while conventional security mecha-
nisms incur high costs in terms of CPU, memory, bandwidth,
and energy consumption. For example, the RSA public-key
scheme requires storing keys longer than 1 KB (for reason-
able security) in memory, while the popular Crossbow MICA
motes [6] have a mere 4 KB of RAM. Sensor nodes also have
much more limited processing power than PCs or PDAs;
MICAs, for example, use an 8-bit, 8 MHz processor, and
the comparable Moteiv Tmote Sky platform [16] employs a
16-bit, 8 MHz processor. The recent Intel iMote platform
has higher processor speed and more RAM, but it consumes
much more energy than the previously mentioned motes.

The contribution of our work is two-fold. First, we pro-
pose an architecture called “SNAP” (Sensor Network for
Assessment of Patients) and its associated mechanisms for
securing medical sensor networks. More specifically, SNAP
protects the privacy, authenticity, and integrity of medical
data, with low-cost energy-efficient mechanisms. We have
incorporated the following mechanisms in SNAP: (1) an
ECC-based secure key exchange protocol to set up shared
keys between sensor nodes and base stations; (2) symmetric
encryption and decryption for protecting data confidential-
ity and integrity; (3) a two-tier data source authentication
scheme based on patient biometric and medical data. Sec-
ond, we have developed a prototype on the Tmote Sky plat-
form for evaluating the security, cost, and performance of
the proposed architecture and mechanisms.

In the remainder of this paper, we first discuss the secu-
rity threats and challenges in §2. In §3 and §4, we present
our SNAP architecture and its associated mechanisms. We
briefly describe our current implementation and present pre-
liminary results in §5. We present related work in §6 and
conclude our paper in §7.

2. SECURITY THREATS/CHALLENGES
In this section, we discuss the potential security threats

to medical sensor networks and then point out what makes
addressing these threats challenging. We assume that the
sensor network contains some sensor nodes that collect data
from patients, one or more base stations to receive the data
from the sensor nodes, and some relay nodes that deliver
the data from the sensor nodes to the base stations.

We classify potential security threats into two categories:
outsider attacks and insider attacks. Outsider attacks are
perpetrated by attackers who do not have control of a valid
sensor node, base station, or any other nodes in the network.
These attacks include, but are not limited to, the following:
(1) eavesdropping on data; (2) spoofing of a base station to
receive sensor data; (3) replay of previous queries to obtain
sensor data; (4) modification or injection of data without
the knowledge of the source or destination; (5) spoofing of
a sensor to report forged data; and (6) replay of previous
data. Among these attacks, (1)-(3) compromise the privacy
of patient data, while (4)-(6) compromise the authenticity
and integrity of patient data.

Healthcare facility

Relay node

Patient

Physician

Base station

Query
Patient data

Fingerprint
reader

Medical
sensor

Medical
sensor

Mote

Figure 1: SNAP Architecture.

Insider attacks are launched by attackers who have con-
trol of some nodes in the network. If the attacker controls
a sensor node, s/he can easily forge data that appears to be
from a legitimate patient. The attacker can also obtain any
existing cached data in the node. If the attacker controls
a base station, s/he can access the private data from the
sensors. Insider attacks are much more difficult to handle,
since other nodes cannot distinguish the attacker from a le-
gitimate node by the use of shared secrets (by compromising
a node, the attacker has access to these secrets).

Similar threats exist in traditional ad hoc wireless net-
works and other types of sensor networks. However, address-
ing these threats in a medical sensor network poses several
unique challenges. First, there is a stringent expectation for
the system to ensure the privacy of medical data. Second,
sensor nodes have much lower processor speed, memory, link
bandwidth, and energy supply than mobile PCs or PDAs, so
the security mechanisms must be resource-efficient. Third,
due to their small size, the individual sensors can be easily
stolen or simply lost. Patient mobility also makes it more
likely for patients to lose sensors (most other sensor networks
have stationary sensors). Furthermore, attackers can easily
find their targets in local hospitals or healthcare facilities,
as opposed to remote locations like forests or battlefields.
Hence, physical compromise of sensor nodes is more likely
in medical sensor networks than in other types of sensor net-
works. Fourth, there may be many users (physicians, nurses,
patients) who are authorized to access the data, so a scal-
able solution to authenticate the users must be provided to
ensure the privacy of the data.

