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Abstract—In Named Data Networking (NDN), data synchro-
nization plays an important role similar to transport protocols in
IP. Many distributed applications, including pub-sub applications
such as news and weather services, require a synchronization
protocol where each consumer can subscribe to a different subset
of a producer’s data streams. However, existing Sync protocols
support only full-data synchronization, which is a special case of
this problem. We propose PSync to efficiently address different
types of data synchronization. Names are used in PSync messages
to carry producers’ latest namespace information and each
consumer’s subscription information, which allows producers to
maintain a single state for all consumers and enables consumers
to synchronize with any producer that replicates the same
data. We have implemented PSync in the NDN codebase and
used it to develop a prototype pub-sub module for building
management. Our experimental results show that PSync scales
well as the number of consumers, subscriptions, and data streams
increases and it outperforms the state-of-the-art Sync protocol
in supporting full-data synchronization.

I. INTRODUCTION

Data synchronization is a basic requirement for a large
number of distributed applications such as calendars, Dropbox,
and email. Some applications, e.g., multi-user chat, require
every participant in a group to receive all the new data
produced by everyone else. We call this scenario full-data
synchronization. Alternatively, each user may be interested
only in a subset of the produced data, which is very common
in pub-sub applications, such as news and weather subscription
services, where producers publish a diverse set of data and
consumers each subscribe to a subset. For example, a news
subscriber may read only about technology and travel, but
not entertainment or other news categories. This is what we
call partial-data synchronization, which is a generalization of
the full-data synchronization problem, as a user’s interest (or
subscription) can range from an empty set to a full set of the
data.

In this work, we investigate the partial-data and full-data
synchronization problems in the context of the Named Data
Networking (NDN) architecture [1]. Motivated by today’s in-
creasingly data-centric applications, the NDN design addresses
the Internet’s lack of support for scalable data distribution, mo-
bility, and security. It makes immutable data with hierarchical
names and producer signatures a common abstraction for both
the network layer and application layer. Producers publish data
under unique names, consumers use data names to request
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data, and the network uses names to forward consumers’
requests and cache returned data for future requests.

Since NDN uses names, not end point identifiers, to fetch
data, it does not use TCP-like channel-based protocols for
reliable delivery. Instead, name-based data synchronization
(Sync) has become the equivalent of TCP to bridge the net-
work layer and application layer in NDN. While existing Sync
protocols in NDN, e.g., ChronoSync [2] and iSync [3], ad-
dress full-data synchronization, they do not handle partial-data
synchronization. Therefore, the current Sync protocols in the
NDN platform cannot support pub-sub applications efficiently.
One alternative is to start with an Internet architecture that
is based on the pub-sub model (e.g., PSIRP/PURSUIT [4]).
Our ultimate goal, however, is to design an architecture that
supports a wide range of applications including pub-sub
applications based on a generic abstraction as provided by
NDN. Therefore, this work focuses on designing the right Sync
protocol for NDN to support pub-sub applications. Note that
an in-depth discussion on the architectural design choice is
out of scope for this paper.

To illustrate the requirements for partial-data synchroniza-
tion, consider a smart-phone app store. Due to their mobile
device’s limited storage capacity, users may only install a small
portion of the apps available to them. In such a scenario,
whenever any installed application is updated, the mobile
device should receive notifications of the update in order
to fetch it. Since there can be a large number of apps and
millions of users for each popular app, a scalable design for
updating the apps needs to satisfy the following requirements:
(a) the app store should not have to keep track of the users of
each app in order to send proper notifications, (b) the phones
should not have to check the app store periodically for every
installed app to get updates, and (c) the phones should be
able to synchronize with any app store that has the same set
of apps. These requirements are applicable to many pub-sub
applications with partial-data synchronization semantics.

