
Secure NDN Packet Encapsulation
Daniel Townley, Young Kim, Fred Douglis

Jesse Elwell, Constantin Serban
Peraton Labs

Basking Ridge, NJ, USA
dtownley,ykim,fdouglis,jelwell,cserban@peratonlabs.com

Lan Wang

University of Memphis
Memphis, TN, USA

lanwang@memphis.edu

Alex Afanasyev
Florida International

University
Miami, FL, USA

aa@cs.fiu.edu

Lixia Zhang

UCLA
Los Angeles, CA, USA

lixia@cs.ucla.edu

Abstract—Packet encapsulation is a general network technique
that provides an essential building block for constructing secure
networks. While extensively used in IP networks over the last few
decades, secure packet encapsulation remains largely unexplored
in the context of Named Data Networking (NDN) networks.
NDN represents a radical departure from traditional endpoint-
oriented networking by making secured data the centerpiece
of communication. This new data-centric design brings both
advantages and new challenges for the development of secure
packet encapsulation that can preserve essential properties of
an NDN network, including in-network data caching and built-
in multicast data delivery. In this paper, we first identify the
major differences between encapsulation solution designs in IP
and NDN, highlighting the ensuing challenges, both inherent and
practical. We then present a novel design to achieve secure NDN
data packet encapsulation, and showcase an implementation suite
that enables efficient fetching of securely encapsulated data.1

Index Terms—Named Data Networking, NDN, Tunneling, En-
capsulation, Security, Name Encryption

I. INTRODUCTION

Packet tunneling via encapsulation is a well established
and widely deployed practice. It can be used to implement
virtual links and networks, and to secure IP communications
across such connections by encrypting the whole original IP
packets under the outer IP header. It is desirable to support
packet encapsulation in Named Data Networking (NDN) [1],
[2] to provide similar functions. In this paper, we investigate
the solution space of NDN packet encapsulation by first
identifying the fundamental differences between IP and NDN
encapsulations, and then developing an effective solution to
enable secure NDN packet encapsulation.

Intuitively, one might think that secure NDN-in-NDN en-
capsulation could simply follow the common practice for
secure tunneling in IP networks. That is, given an NDN
packet D, one encrypts D to get the encrypted packet E(D),
then encapsulates E(D) in another NDN data packet with
a different name. However, in an NDN network, consumers
use interest packets to request desired data by names, and the
network returns the named data as data packets [2]. An NDN
network uses a stateful data plane to support this interest-
data exchange by keeping track of the names of all received,

1This work was supported in part by DARPA. The views, opinions and/or
findings expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the
U.S. Government. Distribution Statement ”A” (Approved for Public Release,
Distribution Unlimited)

but yet to be answered, interest packets. This enables request
aggregation (hence the returned data packets are multicast to
all requesters for the same data), interest loop suppression, and
path discovery; naming and securing data directly also enables
in-network caching.

However, the above functions bring new challenges to
encapsulation. The name carried in an encapsulating interest
packet that requests an encapsulated NDN data packet must
(a) uniquely identify the original data packet it requests, to
allow NDN routers to use the name carried in the encap-
sulating interest to look up local caches; (b) be consistently
constructed by all legitimate consumers, so that NDN routers
can aggregate interests for the same original data packet; and
(c) provide necessary context for forwarding and security to
reliably retrieve encapsulated/secured data packets over public
networks. In addition, an encapsulating interest must reflect
the qualifier fields (e.g., “MustBeFresh” and “CanBePrefix”)
of the encapsulated interest, to retrieve the original data packet
that satisfies all the constraints. Therefore, the encapsulating
NDN header has to follow a specific formulation to identify
and relate to the encapsulated NDN header, which significantly
complicates the encapsulation process.

In this paper, we propose an NDN-in-NDN solution that
encrypts the entire NDN data packet including the name,
key locator, and content, while allowing retrieval of such
data using a specially crafted interest packet that does not
reveal meta information about the “real” request or data.2 We
developed two prototype solutions that can be embedded at
the application (Face Level Secure Encapsulation, FLSE) and
middle box (Appliance Level Secure Encapsulation, ALSE)
levels and devised an example symmetric cryptographic key
management inspired by IPSec.

The main contributions of this paper are two-fold: identify-
ing the constraints in providing secure encapsulation in NDN
networks, and providing a principled approach to satisfying
such constraints while maintaining both performance and secu-
rity. We describe our design goals and limitations, and sketch
two different implementations within the same framework. In
the rest of this paper, we first identify the particular challenges
of providing secure NDN-in-NDN encapsulation (Section II),

2Note that timing attacks, where the adversary uses the mere fact of Interest-
Data communication, and inference-based attacks, where the adversary cor-
relates packets based on their size and relative timing, are outside the scope
of this paper, and we plan to address these issues in our future work.



we report our NDN-in-NDN design and implementation of
NDN full packet encapsulation and encryption (Section III and
Section IV), and we provide a brief comparison with related
work before concluding.

