
A Brief Introduction to NDN Dataset
Synchronization (NDN Sync)

Tianxiang Li
UCLA

tianxiang@cs.ucla.edu

Wentao Shang
UCLA

wentaoshang@cs.ucla.edu

Alex Afanasyev
Florida Int’l University

aa@cs.fiu.edu

Lan Wang
Univ. Memphis

lanwang@memphis.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—Previous literatures articulated that the NDN archi-
tecture may possess unique advantages in supporting battlefield
communications [1], and that NDN can provide superior per-
formance over TCP/IP under various scenarios, in particular
in supporting multiparty distributed applications [2] by using
a novel dataset synchronization protocol. In this paper we first
describe the designs of dataset synchronization protocols (Sync in
short), in particular ChronoSync and PSync, that run over NDN
to support multiparty applications, and summarize the lessons
from their designs. We then perform a preliminary suitability
assessment of the existing Sync protocols in ad hoc mobile
environments with intermitted connectivity. Our assessment sug-
gests that Sync protocols based on state vectors can operate
most resiliently under highly dynamic conditions, and identifies
remaining issues for further investigation.

Index Terms—Named Data Networking, Distributed Data Syn-
chronization

I. INTRODUCTION

Battlefields represent a hostile environment to networking
where connectivities among devices are ad hoc, intermitted,
and often experience heavy packet losses. Yet successes in
warfare critically depend on secure and resilient commu-
nications among all participating entities (e.g. commanders,
soldiers, UAVs). The TCP/IP protocol stack works well over
established network infrastructure, but faces difficulties in
offering secure and resilient communications under hostile
conditions.

As a newly proposed Internet architecture, Named Data
Networking (NDN) [3]–[5] shows a great potential in offering
secure, resilient communications. NDN lets consumers request
desired data by directly using application-defined names, and
fetches named data packets at network layer. This is in sharp
contrast to IP’s use of addresses, which name hosts (data
containers) or host interfaces, thus requires mapping services
to convert applications names to IP addresses before com-
munication can happen. NDN builds public-key cryptographic
protection into the architecture by requiring every Data packet
carry a digital signature, which securely binds its name to the
content. The above features makes NDN enable NDN to work
well under highly dynamic and disrupted network conditions,
making NDN a particularly well-suited architecture for tactical
applications.

This work is partially supported by US National Science Foundation under
award CNS-1719403, CNS-1629769, and CNS-1629922.

Since applications, generally speaking, operate over trans-
port functions, this paper describes and examines the existing
transport function supports for NDN networks. Generally
speaking, transport functions bridge the gap between appli-
cations needs on data delivery and what the network layer
can provide. Today’s transport protocols, as examplified by
TCP, convert IP’s point-to-point datagram delivery to reli-
able data delivery between two processes identified by pairs
of IP addresses and port numbers. Similarly, NDN Sync
protocols use NDN’s Interest-Data exchange primitives to
support dataset synchronization for multiparty applications.
By focusing on data, Sync removes the limitation on how
many parties may communicate in distributed applications, and
enables asynchronous communication when not all parties may
be online at the same time.

Over the years a number of Sync protocols have been
developed [6]. Through the process we gained a number
of insights into the Sync design space. In the rest of the
paper, we first briefly review the previous efforts on reliable
multicast protocols in §II, and summarize the NDN Sync
protocol development in §III. We then examine the feasibility
of the existing Sync protocols when applied to mobile ad
hoc environment in §IV, and conclude the paper in §V with
discussions on remaining challenges in developing secure,
resilient Sync protocols for challenged environments.

II. PREVIOUS WORK ON RELIABLE MULTICAST

This section gives a brief summary of previous results on
reliable multicast protocol designs. These results are con-
sidered relevant as they expose the challenges in multiparty
communications

A large number of reliable multicast protocols have been
proposed in the past, we roughly classify them into three
categories based on how they achieve reliable data reliabil-
ity to multiple parties. The first category is sender-initiated
protocols, where the data sender collects ACKs from each
of all the receivers and performs retransmissions of lost
packets. RMTP [7] is such an example. It adopts a tree-based
multicast approach to avoid the ACK implosion problem, thus
requires the support from intermediate servers to perform ACK
aggregation.