Based on the above requirements, we propose a protocol
called PSync to efficiently synchronize a subset of data name
prefixes, i.e., a sub namespace, in NDN. PSync uses Invertible
Bloom Filters (IBF) [5] to represent the latest data names in
a namespace and utilizes the subtraction operation of IBF to
efficiently discover the list of new data names that have been
produced in the period between an old IBF and new IBF.
Using the list of new data names and consumers’ subscription
information, a producer can notify a consumer if new data



matching the consumer’s subscription has been produced.
Our design satisfies the aforementioned requirements as

follows: (a) scalability under large number of consumers:
a PSync Interest message from each consumer carries the
consumer’s subscription information and previously received
producer state, so that the producer has all the informa-
tion needed to process the message without having to keep
track of every consumer. Moreover, the producer maintains
a single IBF of its state for all consumers rather than one
IBF per consumer; (b) robustness under producer failures:
because producers do not maintain state about consumers,
each consumer can synchronize with any producer among
a group of producers that replicate the same data; and (c)
scalability under large number of subscriptions: efficient data
representations such as Bloom Filters (BF) [6] and ranges are
used to encode consumers’ subscriptions so only one PSync
Interest message is sent from each consumer, irrespective of
the number of subscribed name prefixes.

Our evaluation using a large ISP’s point-of-presence topol-
ogy shows PSync performs well with different numbers of
consumers, subscriptions, and data streams. Furthermore, it
has lower delay than ChronoSync in supporting full-data
synchronization. Finally, we implemented a prototype pub-sub
module for building management using PSync and evaluated
the scalability of PSync in this application.

The paper is organized as follows. Section II reviews the
NDN architecture, Bloom Filter, and associated extensions.
Sections III, IV and V present the design, implementation,
and evaluation of the proposed PSync protocol. We discuss
related work in Section VI. Section VII concludes the paper.

II. BACKGROUND

A. NDN Architecture

NDN [1] is a new data-centric Internet architecture that
supports efficient and secure data distribution. NDN uses two
types of packets, Interest and Data packets, to request and
return named content, respectively. NDN also binds a data
packet’s name and content using the producer’s key, so any
receiver can verify the authenticity of the data packet.

Consumers send interests containing the name (or name pre-
fix) of the desired data. Names are hierarchical with variable
number of components, e.g., /youtube/video105/frame1. The
name in an interest can be the same as or a prefix of the
name in a matching data packet. For example, the interest
/youtube/video105 can fetch any data with this prefix, e.g.,
/youtube/video105/frame1/segment1, but only one data packet
is returned for each interest. When an interest arrives at a
router, if there is no cached matching data and the router has
not forwarded such an interest before, the router decides how
to forward the interest by looking up the interest name in its
forwarding information base (FIB). The router also maintains
a pending interest table (PIT) that records which interface the
interest arrived on and to which interface it was forwarded.
When the interest reaches the producer or a node that has
cached the matching data, the data will be sent back to the
consumer on a symmetric return path using the information

Fig. 1: Data d is passed to each hash function which maps the data
to a bit position in the bloom filter.

recorded in the PIT. Data packets are cached in the Content
Store (CS) on each node on the return path which can be used
to satisfy future interests that request the same data.

B. Bloom Filter and Extensions

A Bloom Filter [6] is an efficient data structure that uses a
bit array to succinctly represent a dataset. It allows for queries
of whether an element is in the dataset or not by using multiple
hash functions to map each element in the set to certain bits. To
insert an element into the Bloom Filter, the element is passed
to each hash function to get a list of bit positions. These bit
positions are set to 1 to indicate that the element is a member
of the set (Figure 1). To perform a membership query for
an element, the element is passed to each hash function to
get a list of bit positions. If each bit position is set to 1, the
Bloom Filter shows the element as a member of the set. Due to
the compactness of the data structure, answers to membership
queries may be false positives (not false negatives), as elements
may be hashed to some of the same bits. The false positive rate
(p) of a Bloom Filter is approximately (1− e−kn/m)k, where
m is the size of the bit array, k is the number of hashes, and n
is the number of elements inserted into the Bloom Filter [6].
This means that a larger bit array and a smaller element set
lead to lower false positive rate. Moreover, given n and m,
k = (m/n) ∗ ln2 produces the lowest false positive rate [6].

The basic Bloom Filter does not support a removal oper-
ation, since multiple elements may set the same bit to 1. If
two elements set the same bit to 1 and one of the elements is
removed, setting the bit to 0 would make it appear as if the
other non-removed element is also not in the Bloom Filter.
In order to support element deletion, a count array is added
to the regular Bloom Filter to record the number of times
that a bit is set by an insertion – such a data structure is
called a Counting Bloom Filter (CBF) [7]. Every time an
element is inserted, the bits in the bit array are set to 1 and
the corresponding bits in the count array are incremented by
1. When an element is removed, the corresponding bits in the
count array will decrease by 1. When a bit’s count is equal to
0, the corresponding bit in the bit array can safely be set to
0. The removal process for a CBF is shown in Figure 2.