II. BACKGROUND

A. IP Secure Tunnel Encapsulation

IP encapsulation, e.g., IP-in-IP [3] or GRE [4], provides IP
packet encapsulation and datagram delivery between two end
points. IP datagrams are “nameless”, i.e., they do not have their
own identifiers. The destination address of an IP-in-IP packet
is used for packet delivery to the endpoint and the “Protocol”
field is used for payload delivery to the next protocol module,
i.e., the decapsulation endpoint. IP secure encapsulation, e.g.,
IPSec [5], provides similar functionality, except that the IP
packet to be tunneled is first encrypted and an authentication
header (i.e., ESP header) is added for identification of the
decapsulation and decryption endpoint. IPSec is essentially a
tunneling protocol between two endpoints A and B: it first
encrypts a given IP packet which has a pair of source and
destination addresses [X, Y], and then adds a new IP header
with a new pair of source, destination addresses [A, B] for the
outer header. The addresses [X, Y] may be the same as [A, B],
in the case of the IPSec transport mode, or they can be entirely
independent, as in the case of IPsec tunnel mode. The TTL
field can either get a new value or is copied from the inner
header depending on the tunnel configuration. A great portion
of the IPSec environment specification is devoted to the issue
of encryption and authentication key configuration and distri-
bution. While these aspects are important and consequential
in the design of the IPSec encapsulation and tunneling, these
questions are outside the scope of IPSec itself, and in practice
they depend on user configuration. The mapping of the inner
IP header to the outer IP header is relatively straightforward,
in contrast to the NDN case, as we shall see below.

B. NDN Headers and Names

NDN packet headers, and their most important component,
the NDN names, have a more complex and sophisticated
structure and use than the IP headers and addresses. As
opposed to IP’s use of addresses for forwarding only, NDN
uses names for three purposes: interest packet forwarding, data
identification, and data security:

• An interest packet carries the name of the data packet
to be retrieved, and routers perform name lookups using
longest prefix match similar to IP forwarding lookups,
but with more structurally complex names.

• Each name must uniquely identify a data packet, which
may be fetched from its producer or found at router
caches; multiple consumers must retrieve exactly the
same data packet when they query with the same name.

• NDN names are used for security management; con-
sumers perform data authentication based on the name
of the data.

NDN names are hierarchical in nature and commonly struc-
tured in the following way. The leftmost portion of the name

(prefix components) represents information typically devoted
to “network de/multiplexing” activities, i.e., information used
by NDN forwarding to move an interest packet towards the
requested data. The next portion of the name (one or more
components) represent information that enables interests to
reach the right application process or portion of the NDN
application stack. This portion is broadly equivalent to the
transport header in an IP packet. Finally, the remaining portion
of the name identifies the specific piece of data that is being
retrieved.

In addition to the name, an interest packet also carries
additional information related to the data being requested. Two
most important pieces of the additional information are

• Name match constraint: the “CanBePrefix” boolean flag
in an interest specifies whether the name of an interest
packet can be a prefix of the name of the matching data
packet; and

• Timing constraint: the “InterestLifetime” field in an
interest requires a data match to occur within a specified
time period, and the “MustBeFresh” boolean flag in an
interest specifies whether a data packet can still be a
match after the data has reached the end of its freshness
time period.

C. Solution Requirements

a) Deployment Requirements: Figure 1 shows the two
possible deployments considered by the proposed secure
NDN-in-NDN encapsulation. Let us call the name carried
in the outer interest encapsulating name, and the name of
the inner interest (the name of the original data packet)
encapsulated name. On the left figure, multiple producers
and consumers are operating on the same “public” network.
Here the goal of the secure NDN-in-NDN encapsulation is
to provide privacy to the data packet content as well as to
the trailing portion of the name consisting of the application/-
transport (data name suffix), while exposing only the leading
portion of the name used for handling by the NDN network.
As shown in the figure, the original name “/public/app1
/item1” is encapsulated and becomes the encapsulating name
“/public/data1”, which provides privacy to the “app1/item1”
portion of the name. This service is intended to be broadly
equivalent to the privacy guarantees of the IPSec Transport
mode. While such privacy can be achieved by a carefully
designed application namespace, performing this task would
be considered burdensome to application developers. Thus, a
desired solution is to provide such privacy function in a way
that is transparent to applications.

The right figure depicts the function of the secure NDN-
in-NDN encapsulation that allows the tunneling of private
content over a “public” NDN network.3 Here the goal of
the secure NDN-in-NDN encapsulation is to provide privacy
for the entire private NDN packet, including both the name

3Here the meaning of “public” network refers to the ability of all the
participants of the network to retrieve data based on a commonly-agreed and
previously-assigned naming scheme. This is in contrast to a “private” network
where the naming scheme is discretionary to the private party.