3. SNAP ARCHITECTURE
In this section, we first describe the overall SNAP archi-

tecture. We then discuss our architectural choices and their
effect on security.

3.1 Architecture Components
In SNAP (Figure 1), each patient has one wireless mote

attached to his/her body. The mote is connected to sev-
eral medical sensors, which take samples of the patient’s
health data when they are activated. The main tasks of the
mote are the following: (a) authenticate the patient with
the base station using our two-tier authentication system
(§4.1); (b) establish a symmetric key with the base station
using our ECC-based secure key exchange protocol (§4.2);

and (c) communicate with the base station to receive queries
and send sensor data, both of which are encrypted on an
end-to-end basis using a symmetric key.

A medical professional issues queries for a patient’s data
through one or a few base stations. As the base stations must
communicate with the motes, they must be located in the
same physical area as the patients. However, the base sta-
tions may be accessed either directly or remotely (e.g., from
a physician’s home) for ease of patient monitoring. Queries
issued from base stations may activate the patient’s medical
sensors or adjust their sampling frequency and other param-
eters. Before sending the queries, the base station verifies
that the medical professional is a legitimate user with the
necessary privileges to access the particular patient’s data.
After the mote receives the query from the base station, it
activates the appropriate sensor(s) or adjusts its parameters.
It also continuously sends the resulting patient data from the
sensors to the base station (until the sensor is deactivated
by the medical professional or the patient).

Wireless relay nodes throughout the healthcare facility
forward the queries and patient data between the base sta-
tions and the motes. In an indoor environment, the relay
nodes could have a continuous power supply, so they can be
powerful motes such as the Intel iMote.

Note that the labels of Figure 1 (patient, healthcare facil-
ity, etc.) are only for illustrative purposes. The same ar-
chitecture could be applied, for example, to monitor sickly
people in their homes.

3.2 Architectural Choices for Enhanced
Security

We have made several explicit architectural choices to en-
hance security. These choices differentiate SNAP from pre-
viously proposed architectures such as the CodeBlue archi-
tecture described in [20].

First, the motes communicate only with the base stations,
not individual users’ computers. This is because in a large
healthcare facility, it would be difficult for the motes to au-
thenticate hundreds of individual users (physicians, nurses,
staff, etc.). Each mote would have to maintain complete
access control information about users’ privileges and their
identity information (e.g., public keys or passwords). The
motes simply do not have the memory resources to maintain
all this information. Moreover, it would be infeasible to up-
date the access control information in every mote whenever
a change in user privileges is required. Therefore, we decide
to authenticate the users at the base stations and have the
base stations issue the queries to the motes on behalf of the
users. Motes are configured with the base stations’ addresses
and send their data only towards the base stations.

Second, in order to handle spoofing of base stations, the
motes are also configured with the base stations’ public keys
so that they can establish symmetric keys only with valid
base stations. If there are many base stations in the facil-
ity, we can use the group public-key scheme proposed in [4].
This scheme allows each base station to have its own pri-
vate/public key, while allowing the motes to use only the
group’s public key to authenticate the base stations.

Third, we do not assume that each mote has its own pub-
lic/private key pair. The main reason behind this choice is
that individual motes are relatively easy to physically com-
promise. When a mote possesses a permanent private key
and is captured by an attacker, the attacker may be able to

derive the symmetric key as well as decrypt the data previ-
ously sent by the mote (assuming that the attacker has been
eavesdropping on the communication between the mote and
the base station).

Fourth, in order to handle forged data, a base station will
not accept data from a mote unless the mote is attached to a
patient registered in the system. Consequently, the base sta-
tion needs some way of verifying the identity of each patient.
We propose a two-tier authentication system based on pa-
tient data, discussed in §4.1. As part of this authentication
system, we assume that each mote is connected to a small
fingerprint scanner or a comparable biometric identication
device.