Although a BF or CBF supports membership testing, one
cannot invert either one of them to determine the specific
elements that set the bits. Invertible Bloom Filters (IBF) [5]
are a new data structure designed to solve this problem. Instead
of maintaining a simple bit array to represent set membership,
IBFs use the hash functions to map the elements to cells that
maintain an idSum, hashSum, and count to track the sum of



Fig. 2: Data d is removed from the Counting Bloom Filter. Although
d maps to three bit positions, only one of the bit positions is set to 0
due to another element being mapped to two of the same positions.

Fig. 3: Data d is added to the Invertible Bloom Filter.

inserted elements’ KeyID, sum of their hashes, and number of
inserted elements, respectively.

When an element is inserted, the hash functions are applied
to the element to get a list of cells to which the element
corresponds. For each corresponding cell, the cell’s idSum
is XOR’ed with the inserted element’s KeyID, and the cell’s
hashSum is XOR’ed with the inserted element’s hash value;
the cell’s count is also incremented. The insertion process is
shown in Figure 3. When an element is deleted, the operations
are similar to those for element insertion except that the count
is decremented in each cell the element corresponds to.

A list of elements can be retrieved from an IBF by looking
for pure cells. A pure cell is a cell that contains only one item,
and the hash value of the cell’s idSum equals the value of the
cell’s hashSum. This element can be added to the retrieval
list and deleted from all its corresponding cells. This deletion
may remove a collision from existing cells thus producing new
pure cells. This process continues until no more pure cells can
be found in the IBF. To use an IBF effectively, if there are d
elements in the IBF, 1.5 ∗ d cells are required to decode the
IBF with a low decoding failure probability [5].

IBFs also support a set difference operation through subtrac-
tion – for each cell in two IBFs, the corresponding count bits
are subtracted, and the corresponding idSums and hashSums
are XOR’ed. Suppose we calculate IBF1− IBF2, a cell with
a count of 1 (-1) means that it contains an element only in
IBF1 (IBF2). Along with the idSum and HashSum from the
subtraction, we can determine the specific different elements in
the two IBFs and to which IBF each different element belongs.
Removing the different elements may reveal more pure cells,
so this process can be repeated to extract more differences.

Only fixed-length numbers (KeyID) can be inserted into an

Fig. 4: Data Streams

Fig. 5: Sync Messages (SL represents the consumer’s subscription
list; old-IBF and new-IBF represent the producer’s old state and
current state in IBF.)

IBF. If we want to insert NDN names, we first need to hash
each name into a fixed-length number (KeyID) and then keep a
mapping table to associate each KeyID with the original name.
After that we can do the normal IBF operations by using the
KeyIDs. Retrieving an element requires first getting the KeyID
from the IBF and then looking up the corresponding name in
the mapping table using the KeyID.

III. DESIGN

In this section, we first give an overview of the PSync
design. Next, we introduce how state information is encoded
and then present the protocol details.

A. Overview

We first define a data stream to be a set of data which
have the same name prefix but different sequence numbers
(Figure 4). We assume that each producer generates a set of
data streams, and each consumer is interested in a subset of the
data streams. For example, a building management system may
have electricity data produced by many devices each forming
a data stream with the name prefix /〈building〉/Electricity/
〈panel〉/〈device〉 (within the data stream, each data point’s
name starts with the name prefix and ends with a sequence
number). Suppose a consumer is interested in a data stream,
it can subscribe to the corresponding name prefix through
PSync. Then it will be informed whenever new data points are
generated in the subscribed data stream. It can also subscribe
to multiple devices’ data streams using their name prefixes.