The second category is receiver-initiated protocols such as
SRM (Scalable Reliable Multicast) [8] and NORM (Nack-
Oriented Reliable Multicast) [9], where each receiver is re-

Milcom 2018 Track 2 - Networking Protocols and Performance

978-1-5386-7185-6/18/$31.00 ©2018 IEEE 612

sponsible for its own loss recovery, by send NACKs whenever
it detects packet losses. Both protocols multicast NACKs after
a random delay to suppress redundant NACKs. In addition,
SRM adopts an Application Level Framing (ALF) design [10]
and uses unique and persistent data identifiers. This allows the
nodes in the same multicast group to help each other recover
from packet losses in a more effective and robust way.

The third category takes the ALC-based (Asynchronous
Layered Coding) [11] approaches, such as [12] [13]. Packets
are transmitted through redundant coding, so that receivers
can recover lost packets individually, minimizing the need for
ACK/NACKs. However, redundant coding introduces compu-
tation overhead and increases network bandwidth consump-
tion, and cannot completely eliminate the need for retransmis-
sions. This approach may work well in situations where loss
rates are low and the number of receivers are small.

III. NDN SYNC PROTOCOL DESIGN

In this section, we introduce the basic concepts in Sync and
describe two specific Sync protocol designs, ChronoSync and
PSync, in detail. Without loss of generality, we use a text chat
application, ChatApp in short, as a use case to aid the reader?s
comprehension.

Sync aims to reconcile the differences of a shared dataset
among multiple parties. For example, let us assume a ChatApp
with multiple users, each generating chat messages. Each user
U keeps a local view of the messages generated by all other
users in the same chatroom. We refer to such a local view
as U’s state of the shared dataset (i.e. the messages that
have been generated so far in ChatApp), and refer to the
collection of all the users in the chatroom as a Sync group.
The goal of Sync is to have each Sync group achieve and
maintain consistent state of the shared dataset. Equipped with
the knowledge of all the available data, individual users can
then decide whether, or when, to fetch missing data based on
local considerations such as application priority or resource
constraints. 1

More precisely, NDN treats each chat message as a named
data unit, whose name takes the form of “/<chat-app-prefix>
/<chat-group>/<user>/<seq-no>” (from now on we use
“/producer-prefix” as shorthand for all the name component
before seq-no). The sequence number increases monoton-
ically, thus every chat message is given a unique name,
and is signed by the producer’s key at the time of pro-
duction, binding the name to the content. This enables one
to authenticate all received messages, independent of from
where they are retrieved. Using sequence numbers in naming
data provides a concise way to represent a producer’s data
generation state, and to inform others by simply announcing
“/producer-prefix/<seq-no>”, with <seq-no> being the se-
quence number of its latest data. This naming convention also
allows one to describe the shared dataset state of ChatApp as

1The idea of a 2-step synchronization was introduced earlier in link state
routing protocol design [14], where two neighbor routers first synchronize the
network topology database knowledge, and then to fetch missing data from
each other.

a collection of “/producer-prefix/<seq-no>” for all users in
the chatroom.

There are some basic components common for the design
of NDN Sync protocols. First, there needs to be an efficient
way to name the dataset, and encode the dataset namespace
in certain data structure to be transmitted over the network
(state representation). Second, users need to be aware of any
changes in the shared dataset, through certain flow of message
exchanges (state change detection). Third, every user in a
Sync group needs to compare its dataset namespace with those
at other users (set difference identification) and retrieve the
missing data based on application need. We will illustrate each
design components separately.

• State Representation: in Sync, each user maintains a
local dataset state, e.g., for a chatroom application, each
user has a local view of the messages generated in
the chatroom. The first part of state representation is
namespace design. Sync represents the dataset state using
the corresponding data names generated by each producer
in the group (e.g. the names of chat messages generated
by each user in the chatroom). Namespace design is
about how to efficiently represent all the data names in
the dataset. The second part of state representation is
state encoding, which is about how to encode the dataset
namespace into a compact format to be transmitted over
the network. We refer to the encoded name set as Sync
State. Each user calculates its local Sync State and
compares it with the Sync State of the other users in
the Sync group. Thus the subsequent questions that the
protocol needs to address are (1) how to exchange the
Sync State with other users, and (2) how to calculate the
difference in Sync State.

• State Change Detection: as producers are generating
new data, it is important for other users in the Sync
group to know about the change in the shared dataset.
Each user needs to send its Sync State over the network
to other users in the Sync group through NDN’s Interest
Data exchanges. This can be done by the data producer
proactively notifying other users about its state, or by
each user periodically querying the Sync group for any
state changes.