4. SNAP SECURITY MECHANISMS
In this section, we describe three security mechanisms in

SNAP, with an emphasis on how they protect the commu-
nication between motes and base stations against various
attacks. Note that we try to minimize the number of com-
putationally intensive operations on the motes.

4.1 Two-Tier Data Source Authentication
Scheme

An attacker can inject forged data into a medical sensor
network using either his/her own motes or a compromised
mote. To combat this type of attack, we propose a two-tier
data source authentication scheme. At the first tier, each
mote is integrated with a small biometric scanner such as
a fingerprint reader (similar to [1]) or a finger vein reader,
allowing the sensor to capture a unique signature for the
patient. This signature must be validated by a base station
before communication between the base station and mote
can occur. We assume that the base stations have access
to a list of valid patient biometric signatures, and also that
the space of possible signatures is sufficiently large that a
brute-force attack is infeasible.

The first tier alone is insufficient to guard against forged
data, because an attacker could compromise an authenti-
cated mote and proceed to successfully send forged data to
the base station. One approach of preventing this would
be to force periodic re-authentication of the mote using the
biometric scanner; however, this requires extra bandwidth
overhead and is inconvenient for the patient. Instead, we
propose implementing a second-tier authentication system
that tries to assert the identity of a patient based solely on
the sensor data being collected from that patient. Data from
the sensor is continually passed to a filter, which determines
whether the data “makes sense” for that patient. Such an
approach requires statistical or machine learning techniques
to recognize medical data as being from a particular pa-
tient. For example, electrocardiogram (ECG) signals have
been successfully used in [12] and [11] to identify patients.

To use the second-tier authentication system, each patient
will wear the sensors for a short period of time for the base
station to learn the patient’s profile. From then on, when-
ever the patient’s data deviates from that profile, the base
station will raise an alarm. The alarm could be caused by
forged data or by a medical emergency. In either case, it
is important that the patient be checked on, so issuing the
alarm is warranted. Note that both the initial learning and
the detection mechanism is run on the base station, in order
to minimize the computation on the mote.

4.2 ECC-based Key Exchange Protocol
As mentioned earlier, efficient operation is important for

resource-constrained motes. For efficiency, we encrypt queries
and patient data using pairwise symmetric keys shared be-
tween the base station and motes. However, symmetric keys
are difficult to manage and update manually. Hence, we pro-
pose a key exchange protocol that each mote uses to securely
derive a randomly generated symmetric key with the base
station at the beginning of their communication. We use
elliptic curve cryptography (ECC) [2] in our key exchange
protocol rather than the well-known RSA, as it offers com-
parable security for a much smaller key length (a 160-bit
ECC key is roughly equivalent to a 1024-bit RSA key).

4.2.1 Elliptic Curves
An elliptic curve is of the form y2 = x3 + ax + b. When

defined over a finite field, all the points on the curve (x, y)
and the parameters a and b are limited to elements of the
underlying field. A common class of finite fields used in ECC
are prime fields GF (p), where p is a large prime number; the
elements of this field are the integers in [0, p − 1].

4.2.2 ECDLP
ECC’s security is due to the computational difficulty of

the elliptic curve discrete logarithm problem (ECDLP). Given
two points G and Q = nG on an elliptic curve over a finite
field, it is hard to determine n. At the same time, Q is fairly
easy to determine, given n and G. To use ECC, two nodes
A and B need to agree on what elliptic curve to use and
a base point G on the curve; this information is not secret.
Node A can generate a large random number n as its private
key and derive its public key P by using P = nG (this is
called scalar point multiplication). If n is large, it is hard
for an attacker to derive the private key n from the public
key P even if the attacker knows G, due to the difficulty of
ECDLP.