PSync uses regular NDN interest and data messages for sub-
scription and notification. We call these messages Sync Interest
and Sync Reply, whose names begin with a routable prefix to
reach the producer(s) and a component for demultiplexing,
e.g., /〈routable-prefix〉/psync (see Figure 5). Each consumer
sends Sync Interests to the producer in order to learn about
newly produced data in their subscribed data streams (Step
1 in Figure 6). The Sync Interest contains the consumer’s
subscription list in its interest name (not payload) which is
used by the producer to check for updates to the subscribed



Fig. 6: Overview of PSync Protocol Exchanges

data. If any data stream in the consumer’s subscription list
has new data items, the producer will generate a Sync Reply
to the consumer containing a list of new data names in the
subscribed data streams (Step 2 in Figure 6). This is much
more efficient than blindly sending all the new data names
to all the consumers, since the producer may have many data
streams and consumers and each consumer may be interested
in only a small set of data streams.

Upon receiving the Sync Reply, which contains a list of new
data names, the consumer will further check whether the data
names indeed belong to its own subscription list. If a data name
is a false positive, which means the producer returned a data
name to which the consumer has not subscribed, then the name
is ignored by the consumer. Otherwise, the consumer sends an
Interest to the producer to fetch the new data and the producer
or an intermediate cache will return the data (Step 3 and 4 in
Figure 6). If no new data matching the consumer’s subscription
list has been produced when the Sync Interest is received, the
Interest will be maintained by the producer separately from
the PIT in the NDN forwarder. The producer will respond
immediately if any subscribed data stream has new data before
the Interest expires. When the interest expires, the consumer
will send a new Sync Interest. Note that the above operations
are actually handled by PSync in the consumer and producer
applications through library calls.

B. Data Representation

PSync uses a number of representations including Bloom
Filters (BF) and ranges for consumers to express their Sub-
scription List in their Sync Interests. Moreover, it uses In-
vertible Bloom Filters (IBF) to represent producers’ latest
datasets, i.e., Producer State. Bloom Filters and their exten-
sions (Section II) are space efficient data structures that enable
consumers and producers to exchange their information in a
compact form, identify new data names efficiently, and match
those names with consumers’ subscriptions quickly.

1) Subscription List: Suppose a producer has n data
streams with name prefixes P = {p1, p2, ...pn}, and a con-
sumer is interested in a subset of the data streams Q =
{q1, q2, ..., qj} ⊆ P . The set Q can be hashed into a Bloom
Filter f .1 When |Q| is large, we use Compressed Bloom

1While regular BFs are sent in Sync interests, consumers can use Count-
ing Bloom Filters (CBF) locally to support deletion of subscriptions more
efficiently (regular BFs support only insertions).

Filter [8] to make the encoded subscription list smaller at
the cost of a slightly higher false positive rate (Section V).
Alternatively, if Q includes all the prefixes from pi to pj
in P (ordered alphabetically), then this set can be simply
represented as a range [pi, pj ]. There are also other special
cases, e.g., |Q| = 1 or P = Q, which can be encoded using
simpler representations than Bloom Filters. When the con-
sumer sends a Sync Interest, it selects the most compact format
for its subscription list and sends the format information along
with the encoded subscription list in the interest name to the
producer so that the producer can decode correctly.

2) Producer State: PSync adopts ChronoSync’s approach
of letting each producer name data sequentially [2]. The latest
dataset can be represented by an IBF which contains only one
data name from each data stream, i.e., the data stream’s name
prefix plus its latest sequence number. When a data stream
with the name prefix p generates a new data item and increases
its sequence number from i to i + 1, PSync will remove the
name p/i from the IBF and add p/(i+1) to the IBF. In doing
so, the IBF encodes only N items, where N is the number
of data streams. Note, however, that because PSync decodes
the differences between two IBFs, the IBF size should be
proportional to the expected number of updated data streams
in a Sync period, which can be much smaller than N .

The producer sends its IBF information to every consumer
through its Sync Reply. Every time a consumer sends a Sync
Interest to a producer, it will add the previous IBF it received
from the producer as the last name component (Figure 5).

C. Protocol Message Exchanges

There are two phases in PSync. In the Initialization Phase,
a consumer needs to know what data streams to subscribe to
and also get the producer’s latest IBF (Section III-C1). After
receiving the producer’s state information, the consumer enters
the Sync Phase in which it subscribes to some (or all) of
the data streams and receives notifications from the producer
(Section III-C2).