• Set Difference Identification: if a received Sync State is
different from the receiver’s local Sync State, a user needs
to identify the specific difference(s) in the corresponding
dataset namespace, e.g. a chat message received by one
user but not the other causing difference in users’ local
chat history. Depending on the Sync State representation,
this information can be deduced from the Sync States or
through additional message exchanges between the users.

A number of Sync protocols have been proposed [6], each
built upon the lessons learned from prior work. Here we focus
on two representative Sync protocols– ChronoSync [2] and
PSync [15]. At a high level, both protocols adopt the same
sequential data naming convention, encode its dataset state,
and multicast periodic Sync Interests to advertise dataset state

Milcom 2018 Track 2 - Networking Protocols and Performance

613

to other users in the Sync group. This allows other users to
detect state difference through digest comparison, and know
whether they have out-of date, up-to-date, or newer dataset
state. The protocols differ in the data structure for encoding
the dataset state, operations to deduce the difference in dataset,
and the message flow for set reconciliation. We will describe
each protocol individually and then summarize their design
commonalities and differences.

A. ChronoSync

ChronoSync [2] synchronizes a shared dataset among a
distributed group of users, e.g., the chat messages of users in a
chat group. For namespace design, each producer is identified
by a unique producer name prefix. The data generated by
each producer is named using the producer name prefix plus
a monotonically increasing sequence number (starting from
zero), i.e., “/<producer-prefix>/<seq-no>”. As the sequence
number is continuous, all the data generated by each producer
can be represented by its producer name prefix plus the latest
data sequence number rather than listing the entire set of data
names, providing a condensed representation of the dataset
namespace. For example, a chat group’s dataset is represented
by {(pi, seqi)}, where pi is the chat user i’s prefix and seqi
is the sequence number of the user’s latest chat message.
For namespace encoding, ChronoSync adopts a crypto digest
data structure called state digest. The state digest is the
concatenation of the hash value of each producer’s latest data
name in canonical order, and serves as a condensed summary
of the dataset state.

The basic synchronization process of ChronoSync consists
of the exchange of Sync Interest and Sync Reply messages. A
user periodically multicasts Sync Interest containing its state
digest (Sync State) to other parties in the Sync group to detect
state change. If a receiver of the Sync Interest detects state
difference between the received Sync State and its local Sync
State, it will check whether its state is newer. If so, it will send
back a Sync Reply containing its new data name. If none of
the receivers detect state difference, the Sync Interest will stay
pending in the network, to solicit future state changes. When
a producer generates new data, it will send back a Sync Reply
to satisfy the pending Sync Interest.

Once all the communicating entities are synchronized with
a consistent state (stable stage), their Sync Interests will have
the same name, with the same encoded state digest. Thus,
the Sync Interests can be aggregated in the routers. When a
producer generates new data, the Sync Reply is multicasted
back to all the parties in the Sync group following the reverse
paths of the pending Sync Interests.

For example in Figure 1(a), users A, B, and C are in a
stable stage and have the same Sync Interest (carrying Digest0)
pending in the network. When A generates new data, its
ChronoSync module immediately detects its digest is newer
and proceeds to satisfy the pending Sync Interest with a
Sync Reply containing the new data name. This Sync Reply
is multicast back to B and C to satisfy their pending Sync
Interests. Then B and C each update their state digest (to

Digest1), and fetch the new data based on its need. As shown
in Figure 1(b), the users then enter a new stable state and
each send out a Sync Interest containing the updated digest
(Digest1) to solicit the next state change.

A

B

C

3. Update state digest:
Digest1

2. Sync Reply:
New data name

A

B

C

4. Sync Interest:
Digest1Sync Reply

Sync Interest Sync Interest1. Sync Interest:
Digest0

3. Update state digest:
Digest1

(a) new data generation (b) reach new steady stage

Fig. 1. ChronoSync synchronization process

The stable stage is assumed to be the common case in
ChronoSync – a user is either in same state as the other parties
in the Sync group, or it is in a newer state after generating new
data. There are a number of scenarios where this assumption
does not hold.

In the first case, a user might have been disconnected for a
period of time before resuming connection to the Sync group,
thus it will send a Sync Interest with an out-of-date state
digest. To address this issue in ChronoSync, each party also
keeps a log of past state digests and the corresponding changes
leading to each digest. When a receiver recognizes the out-
of-date digest by looking through its digest log, it sends a
Sync Reply containing the names of the data that the sender
is missing.

