Near Loop-free Routing: Increasing Path Choices with
Stateful Forwarding

Klaus Schneider!, Beichuan Zhang!, Lan Wang?, Lixia Zhang?
IThe University of Arizona, 2The University of Memphis, 3UCLA
{klaus, bzhang}@cs.arizona.edu, lanwang@memphis.edu, lixiaQcs.ucla.edu

ABSTRACT

When splitting traffic for one destination among multiple
paths, the employed paths should be loop-free, lest they waste
network resources, and the involved routers should be given a
high path choice, that is, a high number of potential nexthops.
In IP networks this requires the use of a loop-free routing
protocol, which limits the achievable path choice.

Here we show that, in NDN, we can increase the path
choice by combining a Near Loop-free Routing protocol (NLR)
with on-demand loop removal at the forwarding layer. NLR
routers 1) exclude the incoming face from forwarding, 2) use
certain heuristics to minimize routing loops, and 3) remove
any remaining loops at the forwarding plane. NLR achieves a
higher path choice and path quality than current alternatives,
while keeping computation complexity low.

ACM Reference format:

Klaus Schneider!, Beichuan Zhang!, Lan Wang?, Lixia Zhang?.
2017. Near Loop-free Routing: Increasing Path Choices with State-
ful Forwarding. In Proceedings of ICN ’17, Berlin, Germany,
September 26-28, 2017, 2 pages.
https://doi.org/10.1145/3125719.3132098

1 INTRODUCTION

IP routers cannot reliably detect loops, which makes loops
expensive: packets circle around until the TTL runs out,
wasting network resources while doing so. Thus, IP networks
require a strictly loop-free routing protocol (see Section 2).

In contrast, Named Data Networking (NDN) can detect
loops at the forwarding plane via a nonce in the packet header.
Thus, NDN routing does not have to be loop-free, and indeed
some NDN routing protocols [1] produce paths that may
result in loops (Figure 1la). These loops, although detectable,
waste network resources and thus need to be handled at
the forwarding layer. This poses several questions: 1) Which
routing protocol should we use to mazximize the path choice
while minimizing routing loops? 2) How should the forwarding
layer deal with loops once detected? 3) And is the result better
than using the best current loop-free routing protocol?

For the case of multipath traffic splitting, current work
does not answer these questions. Instead, current forwarding
strategies avoid the looping problem in one of three ways: 1)

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ICN ’17, September 26-28, 2017, Berlin, Germany

(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5122-5/17/09. .. $15.00
https://doi.org/10.1145/3125719.3132098

they restrict themselves to forwarding on a single best path
(NCC, BestRoute, and AccessStrategy in NFD, RGY [4], and
ASF), 2) they split up traffic but rely on loop-free routing,
3) they ignore the problem and thus restrict their scalability
(Multicast/Broadcast-Strategy in NFD).

Here we give a detailed answer to the first two questions,
and answer the third one with a clear Yes: A combination of
near-loopfree routing (NLR) and loop removal at the forward-
ing layer results in better performance than any reasonably
complex loop-free routing protocol.

2 LOOP-FREE ROUTING

To avoid loops, routers must use certain heuristics to decide
which nexthops they use for forwarding. A simple heuristic
is Equal Cost Multi-Path (ECMP), in which a router uses
the shortest path nexthop nsp, plus any nexthop n; with
the exact same cost: cost(ns, dst) = cost(nsp, dst). However,
ECMP only provides a small number of nexthops, since
path costs need to match exactly. This nexthop choice can
be extended by using the Downward Path Criterion (DW),
which includes the shortest path nexthop plus any nexthop
n; that is closer to the destination than the current node (x):
cost(n;, dst) < cost(x,dst). An even higher nexthop choice is
achieved by MARA [2], which turns the network into Directed
Acyclic Graphs (DAGs) and includes all links in the network.

3 NEAR LOOP-FREE ROUTING

To increase path choice over the maximum that is possible
in a DAG, NLR not only considers the destination prefix for
forwarding, but also the incoming interface: a router always
excludes the interface on which a packet arrived. This allows
to use many more paths than otherwise possible. For example,
Figure 1 shows the routes for the destination Indianapolis (IN)
of the Abilene topology (viable nexthop entries are indicated
by the direction of the arrows). In a DAG, NY only has one
path to the destination: NY — CH — IN. With incoming-
interface exclusion (NLR), NY can choose a second path:
NY - WA — ATL — IN. Figure 1 also shows the problem
of a too broad heuristic (NLSR): It can lead to expensive
loops like KC — DV — SV — LA — HOU — KC.

NLR tries to find a heuristic broader than DAG but which
still does not cause too many loops. For that goal, NLR
assigns each nexthop a type based on its likelihood to loop:
e Downward: The nexthop never causes a loop.

e Upward: The nexthop may cause a loop.
e Disabled: The nexthop always causes a loop.