1) Initialization Phase: Assuming the producer is reach-
able via the name prefix /〈routable-prefix〉, the consumer
first sends a Hello Interest to the producer using the name
/〈routable-prefix〉/psync-hello, as shown in Figure 7. Upon
receiving this Hello Interest, the producer will send a Hello
Reply with its IBF as the last component in the name and
the set of latest data names (one per data stream) in the
content. To ensure that every consumer gets the latest producer
state, the FreshnessPeriod of the Hello Reply should be very
short (e.g., a few seconds). Based on the Hello reply, the
consumer then chooses the data streams to subscribe to,
retrieves their latest data items, and enters the Sync Phase
(Section III-C2). There are two optimizations to reduce the
message overhead: if the consumer already knows which name
prefixes to subscribe to, it can use a different Hello Interest
/〈routable-prefix〉/psync-hello/get-IBF to retrieve only the IBF,
not the name set; otherwise, the consumer can compress the
name set using any existing compression technique.



Fig. 7: Initialization Phase in PSync

Fig. 8: Sync Phase in PSync

2) Sync Phase: After the initialization phase, the consumer
will be able to send a Sync Interest to the producer (Figure 8).
As explained below, there are three situations that would
trigger the producer to send a Sync Reply depending on the
IBF value in the Sync Interest.

First, as shown in Figure 9a, if the IBF in the Sync Interest
is different from the producer’s current IBF, the producer will
retrieve all the new data names using the differences between
the two IBFs.2 If any of these new data names matches the
consumer’s Subscription List, the producer will immediately
send a Sync Reply with such new data names. Note that if the
total size of the new data items is small, PSync can piggyback
the data in the Sync Reply message to eliminate one round trip
time to fetch the data.

Second, as shown in Figure 9b, if the old IBF and new
IBF are the same, the producer keeps the Sync Interest in a
table (in the application) . Whenever new data is produced, the
producer uses each interest in the table to determine whether
this new data is in the consumer’s Subscription List and if so
sends a Sync Reply. Note that keeping the interest pending at
the producer is an optimization since the consumer will resend
the interest when the previous one expires. If the producer has
a limited amount of memory, it can drop the interest in this
case. The trade-off is that the notification of new data may
experience some delay up to one sync period (Section III-D).

Third, if the number of new data names has reached a pre-
configured maximum, which is set to the IBF size divided by

2If not all the differences between the two IBFs can be retrieved, the pro-
ducer sends back a NACK Reply and the consumer will start the initialization
phase again. This scenario should happen rarely as long as we ensure that the
IBF size is 1.5 times the number of differences (see Section V-A).

(a) Sync Interest Received

(b) New Data Received

Fig. 9: Producer’s Sync Phase Flow Chart

1.5 in our implementation as explained in Section II-B and
Section V-A, and even if none of them are in the consumer’s
Subscription List, the producer generates a Sync Reply to
notify the consumer of its latest IBF (this situation is illustrated
in Figure 9a and 9b). This Sync Reply will give the consumer
up-to-date knowledge of the producer’s IBF, which ensures
that the difference between this IBF and producer’s future IBF
is small enough to be decoded.

Whenever a consumer receives a Sync Reply, for each
new data name, the consumer checks whether it is in the
subscription list (due to the false positive possibility of BFs)
and whether its sequence number is indeed new. If so, the
consumer will send an Interest to fetch the data. It will also
send another Sync Interest, which will either trigger another
Sync Reply or stay pending at the producer’s side.

D. Sync Message Losses

Sync messages may get lost due to link failures or other
problems. In such cases, the consumer will experience a delay
in learning any new data matching its Subscription List.

If a Sync Interest from a consumer fails to be delivered,
the producer will not send notifications of new data to the
consumer. However, after the Sync Interest’s lifetime expires,
the consumer will send another Sync Interest. Upon receiving
this Sync Interest, the producer will process the Interest using
the regular procedures discussed earlier. Therefore, if one Sync
Interest is lost, the notification is delayed for up to the lifetime
of a Sync Interest. The lifetime setting thus needs to take into
account the loss rate and the application’s tolerance of delay.



Fig. 10: Failure of One Sync Reply

Fig. 11: Synchronization with Multiple Producers

The loss of a Sync Reply has a similar effect as illustrated
in Figure 10. Note that the second Sync Interest may be
satisfied by the content store in an intermediate node where
the matching Sync Reply is cached (not shown in the figure).