4.2.3 ECIES
To protect the messages from node B to node A against

eavesdropping and modification, the messages can be en-
crypted using the Elliptic Curve Integrated Encryption Scheme
(ECIES) [2] with A’s public key P . More specifically, node
B generates a random number r and computes a secret
S = rP . Node B then uses a key-derivation function (KDF)
to generate two symmetric transient keys: an encryption

key K
′

s and a MAC (message authentication code) key K
′

mac

from S. These two keys are used to encrypt the messages
from B to A. Node B also computes the point R = rG,
which is sent in the clear to node A. Node A can derive the
secret S using its private key n and R: S = nR = n(rG) =
r(nG) = rP . Node A then uses the same KDF to derive

K
′

s and K
′

mac from S and decrypts the message. Again, due
to the difficulty of the ECDLP, it is infeasible for an eaves-
dropper to derive r (and hence S) even with knowledge of
R and G, provided r is sufficiently large.

4.2.4 Protocol
In SNAP, each base station has a private key nB and a

public key PB = nBG, where G is a chosen base point on
the elliptic curve. The public key PB is pre-configured in
the motes. Our key exchange protocol, which involves three
messages KeyGenStart, KeyGenAck, and KeyGenV erify,
is described below (Figure 2). Note that we do not use

• Collect FPID
• Generate master key Km
• Generate point R and

shared secret S
• Derive Ks’ and Kmac’ from S
• Generate nonce n1

• Derive shared secret S
• Derive Ks’ and Kmac’ from S
• Decrypt KeyGenStart
• Check FPID, MAC
• Generate nonce n2
• Derive Ks and Kmac from

Km, n1, and n2

KeyGenStart: NID, SN, n1, FPID, Km, R

Encrypted with Ks’, protected with Kmac’

KeyGenAck: SN, hash(n1), n2

Encrypted with Ks’, protected with Kmac’

• Decrypt KeyGenAck
• Check SN, MAC, hash(n1)
• Derive Ks and Kmac from

Km, n1, and n2

KeyGenVerify: SN, n2

Encrypted with Ks, protected with Kmac

• Decrypt KeyGenVerify
• Check SN, MAC, n2

Mote Base Station

(R is unencrypted)

Figure 2: ECC-based Key Setup Protocol.

elliptic curve Diffie-Hellman (ECDH) key exchange, because
it assumes that both parties have public/private key pairs.

When a wireless mote is attached to a patient, the pa-
tient uses the fingerprint scanner on the mote to activate
the key exchange protocol. Once the patient’s fingerprint
ID (FPID) is obtained, the mote generates a master key
Km that will be used to derive the session keys for end-
to-end data encryption. It also generates a session number
SN that uniquely identifies this particular communication
session, and a nonce n1 for deriving the session keys. The
mote then sends a KeyGenStart message securely to the base
station using ECIES. This message contains the mote’s ID
(NID), the patient’s FPID, the master key Km, the session
number SN , and the nonce n1.

The base station decrypts the message and verifies the
authenticity of this patient using the fingerprint ID. Then
the base station generates a nonce n2, and it uses Km, n1,
and n2 to derive the session keys that will be shared with the
mote – the symmetric encryption key Ks and the MAC key
Kmac for data/query transfer. These keys can be updated
by changing n1 and n2. The base station then sends back a
KeyGenAck message to the mote containing SN , n2, and a
one-way hash of n1, encrypted using the ECIES procedure.
The mote decrypts the message and verifies SN and the
hash of n1 to prevent replay attacks. Afterwards, the mote
uses Km, n1, and n2 to derive the session keys Ks and Kmac,
which should match those generated by the base station.

For the base station to verify that the mote has received
the KeyGenAck message and that the mote generated the
session keys Ks and Kmac correctly, the mote sends a Key-
GenVerify message to the base station containing SN and
n2. This message is integrity-protected with Kmac and en-
crypted with Ks. The base station decrypts the message and
verifies that all the values are correct. If so, data transfer
may commence using Ks to encrypt/decrypt messages and,
if desired, Kmac to compute a keyed MAC for each message.