In the second case, out-of-order delivery might cause users
to receive an unrecognizable state digest. For example, a user
might have received a new Sync Interest containing an updated
Sync State, before receiving the previous Sync Reply that leads
to the updated Sync State. To address this issue, ChronoSync
adopts a randomized wait timer based on the propagation delay
to postpone processing of an unknown digest.

The third case is state divergence, where different nodes
have accumulated different state updates locally, making the
digest unrecognizable to other diverged nodes. One example
for this case is network partition, where nodes are disconnected
for some time, and have accumulated different state updates.
Another example is when more than one producer have gen-
erated new data and reply to the Sync Interest simultaneously.
In this case, only one of the replies will be received by a
user, as one Interest brings back only one Data in NDN. This
causes state divergence for users receiving different replies. To
address this issue, ChronoSync adopts a recovery mechanism
in which the receiver of the unknown digest sends a Recovery
Interest to fetch from the sender of the digest the complete
dataset state information. After a few rounds of recovery, the
group will enter stable state again.

In summary, ChronoSync’s design choices are as follows:
• State Representation: (a) sequential data naming; (b)

crypto digest for state encoding;

Milcom 2018 Track 2 - Networking Protocols and Performance

614

1010 0000 1010 0000 0000 1010
0100 0000 0100 0000 0000 0100
 1 0 1 0 0 1Count

hashSum
idSum

independent hash
functions h1, h2, h3

for calculating positions
h1(d) h2(d) h3(d)

Data d “/squadA/12”
bit representation of d: 1010, h(1010) = 0100

Fig. 2. PSync data name insertion into IBF. When an element is inserted,
hash functions (h1, h2, h3) are applied to the element to calculate the cells in
the IBF which the element corresponds to. For each cell, the element’s keyID
(1010) is XOR’ed with the cell’s idSum value, the element’s hash value (0100)
is XOR’ed with the cell’s hashSum. The cell’s count increments by one. The
deletion process is similar, except the cell count is decreased by one.

• State Change Detection: (a) Sync Interest carrying state
digest; (b) Sync Reply containing new data name; (c)
Sync Interest staying pending in the network to solicit
future state changes;

• Set Difference Identification: (a) digest log; (b) recovery
mechanism that exchanges full dataset state information.

B. PSync

PSync [15] is designed to support partial dataset synchro-
nization: it allows a consumer to subscribe to a subset of
data streams, where a data stream is a sequence of data items
under a common name prefix. For example, in ChatApp, the
command center may generate command messages for air
forces and ground squads under different data stream name
prefixes. PSync can also support full sync as ChronoSync does,
by making each participant both a producer and a consumer
which subscribes to all data streams generated by all producers
in a sync group. Since most operations are similar in both
partial and full sync supports, below we focus on full sync
operations.

Similar to ChronoSync, PSync names each item in a data
stream using a unique stream prefix with a monotonically
increasing sequence number. It also represents the dataset
namespace by the collection of the latest data name of
each stream in the set. PSync uses Invertible Bloom Filter
(IBF [16]) to encode the dataset state by adding the hash value
of each data stream’s latest data name to the IBF. Figure 2
shows an example of encoding data names into the IBF. Each
entity maintains a local mapping table between the data name
of each stream and its corresponding hash value for decoding
the IBF elements. The size of the IBF determines how many el-
ements it can decode through subtraction operation, for a given
probability of false positive output [16]. IBF encoding enables
the detection of different states, and IBF subtraction operations
can also discover the differences in elements contained in two
different IBFs, bar the possibility of false positive.

Each PSync participant multicasts Sync Interests, which
contain the sender’s IBF, to the group periodically. Upon
receiving a Sync Interest, one performs IBF subtraction op-
eration to decode the differences between the local IBF and
the received IBF. This operation outputs the hash values of the

different data names between the local IBF and the received
IBF. One then looks up its mapping table to find the corre-
sponding data names of those hash values, and sends them out
in the Sync Reply. With multiple receivers in the same sync
group, each of them may send back a Sync Reply. However
due to NDN’s one Interest for one Data exchange rule, only
one of these replies will be received by the original sender of
the Sync Interest. Thus after processing the Sync Reply and
updating its IBF, the original sender will immediately multicast
a new Sync Interest to the group. Any user in the Sync group
may respond again if detecting state difference between its
own IBF and the one in the received Interest. This process
repeats until all the parties are synchronized.