E. Synchronization with Multiple Producers

In general, it is desirable to have multiple pub-sub servers
for robustness and load distribution. PSync allows one or more
consumers to subscribe to any one of multiple producers that
host the same data so that even if some of the producers fail,
the consumers can continue to receive subscribed data.

We assume that (1) the producers synchronize their data sets
using a full data synchronization protocol, (2) they announce
the same Sync name prefix into the routing system, and (3)
Sync Interests are forwarded using a non-multicast strategy
(e.g., the BestRoute strategy in NFD [9]). For example, in
Figure 11(a), consumer A can reach two producers, B and
C, which synchronize their datasets with each other. In most
cases, A sends Sync Interests to D which are forwarded to B,
but due to congestion or link failure, D may forward A’s Sync
Interest to C. Our design ensures that A receives subscribed
data regardless of which producer receives A’s Sync Interest.

Consider the following scenario in Figure 11(b), A sends
a Sync Interest and B responds with a Sync Reply after it
produces new data. However, the link between B and D goes
down and B’s Sync Reply gets lost. Meanwhile, B and C
synchronize their dataset so they have the same IBF and C
has B’s new data. After the Sync Interest expires, A sends
another Sync Interest which D forwards to C (Figure 11(c)).
C finds that A’s knowledge of the IBF and its own IBF are
different (because of B’s new data). Then C generates a Sync
Reply with the new data name along with its IBF. A receives
the Sync Reply and then fetches the new data.

F. Simultaneous Updates on Multiple Producers

In the multiple-producer case, if simultaneous updates occur
on the producers and different consumers receive Sync Reply
messages from different producers, the consumers may be

partitioned into several groups where each group has different
knowledge of the producers’ IBF and data. Our protocol
handles this situation without any special provision. Due to
space constraint, we cannot present the full analysis, but below
is a high-level explanation: in each group, the consumers first
synchronize with that group’s producer to get its new data.
Meanwhile, the producers in different groups also synchronize
with each other and receive each other’s new data. Then
they further synchronize with the consumers in their group.
This process continues until all the interested consumers have
obtained all the new data from the different producers.

G. Full-Data Synchronization

Full data synchronization, in which every participant’s sub-
scription covers the entire set of data produced by all the
participants, is a special case of partial-data synchronization.
PSync can easily support full-data synchronization with ap-
propriate settings. First, every participant registers the same
Sync name prefix to receive Sync Interests from everyone else.
Second, every participant’s subscription list is set to the entire
namespace shared by all the participants (represented by a
special name in our implementation). Third, each participant
needs to have both a consumer component subscribing to the
entire namespace and a producer component generating data
and computing IBF. Fourth, the Sync Interests are forwarded
using a multicast forwarding strategy so that they will be
forwarded to all the participants. Note that when all the
participants are synchronized, they will generate the same
IBF and also receive the same IBF from others so their
Sync Interests will be exactly the same. Because NDN nodes
aggregate Interests with the same name before forwarding
them, there will be only one pending Sync Interest on each
link in each direction. Whenever a node produces new data, it
will send a Sync Reply with the new IBF and new data name.
Other nodes will then fetch the new data.

IV. IMPLEMENTATION

We implemented the proposed PSync protocol in C++ using
the ndn-cxx [10] library to ensure compatibility with the NDN
Forwarding Daemon (NFD [9]). Both the initialization phase
and the sync phase were implemented.

Since IBFs handle only fixed-length KeyIDs (Section II), we
need to do efficient encoding and decoding between variable
length data names and KeyIDs in the IBF. After comparing
different hash functions, we chose Murmurhash 3 [11] for
hashing data names into KeyIDs. Compared with other hashing
methods, it has the advantages of supporting different hash
sizes, fast hashing speed and fast lookup speed.