Downward nexthops lead closer to the destination; upward
nexthops lead further away. For brevity, we omit the details
of the heuristics, which can be found in our longer report [3].

https://doi.org/10.1145/3125719.3132098
https://doi.org/10.1145/3125719.3132098

ICN '17, September 26-28, 2017, Berlin, Germany

e

(a) NLSR

\HO

S S

(b) Loop-free Routing (DAG)

Klaus Schneider, Beichuan Zhang, Lan Wang, Lixia Zhang

CH €——NY CH €——>»N\Y

Ny)

P
e

(c) NLR

Figure 1: Routing Entries in the Abilene Topology for Destination Indianapolis (IN)

(a) Before

(b) After

Figure 2: Example of Forwarding Loop Removal

4 FORWARDING LOOP REMOVAL

NLR may produce some looping paths, which need to be
handled at the forwarding layer. After detecting a loop via a
duplicate nonce, an NDN router can try different nexthops or
backtrack to the previous hop, so that each Interest eventually
reaches its destination. However, since this path exploration
can be immensely costly, routers need a way to permanently
avoid loops in the future; one of the routers involved in the
loop needs to disable the nexthop it forwarded the packet
on for all future packets towards the same destination. Thus,
the question arises: which nexthop should be disabled?

Current NDN loop handling schemes disable the nexthop
either at the router that detected the loop or at the router
directly downstream to it (which is informed of the loop via
a NACK) [4]. However, this will often disable nexthops that
go closer to the destination, leading to higher forwarding
overhead and longer remaining paths. We propose a more
efficient solution called Upward Nexthop Removal (UNR):
routers only remove (upward) nexthop entries that lead away
from the destination; these nexthops may or may not be
directly adjacent to the router detecting the loop. Moreover,
a loop may contain multiple upward nexthops, and we need
to disable only one of them to avoid future loops on this path.
Thus, we remove the first upward nexthop that the looped
Interest encountered, by introducing a special loop signaling
Interest (see the rationale and design in [3]).

An example of the UNR algorithm is shown in Figure 2.
The original Interest takes the path S - X - 0—-1—2 —
3 — X, at which point X detects the loop by observing the
duplicate nonce. A traditional loop-removal scheme would
now disable either the nexthop X — 0 or 3 — X, both of
which are poor choices, as they lead closer to the destination.
Instead, UNR sends the loop signaling Interest packet along
the loop and router 0 will remove the upward nexthop 0 — 1.
Afterwards, this loop is avoided, as node 0 will choose a
different nexthop towards destination D.

Table 1: Routing Algorithms + Loop Removal

Routing FW NextHops (#) NH>1 PathLen (Hops) RemFibs (%)

ECMP 1.39 (40.86) 30.3 4.24 (+1.64) 0.00 (+0.00)
DW 2.57 (+2.41) 73.0 4.99 (£2.03) 0.00 (=£0.00)
DWE 3.10 (£2.90) 83.5 5.91 (£2.47) 0.00 (-£0.00)
MARA 3.10 (+1.46) 95.2 7.65 (+3.51) 0.00 (£0.00)
NLR UNR 3.19 (+£2.37) 99.6 6.54 (+2.85) 0.04 (40.00)
NLSR2 UNR 1.85 (+0.35) 94.7 6.15 (+3.04) 2.50 (40.02)
NLSR3 UNR 2.41 (+0.74) 93.9 6.14 (+2.96) 7.62 (40.03)
NLSR UNR 3.51 (£2.70) 95.6 6.49 (+2.91) 42.65 (40.11)

5 EVALUATION

We compare NLR with the loop-free routing algorithms from
Section 2, with NLSR [1], and with two NLSR variants that
include the 2 or 3 lowest-cost nexthops (NLSR2/3). We have
evaluated 9 different topologies [3], but for brevity we only
show the results for the Rocketfuel Sprint network.

The results are shown in Table 1. ECMP only achieves a
limited choice of nexthops, and in most cases restricts for-
warding to only one nexthop (NH >1 shows the percentage of
routers with more than one nexthops). DW and its extension
DWE (explained in [3]) perform better than ECMP as they
don’t depend on exact cost matching. MARA includes the
same average number of nexthops as DWE, which is the max-
imal possible number in a DAG. NLR outperforms all tested
loop-free routing algorithms: in all tested topologies, it gives
nodes both a higher number of average nexthops and a higher
chance of having at least 2 nexthops. NLR achieves this with
a low complexity of removing less than 1% of FIB entries
(much lower than NLSR). The computation complexity of
NLR falls in between the other schemes: it is more complex
than DW and NLSR, but less complex than MARA (see [3]).

Moreover, NLR can handle 91.8% to 99.6% of link failures
completely without invoking the routing protocol; routing
convergence can be delayed or even completely avoided, if
forwarding on slightly suboptimal paths is acceptable. Thus
our work reduces the burden on routing protocols, allowing
them to perform more time-intensive path computations than
currently possible.

REFERENCES

[1] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang.
Nlsr: named-data link state routing protocol. In ACM SIGCOMM
ICN workshop, 2013.

[2] Y. Ohara, S. Imahori, and R. Van Meter. Mara: Maximum alter-
native routing algorithm. In INFOCOM 2009. IEEE.

[3] K. Schneider and B. Zhang. How to establish loop-free
multipath routes in named data networking. https://named-
data.net/publications/techreports/ndn-0044-1-loopfree-routing/.

[4] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and
L. Zhang. A case for stateful forwarding plane. Elsevier, 2013.

	Abstract
	1 Introduction
	2 Loop-Free Routing
	3 Near Loop-free Routing
	4 Forwarding Loop Removal
	5 Evaluation
	References