The state differences between the sender and receiver of a
Sync Interest can be decoded as long as the differences do not
exceed the maximum that is determined by the IBF size. If a
large amount of state differences gets accumulated, only some
of the differences may be decoded. In such cases, PSync sends
back the decoded differences in Sync Reply and continues
with additional iterations. Evaluating PSync performance in
this case is part of our future work.

In summary, PSync’s design choices are as follows:
• State Representation: (a) sequential data naming; (b) an

IBF that contains hashes of (data prefix, latest sequence
number) for all the data streams;

• State Change Detection: (a) Sync Interests carrying
IBFs; (b) Sync Reply containing differences in data
names; (c) Interests being sent periodically to detect state
changes;

• Set Difference Identification: IBF subtraction.

C. Sync Security

Sync protocols raise a unique security requirement as we
explain below. By default, NDN Interest packets are not
signed, as sending an Interest to fetch data does not have side-
effect to producers in general. 2 However, Sync Interests used
in Sync protocols signal dataset state changes, which trigger
actions on the receiving ends. Therefore Sync Interests need to
be authenticated to prevent malicious attackers from injecting
false information into the system.

1) Sync Interest Authentication: If symmetric key is used
in Sync Interest authentication, each Sync Interest would be
signed by the public key of its sender. This public key signa-
ture makes each Sync Interest name unique, thus preventing
Interest aggregation in the network.

To use symmetric key to authenticate Sync Interests, one
may distribute a shared symmetric group key to all the parties
in a Sync group, which can then be used to generate HMAC
for each Sync Interest, with the HMAC as part of the name
carried in the Interest. All the parties with the same state
representation will generate the same HMAC value, thus their
Sync Interests can be aggregate. HMAC computations are
also much cheaper compared to public key signature. One

2When an Interest is used to carry out actions, e.g. a command Interest to
turn a light on, it will be signed [17]

Milcom 2018 Track 2 - Networking Protocols and Performance

615

main issue of using symmetric key authentication is the key
generation and distribution process. Below we describe a
simple design of having a group manger to handle the key
management.

2) Group Key Management: A simple way to manage a
shared group key is to have a single group manager responsible
for the generation, distribution, and update of the shared key.
In distributed applications such as chatroom messaging, a
leader (e.g., the creator of a chatroom) can act as the group
manager and distribute keys to others in the Sync group,
an approach used in [18]. The group manager can securely
distribute the symmetric key to all parties in the Sync group,
by using each participant’s public key to encrypt the shared
symmetric key, and then publishing these encrypted keys to
let participants fetch as any other published data.

The symmetric key can be updated periodically or on de-
mand depending on actual need. When a new key is generated,
the group manager can notify the Sync group through key
advertisement messages. In case of intermittent connectivity,
where some parties fail to be notifed, they may receive Sync
Interests with unrecognizable HMAC values, which serves as
a signal for them to fetch the new key.

The above solution is simple and straightforward to imple-
ment, however it raises new questions of the group manager
selection and failure recovery, that need to be addressed.

IV. SYNC IN MOBILE AD HOC NETWORKS

Networking in mobile ad hoc environment (MANET) with
continuous node movement and intermittent connectivity has
been a decade long research topic. Our earlier work [1]
suggests that NDN may possess unique advantages in enabling
MANET. In this section we investigate what are the fundamen-
tal challenges for a Sync protocol to operate in such highly
dynamic environments.

The basic difference between networking over a stable
infrastructure and through ad hoc mobile connectivity is the
lack of persistent connectivity in the latter case. We illustrate
the impact of this lack of persistent connectivity through a
battlefield communication example.

Fig 3 shows an example battlefield scenario, where different
mobile entities need to coordinate and communicate with
each other. The satellite, aircraft gateway, and HMMWV
gateway act as NDN packet forwarders, offering intermittent
connectivity to other nodes in the figure. Let us assume that
each of the other entities runs a chat application ChatApp. The
command center, ships, fighter squadron, and squads send chat
messages to exchange commands and battlefield information
with each other while moving around, each acting as both chat
message producers and consumers.

A. State Divergence Recovery

Intermittent connectivity in MANET makes Sync Interest
losses as the norm instead of low probability events, resulting
in state updates not being propagated to all, or most of, the
other nodes within the Sync group. Consequently, their dataset
states are more likely to be inconsistent than not.