We use 32-bit integers for idSum, hashSum and Count in
IBF and allow applications to configure the IBF size. To make
sure that the Sync Interest and Reply messages will not exceed
the maximum NDN packet size, we use Compressed Bloom
Filter [8] to represent the Subscription List if needed, which
may slightly increase the computational cost and the false
positive rate of the Bloom Filter.
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Fig. 12: Compressed Bloom Filter False Positive Rate
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Fig. 13: Number of Entries Decoded from IBF

V. EVALUATION

In this section, we first verify the feasibility of employing
Compressed Bloom Filter and IBF in PSync. We then evaluate
how well PSync can support full-dta and partial-data synchro-
nization as well as a pub-sub application. We performed our
evaluatlon in Mini-NDN [12], an emulator that runs multiple
NDN nodes on a single machine using real NDN software.

A. Compressed Bloom Filter and IBF

We first investigate how much Compressed Bloom Filters
can reduce the size of Subscription Lists without significantly
affecting the false positive rate of new data names in Sync
Reply messages. We generate a regular Bloom Filter (BF)
using 2000 data elements with an expected false positive rate
of 1%. We then compress the BF to reduce its size by 10% to
90% and perform 100,000 queries to evaluate the false positive
rate. Figure 12 shows that the false positive rate increases to
5.9% and 15.7% with a compression rate of 30% and 50%,
respectively. Therefore, we can compress Subscription Lists
considerably if applications with strict packet size require-
ments can tolerate a higher false positive rate.

In the second experiment, we vary the number of buckets in
IBF from 100 to 1000 and evaluate the maximum number of
data elements that can be decoded. Figure 13 shows that the
number of entries decoded from IBF is higher than the number
of buckets divided by 1.5. For example, with 1000 number of
buckets in IBF, the median number of entries decoded from
IBF is around 783. This means that, given a data production
rate and Sync time period, we can set the IBF size to be 1.5
times the expected number of new data items in a Sync period
to avoid decoding failures.

B. Performance of PSync

We use the Sprint point of presence topology [13] with 52
nodes and 94 links to evaluate the performance of PSync. We

Fig. 14: Sprint Point of Presence Topology
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(a) Different Number of Data Streams per Producer
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(c) Different Number of Subscribed Data Streams per Consumer

Fig. 15: Data Fetching Delay in Partial-Data Synchronization

focus on the data fetching delay, i.e., the time from when
a data item is produced to when the data is obtained by a
consumer that has subscribed to the data.

1) Partial-Data Synchronization: We first evaluate how
well PSync supports partial-data synchronization. We pick one
of the nodes as a producer and let it serve many data streams,
each generating data at a random interval between 1 and 5
minutes. Each consumer subscribes to a random set of 100
data streams. In the first experiment, we randomly pick 5 nodes
as consumers and vary the number of data streams served by
the producer from 100 to 1000. Figure 15a shows that the
median data fetching delay stays around 23ms regardless of
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Fig. 16: Data Fetching Delay in Full-Data Synchronization

the number of data streams. In the second experiment, we fix
the number of data streams to be 1000 and randomly choose
5, 10, 15, and 20 nodes to be the consumers. Figure 15b
shows that the data fetching delay increases slightly as the
number of consumers increases, but the maximum delay is
below 100ms and median delay is below 50ms in all the
runs. Finally, we randomly choose 20 nodes as consumers
and vary the subscription size per consumer from 25 to 1000
data streams. Again, the results (Figure 15c) show that the data
fetching delay changes very little even though the subscription
size is increased by a factor of 40.

2) Full-Data Synchronization: We now compare the per-
formance of PSync and ChronoSync [2] in supporting full-
data synchronization. All the 52 nodes synchronize with each
other and we vary the number of data streams produced by
each node from 100 to 1000 with each data stream generating
data at a random interval between 1 and 5 minutes. Figure 16
shows that PSync can achieve lower data fetching delay
than ChronoSync which is specifically designed for full-data
synchronization. We believe that this is mainly due to PSync’s
better handling of simultaneous updates – unlike the Digest in
ChronoSync, the IBF in PSync messages allows two nodes
in different synchronization states to find their differences
instantly through the IBF subtraction operation without going
through a long recovery process. A more in-depth analysis of
the factors contributing to PSync’s better delay performance
is part of our future work.