The base station and the mote periodically update the
session keys Ks and Kmac to limit the amount of private
data that can be recovered in case the keys are compromised.
To update the session keys, they simply exchange new values
of n1 and n2 and rerun the key derivation function using
the existing master key Km and the new nonce values. The
update messages contain the existing session number SN ,
the new session number SN ′, and the new nonce values,

encrypted using the existing session keys. The value SN

protects against replay attacks, while encryption prevents
outside attackers from forging meaningful messages.

4.2.5 Attacks and Countermeasures
To prevent replay attacks, each mote stores its current

SN in non-volatile memory and increases SN by a ran-
dom amount whenever the key exchange protocol or the
key update procedure is run. Therefore, an attacker cannot
inject previously recorded KeyGenStart, KeyGenAck, and
KeyGenV erify messages in a later session. Moreover, the
FPID helps identify forged KeyGenStart messages, even if
an outside attacker is able to guess a reasonable SN . Fur-
thermore, all three messages are encrypted, making it diffi-
cult for an outside attacker to obtain FPID, Km, SN , n1,
and n2. Finally, we include two additional checks to further
thwart forged messages. The KeyGenAck message contains
a hash of n1, so an outside attacker must guess this hash
correctly. The KeyGenV erify message is encrypted and
integrity-protected with the session keys and contains the
value n2, so it is impossible for an outside attacker to forge
this message unless s/he guesses all these values correctly.

We use the following measures to limit what an inside at-
tacker can do with a compromised mote. First, the FPID is
erased from the mote’s memory once the KeyGenAck mes-
sage is received, so it is difficult for an attacker to obtain
the previous patient’s fingerprint information. Second, n1

and n2 are erased as soon as the session keys are derived
from them. Third, once new session keys are derived, the
previous session’s keys are erased from memory. Fourth, if
the base station and the mote have not communicated for
a long period of time, the master key Km and its derived
keys expire and are removed from memory. These measures
limit how much private data the attacker can recover using
pre-captured data for that mote.

4.3 Query/Data Protection Mechanism
Queries and data are encrypted using the session keys es-

tablished through the key exchange protocol. To prevent
replay or injection of messages, we use both SN and a mes-
sage sequence number in query and data messages. The
base station and the mote increase their sequence numbers
for each new query or data message; received messages with
an unexpected SN or sequence number are discarded. Note
that it is difficult for an outside attacker to guess SN in the
first place. For an inside attacker with a compromised mote,
s/he may be detected by the base station, which monitors
the patient data to detect forgeries (see §4.1).

5. IMPLEMENTATION AND EVALUATION
We have implemented the key exchange protocol and sym-

metric data encryption mechanism in TinyOS 2 on the Moteiv
Tmote Sky platform, which features a 16-bit, 8 MHz Texas
Instruments MSP430 processor with 48 KB of program ROM
and 10 KB of RAM.

Our ECC implementation is partly based on NCSU’s Tiny-
ECC code for the Crossbow MICA [15]. We modified Tiny-
ECC to run on the Tmote Sky by replacing the inline as-
sembly with MSP430 assembly, making use of the MSP430’s
hardware multiplier, and incorporating a fast modular inver-
sion algorithm involving only bit shifts and additions [19].
We then implemented ECIES for secure key exchange, using
the elliptic curve secp160r1 defined over a 160-bit prime field

as recommended by [3]. We use 160-bit private keys, 320-bit
public keys, and a 160-bit random number in ECIES.

We chose the RC5 block cipher for symmetric encryption,
using the recommended parameters of 64-bit blocks, 128-bit
keys, and 12 rounds. For the hash function we use SHA-1,
based on a reference implementation in RFC 3174 [7]. To
save code space, we use SHA-1 based algorithms for both the
message authentication code function (for integrity check-
ing) and key derivation function; we implemented HMAC-
SHA-1 [14] and PBKDF1 [13], respectively.

For the key exchange protocol, we use a 32-bit session
number (SN), 32-bit patient ID (FPID), 128-bit master

key (Km), 128-bit transient and session keys (Ks, K
′

s, Kmac,

K
′

mac), and 64-bit nonces (n1, n2). The resulting KeyGen-
Start, KeyGenAck, and KeyGenV erify messages are 54, 52,
and 32 bytes long.