Command Center

Ships

Satellite Aircraft gateway

Fighter squadron

Squad

HMMWV Gateway

Fig. 3. Example Scenario

State Change Detection: The periodic transmission of
Sync Interest by ChronoSync and PSync can act as a pe-
riodically detection of state inconsistencies. This detection
works effectively even when nodes move around, and one’s
connectivity to a new neighbor is rather short-lived. Periodic
Sync Interest transmissions offer a robust solution to state
change detection. However recovering from state divergence
becomes more challenging. For example, when disconnected,
the airforce and ground squads might have accumulated a
number of different data messages regarding battlefield status,
causing their local chat message sets to diverge. Once they are
connected again, they need to reconcile quickly the diverged
dataset over (most likely) short-lived connectivity.

Reconciliation via State Digest: ChronoSync uses a
crypto digest as a compact representation of state, allowing
efficient state difference detection. But since crypto digest
comparison does not directly identify the difference in each
nodes’ dataset namespace, and the engineered solutions of
change logs and short random wait are ineffective for large
divergence, receiving an unrecognizable state digest will trig-
ger the recovery process mentioned previously. The recovery
process likely requires multiple rounds of packet exchanges,
that may not finish when the short-lived connectivity breaks.
What we can learn from the above is that, if a Sync Interest
depends on the receiving node’s internal state to derive the
data name differences, the protocol can be made ineffective
by highly dynamic environment.

Reconciliation via Invertible Bloom Filter: IBF allows
two nodes to identify the differences in dataset namespace
through IBF subtraction and mapping table lookup. However
as mentioned earlier, the size of the IBF limits how much state
difference can be decoded from the IBF operation. In case not
all the differences can be decoded from the IBF calculation,
multiple rounds of Sync Interest and Reply exchanges may
be needed in order to enter a new consistent state eventually,
leading to the same problem as ChronoSync. We can conclude
that advanced encoding of dataset state can be advantageous
in well understood environments and may show its limitations
in highly dynamic environments.

a) Reconciliation via State Vectors: [19] proposed an
alternative approach to dataset reconciliation, which is further
elaborated by [20]. The basic idea is to represent a dataset state
in the form of a version vector, with each component being

Milcom 2018 Track 2 - Networking Protocols and Performance

616

the latest data name of each producer. Note this State Vector
solution also adopts the sequential naming convention used by
ChronoSync and PSync, where each node is identified by an
unique producer name prefix and the data generated by that
node is named using the producer prefix and a monotonically
increasing sequence number.

Because a State Vector directly enumerates the producer
prefix and latest data sequence number for each producer in
a Sync group, as shown in Figure 4, the difference in dataset
names can be directly identified by comparing the sequence
number of each producer prefix. A node then updates its State
Vector by taking the higher value of each producer’s sequence
number in the State Vector.

A

B
C

A’s Local Dataset
/A/1

…
/A/128

/B/1
…

/B/127

/C/1
…

/C/191

A’s State Vector[A: 128, B: 127, C: 191]

Fig. 4. State Vector Example. Chat user A has a local dataset of the messages
generated by chat users A, B, and C. The chat user producer prefix and the
latest chat message sequence number is contained directly in the State Vector
as two-tuple value pairs.

State Vector based state representation allows direct dataset
state comparison without any assumptions on the receiving
ends state, and tolerates all degrees of state divergence. By
comparing State Vectors, nodes can directly deduce the data
names it is missing without any additional message exchanges.
This is ideal in the mobile ad hoc environment where data
diverges, and even large divergence, can be the norm instead
of exceptions.

The size of a State Vector goes up proportionally with the
number of producer states to be exchanged. However, explicit
listing of producer states also allows one to exchange a partial
State Vector under packet size constraints, to include only the
state information of those most important producers (e.g. chat
messages from the commanders).

B. State and Data Synchronization

As mentioned previously, NDN Sync keeps applications up
to date about the latest dataset state (state synchronization),
and lets applications decide what data to fetch based on its
need (data synchronization). Considering the heterogeneity
among members of a large sync group, this decoupling of state
and data synchronization is an important design decision.