C. Scalability in Supporting Pub-Sub Applications

We implemented a Building Management System
(BMS) [14] using PSync. The system consists of multiple
data repos (producers) and consumers. Every repo collects
data from a number of BMS panels, each generating a data

Fig. 17: Evaluation Topology for BMS System (There are two core
routers connected to border routers (not shown) that peer with ISPs.
Every edge router is connected to both core routers for robustness.
The edge routers’ locations are generated randomly over a 25 square
kilometer region simulating a large campus. Link speed between
routers is 1Gbps and propagation delay is calculated using geographic
distance divided by 2 ∗ 108 m/s.)
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Fig. 18: Data Fetching Delay with Different Number of Data Streams
in BMS (UCB Topology)

stream based on sensor readings in a building. The repos
use PSync to perform full-data synchronization with each
other, and each data consumer also uses PSync to subscribe
to a set of data streams hosted by the repos. Figure 17
shows our experiment topology which is based on the UC
Berkeley campus core network [15]. The BMS repos and
data consumers are connected to the edge routers. Each repo
can collect data from BMS panels in different buildings.
Each panel generates data with random inter-arrival times
between 1 and 5 minutes and inserts the data into the nearest
repo (under the best-route forwarding strategy). To evaluate
how well the system scales with the number of monitored
buildings and end users, our experiments include varying
number of data streams and data consumers. The number
of repos is set to 5 in all the experiments. Below are our
experiment results.

1) Delay vs. Number of Streams: In this experiment, we
vary the number of data streams per repo from 100 to 1000
and measure the data fetching delay of 20 consumers, each
subscribing to a random set of 200 data streams, over a 10-
minute time period. In each scenario, around 14K Data packets
are received by the consumers. Results in Figure 18 show that
the median delay increases only from 11ms to 14ms while the
number of streams grows by a factor of 10.
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Fig. 19: Data Fetching Delay with Different Number of Data
Consumers in BMS (UCB Topology)

2) Delay vs. Number of Consumers: In this experiment,
we set the number of data streams to be 1000 per repo and
let each consumer randomly subscribe to 200 data streams.
We measure the data fetching delay with 20, 40, and 60
consumers. As shown in Figure 19, the distribution of the
data fetching delay stays almost the same when we double or
triple the number of consumers. This is due to two reasons:
(1) consumers’ packets reach the nearest repo in most cases
as we use the BestRoute strategy for synchronization between
consumers and repos; and (2) the consumers interact with the
repos using PSync, which does not maintain per-consumer
state and uses IBF to perform efficient set difference.

VI. RELATED WORK

Data synchronization is a fundamental building block in
NDN to bridge the gap between the unreliable network layer
and application needs. Below is a summary of existing data
synchronization research in NDN.

ChronoSync [2] utilizes NDN features to enable full data
synchronization among sync participants. It uses a digest tree
to represent the latest data at all participants, and a digest log
to record previous digests. Each participant can respond to
a different digest from another participant with its new data
name, thus allowing others to retrieve the new data.

CCNx Sync [16] and iSync [3] also support full-data
synchronization. Different from ChronoSync which is a group
synchronization protocol, these two protocols are pair-wise
synchronization protocols – they operate between two neigh-
bor nodes that use a Merkle tree [17] (CCNx Sync) or IBF
(iSync) to detect their differences. By exchanging either the
tree digest or IBF with the neighbor, each node can figure out
what entries are missing from its own data collections.

The design of PSync has some similarity to existing
synchronization protocols in NDN. For example, similar to
ChronoSync, it makes use of naming conventions to keep
the number of data items in IBF as low as possible. It
also makes use of IBF to detect multiple differences in one
sync step, as iSync does. However, ChronoSync, iSync and
CCNx Sync are intended to synchronize full-data sets, not
subscriptions to subsets of data, while PSync supports both
types of synchronization.

VII. CONCLUSION

We have presented PSync, a name-based Sync protocol
that supports both partial-data and full-data synchronization

in NDN. It represents the latest names in a producer’s data
streams using an IBF, which allows efficient computation of
set differences. By comparing the differences between its old
IBF and new IBF, the producer can generate a list of new data
names that have been produced in the period between the old
and new IBF. Using this list and a consumer’s subscription
information, the producer can notify the consumer if new
data matching the subscription has been produced. We have
implemented PSync as a library on the NDN platform and
evaluated it using a prototype Building Management System.
Our results show that PSync scales well under a variety of
conditions. Our future research is to explore the possibility
of reducing the Sync Interest/Reply message size as well as
evaluating the protocol using more real applications.
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