Our entire code on the Tmote uses 24.1 KB of ROM and
2.75 KB of RAM, which leaves ample room for other appli-
cations. The ECC code is quite efficient – it carries out a
160-bit scalar point multiplication (the most computation-
ally intensive operation in ECC), in 5.3 s. We timed the
protocol running on two motes, one serving as a sender and
one serving as a “base station.” The sending mote took 11.4
s to generate and send KeyGenStart, and 120 ms to check
KeyGenAck and send KeyGenVerify. The base station took
6.86 s to check KeyGenStart and send KeyGenAck, and 32.8
ms to check KeyGenVerify. The choice of using a mote for
a base station was done mainly for ease of development,
so that the cryptographic operations written for the mote
could be reused. However, we note that in a real deploy-
ment, the base station’s computations would be performed
on a PC-class device, resulting in much faster numbers. A
mote would be needed only to serve as the interface between
the sensor network and the base station.

To get an idea of the performance impact of doing sym-
metric encryption/MAC on every data packet, we also con-
ducted a simple experiment in which one mote sent 1000
packets as rapidly as possible to a receiving mote, which
forwarded the packets to a PC via a serial interface (emu-
lated in USB). We varied the packet size from 40 bytes to
100 bytes in different experiments. We then measured the
raw sending rate and packet loss as seen from the PC. Due
to space constraints, the figures are not shown here. We
observed that using encryption does lower the sending rate
of the system, from 4-7 KB/s to 1-2 KB/s (depending on
packet size). However, we also observed significant packet
loss without encryption, on the order of 20-40%, while the
experiments with encryption did not experience any losses.
Although we are still investigating the causes, one possibil-
ity is that the serial connection between the receiving mote
and the PC could not handle the faster send rate without
encryption. In summary, the experiment suggests that our
system is capable of handling sampling rates below 20 Hz
with a data packet size of 100 bytes. In a real deployment,
the sampling rate is likely to be much lower than 20 Hz.
Nevertheless, we believe that we can further improve the
efficiency of the symmetric encryption implementation.

6. RELATED WORK
Early work on sensor network security focused on symmet-

ric cryptography (e.g., [18]) for protecting sensitive data.
However, symmetric schemes themselves do not provide a

mechanism for key distribution and management; this issue
is addressed by public-key cryptography. Recent research
(e.g., [15, 9, 10]) has shown that performing public-key com-
putations on resource-constrained devices is viable.

Despite this progress, providing a comprehensive security
solution for medical sensor networks remains an open prob-
lem. The designers of CodeBlue [20] acknowledge the need
for security in a medical environment, but their work does
not focus on addressing security requirements. The MU-
SIC project [5] proposes a three-tier architecture for patient
health monitoring, but it focuses largely on optimizing net-
work lifetime by controlling the frequency at which data is
collected and transmitted. I-Living [21] proposes an archi-
tecture to enable assisted living at home for elderly citizens.
They realize the need for security when dealing with patient
data and propose a symmetric security scheme, in which
security context information such as keys and certificates
are stored in USB sticks that are automatically recognized
and read once plugged into a device. However, the scheme
seems to require that each device be individually configured.
In ALARM-NET [22], the authors propose that security be
provided via the symmetric Advanced Encryption Standard
(AES) cipher; however, they are not specific about how key
management is to be accomplished. Our work is complemen-
tary to the above efforts as our ECC-based key exchange
protocol addresses the need for key management and our
two-tier data authentication scheme makes it difficult for
attackers to inject forged data.

7. CONCLUSION
We have presented the SNAP architecture for medical sen-

sor networks and its associated security mechanisms. We
are optimizing our current implementation and adding an
ECG-based mechanism to authenticate patients. We will
perform more extensive evaluation of our implementation
and release our code in the near future. In addition, we
will develop more realistic base station software, in which a
mote serves only as the interface between the sensor network
and a PC responsible for cryptographic operations/storage
of received data. Once sufficient security measures are in
place, we will address routing, mobility, and congestion is-
sues. We also plan to develop a hardware prototype using
actual medical sensors and perform preliminary field trials
in local hospitals.