However in MANET, the lack of persistent connectivity
between nodes makes it difficult to fetch missing data after
a node learns a piece of new data has been generated. As
a result, nodes are unclear what data it can fetch from its
connected neighbors, causing excessive Interests to be sent
requesting for data which is not available. This mismatch
between a node’s newest state and its actual dataset gets
exacerbated as the newest state is propagated in the network.
One possible solution to this issue is to couple the state and

data synchronization process together, by which nodes to send
Sync State reflecting its actual dataset in the Sync Interests.
Another possible solutions is to deploy distributed repos to
increase data availability. It is an ongoing work to address the
issues of state and data synchronization in MANET, and is an
area worth further exploring.

V. CONCLUSION

In this paper we summarized the key design features of
existing NDN Sync protocols, assessed their suitability of
operating hostile environments such as battlefields, and iden-
tified both new design directions and remaining challenges.
We observed that, in an ad hoc mobile environment with
intermittent connectivity, most resilient communications can
be achieved by Sync protocols that can fully utilize intermittent
connectivity by operating in an itempotent way.

We also examined remaining challenges in Sync protocol
design, which include scalability and security. Regarding scal-
ability: using IBF to encode sync state can identify exact
differences in shared dataset, however the effectiveness of IBF
depends on its size and the amount of state differences; it
also remains open whether iterative difference discovery would
work well in highly dynamic environment. State vector based
designs support itempotent operations, however the vector
size can be a concern. Regarding Sync security, we need
robust solutions to manage group shared keys. We are actively
developing solutions to address these two challenges.

REFERENCES

[1] C. Gibson, P. Bermell-Garcia, K. Chan, B. Ko, A. Afanasyev, and
L. Zhang, “Opportunities and Challenges for Named Data Networking
to Increase the Agility of Military Coalitions,” in Proceedings of
Workshop on Distributed Analytics InfraStructure and Algorithms for
Multi-Organization Federations (DAIS), 2017.

[2] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proc. of IEEE
ICNP, October 2013.

[3] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking Named Content,” in Proc. of CoNEXT, 2009.

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Reviews, Jun. 2014.

[5] A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang,
“A Brief Introduction to Named Data Networking,” in IEEE MILCOM
2018.

[6] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A survey of
distributed dataset synchronization in Named Data Networking,” NDN,
Technical Report NDN-0053, May 2017.

[7] J. C. Lin and S. Paul, “RMTP: A reliable multicast transport protocol,”
in IEEE INFOCOM. IEEE, 1996.

[8] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A
reliable multicast framework for light-weight sessions and application
level framing,” ACM SIGCOMM, 1995.

[9] B. Adamson, C. Bormann, M. Handley, and J. Macker, “Negative-
acknowledgment (nack)-oriented reliable multicast (norm) protocol,”
Tech. Rep., 2004.

[10] D. D. Clark and D. L. Tennenhouse, “Architectural considerations
for a new generation of protocols,” in ACM SIGCOMM Computer
Communication Review, vol. 20, no. 4. ACM, 1990, pp. 200–208.

[11] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft, “Asyn-
chronous layered coding (alc) protocol instantiation,” Tech. Rep., 2002.

[12] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” ACM SIGCOMM
Computer Communication Review, vol. 28, no. 4, pp. 56–67, 1998.

Milcom 2018 Track 2 - Networking Protocols and Performance

617

[13] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based loss
recovery for reliable multicast transmission,” IEEE/ACM Transactions
on Networking (TON), vol. 6, no. 4, pp. 349–361, 1998.

[14] J. Moy, “Ospf specification,” Tech. Rep., 1989.
[15] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data

Synchronization for Named Data Networking,” in Proceedings of IN-
FOCOM, 2017.

[16] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference?: efficient set reconciliation without prior context,” in ACM
SIGCOMM, 2011.

[17] NDN Project Team, “Signed Interest,” https://named-data.net/doc/
ndn-cxx/current/specs/signed-interest.html, 2018.

[18] Z. Zhu, J. Burke, L. Zhang, P. Gasti, Y. Lu, and V. Jacobson, “A new
approach to securing audio conference tools,” in Proceedings of the 7th
Asian Internet Engineering Conference, 2011, pp. 120–123.

[19] W. Shang, A. Afanasyev, and L. Zhang, “Vectorsync: distributed dataset
synchronization over named data networking,” in Proceedings of ACM
Conference on Information-Centric Networking, 2017.

[20] X. Xu, H. Zhang, T. Li, and L. Zhang, “Achieving resilient data
availability in wireless sensor networks,” in IEEE ICC Workshops, 2018.

Milcom 2018 Track 2 - Networking Protocols and Performance

618