8. REFERENCES
[1] Fujitsu MBF200 Solid State Fingerprint Sensor.

http://www.fujitsu.com/emea/services/microelectronics/sensors/.

[2] Certicom Research. Standards for Efficient Cryptography
(SEC) 1: Elliptic Curve Cryptography. Sept. 2000.

[3] Certicom Research. Standards for Efficient Cryptography
(SEC) 2: Recommended Elliptic Curve Domain Parameters.
Sept. 2000.

[4] D. Chaum and E. van Heijst. Group Signatures. In Advances
in Cryptology - Eurocrypt ’91, pages 257–265, 1991.

[5] Crossbow Solutions Newsletter. Motes for mobile
communication and tele-medicine. 2005.

[6] Crossbow Technology. MPR/MIB mote hardware users
manual. http://www.xbow.com/Support/manuals.htm, Jan.
2006.

[7] D. Eastlake and P. Jones. US Secure Hash Algorithm 1. RFC
3174, http://www.ietf.org/rfc/rfc3174.txt, Sept. 2001.

[8] R. Fischer, L. Ohno-Machado, D. Curtis, R. Greenes, T. Stair,
and J. Guttag. SMART: Scalable medical alert response
technology. In Smart Medical Technologies Summit (SMT),
2004.

[9] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz.
Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs. In Workshop on Cryptographic Hardware and
Embedded Systems, Aug. 2004.

[10] H. Wang and B. Sheng and Q. Li. TelosB implementation of
elliptic curve cryptography over primary field. Technical
Report WM-CS-2005-12, Dept. of Computer Science, College
of William and Mary, Oct. 2005.

[11] H. G. Hosseini, D. Luo, and K. J. Reynolds. The Comparison
of Different Feed Forward Neural Network Architectures for
ECG Signal Diagnosis. Medical Engineering and Physics,
28:372–378, 2006.

[12] S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and
B. K. Wiederhold. ECG to identify individuals. Pattern
Recognition, 38:133–142, 2005.

[13] B. Kaliski. PKCS #5: Password-Based Cryptography
Specification. RFC 2898, http://www.ietf.org/rfc/rfc2898.txt,
Sept. 2000.

[14] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. RFC 2104,
http://www.ietf.org/rfc/rfc2104.txt, Feb. 1997.

[15] A. Liu, P. Kampanakis, and P. Ning. TinyECC: Elliptic Curve
Cryptography for Sensor Networks.
http://discovery.csc.ncsu.edu/software/TinyECC/.

[16] Moteiv Corporation. Tmote Sky.
http://www.moteiv.com/products/tmotesky.php, 2007.

[17] C. Park, P. H. Chou, Y. Bai, R. Matthews, and A. Hibbs. An
Ultra-Wearable, Wireless, Low Power ECG Monitoring
System. Proceedings of IEEE BioCAS, Nov. 2006.

[18] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. In Proceedings
of the ACM MOBICOM, 2001.

[19] S. C. Shantz. From Euclid’s GCD to Montgomery
Multiplication to the Great Divide. Technical Report
TR-2001-95, Sun Microsystems, June 2001.

[20] V. Shnayder, B.-R. Chen, K. Lorincz, T. R. F. Fulford-Jones,
and M. Welsh. Sensor networks for medical care. Technical
Report TR-08-05, Harvard University, Apr. 2005.

[21] Q. Wang, W. Shin, X. Liu, Z. Zeng, C. Oh, B. Al-Shebli,
M. Caccamo, C. Gunter, E. Gunter, J. Hou, K. Karahalios,
and L. Sha. I-Living: An open system architecture for assisted
living. In Proceedings of the IEEE SMC, 2006.

[22] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu,
L. Fang, Z. He, S. Lin, and J. Stankovic. ALARM-NET:
Wireless Sensor Networks for Assisted-Living and Health
Monitoring. Technical Report CS-2006-01, University of
Virginia, 2006.