Fig. 1: Deployment Modes for the Secure NDN-in-NDN Encapsulation: Transport Mode (left), Tunnel Mode (right)

and content. As shown in the figure, a consumer residing
in a private NDN network retrieves a data packet with the
name “/private/app1/item1”. Here data is encapsulated at
the boundary between the private and public network in a
packet with the encapsulating name “/public/data1”, hence
providing privacy to the entire packet. This service is designed
to be broadly equivalent to the IPSec Tunnel mode. In this
scheme, packets are forwarded and matched according to
the inner private name while in the private network (either
producer or consumer side), and handled according to the
outer public name while in the public network. Similar to the
previous case, the encapsulation should be transparent to the
application, the consumers, or the producers, and happen at
the boundary between the networks.

b) Functional Requirements: Given that the names serve
multiple roles in an NDN network, as discussed in II-B, it is
incumbent upon the encapsulating names to fulfill the same
requirements with respect to the encapsulated data as follows:

• The name in the outer NDN interest must uniquely identify
a piece of data both at the producer and in the network in a
consistent manner. Accordingly, a piece of data generated by
a producer and encapsulated in an outer NDN header should
be retrieved by the encapsulating name from the producer
and any network caches, if the corresponding data exists.

• Multiple consumers attempting to retrieve the same piece of
data should generate interests with the same encapsulating
name. Furthermore, these interests should also match the
same data generated by the producer. This situation is
depicted in Figure 1 where two consumers issuing the
interest “/private/app1/item1” will generate interests with
the same encapsulating name (“/public/data1”), so that the
interests can be aggregated in the network; the encapsulating
name should also be converted to the same original name
at the producer.

• The encapsulating name of the NDN interest packet should
carry enough information to allow efficient forwarding of
interests to both the producers and to network caches with
the data. For example, in Figure 1, the encapsulating names
“/public/data1” and “/public/data2” should enable the
NDN network to distinguish between the two prefixes
such that “/public/data1” interests are forwarded to the
encapsulation endpoint P1E corresponding to producer P1,

while “/public/data2” interests are forwarded to the en-
capsulation endpoint P2E corresponding to producer P2.

• While NDN interests generaly carry the full name of the
data to be fetched, some interests may carry a partial
name prefix of the data (for a more detailed example, see
Section III). Similarly, producers generating NDN data may
announce only a partial name prefix for the NDN interests
to be directed toward. An encapsulation mechanism should
support such data requests by partial prefix both in the
network and at the producers.

c) Security Requirements: It is assumed that the inner
NDN packet is encrypted and authenticated using standard
cryptographic mechanisms; the details of these mechanisms
are beyond the scope of this paper. Given the requirement
that the encapsulated NDN name must uniquely resolve to an
encapsulating NDN name, while at the same time preserving
the privacy of the encapsulated name, it follows that this name
conversion should be defined as a cryptographic one-way func-
tion that prohibits the computation of the encapsulated name
based on the encapsulating name without proper authentication
and encryption credentials.

Finally, an overall goal of the solution is to provide trans-
parency and allow the secure NDN-in-NDN encapsulation to
be applied repeatedly–as long as it can be afforded from a per-
formance and an overhead point-of-view, to provide multiple
layers of security, as desired, without constraints imposed by
the solution design or implementation. The next section will
discuss our design satisfying the above requirements.

III. SOLUTION DESIGN

A. Abstract Model

The most important aspect of the design of the NDN-in-
NDN solution is the design of the outer namespace, and its
relationship with the encapsulated name. Abstractly speaking,
the process of generating the encapsulating namespace repre-
sents a mapping function that transforms the inner namespace
into an outer namespace using a unique transformation. A
secure encapsulation is a reverse transformation between an
encapsulating namespace into an encapsulated namespace that
is cryptographically secured. An NDN namespace can be
represented as a tree (or forest) where each node holds a name
component that may occur in the namespace. Accordingly,



Fig. 2: Encapsulation as a Namespace Tree Mapping

the name of each piece of data is represented by a path
between the root node and a leaf node. As an example,
Figure 2 shows two such namespaces, one for the encapsulated
data (left), and one for the encapsulating data (right). The
encapsulation process defines the mapping between the two
trees, where each possible path in the left tree uniquely maps
to a path in the right tree. In this example, the encapsulated
(inner) name “/a/b/f/j” is transformed to the encapsulating
(outer) name “/1/3/6”. Similarly, the inner name “/a/b/e”
could be transformed into outer name “/1/2/5”. For the
NDN encapsulation to function, it is necessary to satisfy
the uniqueness constraint: i.e. “/a/b/f/j” always maps to
“/1/3/6” during encapsulation; conversely “/1/3/6” uniquely
maps to “/a/b/f/j” during decapsulation. Note that the depth,
structure, or composition of either tree should be flexible
enough to accommodate different deployment assumptions and
limitations.

B. NDN-in-NDN Encapsulation Approaches

Below we discuss several secure NDN-in-NDN encapsula-
tion approaches that follow directly from this abstract model.

a) Structure-Preserving Secure Encapsulation: A
straightforward way to implement secure encapsulation is
to separately encrypt each name component in the inner
name tree into a ciphertext name component in the outer,
encapsulating name tree. Figure 3 shows such encapsulation.

Fig. 3: Per-Component Name Encryption
At the encapsulation time, each component in the inner name,
e.g., f and j get encrypted into ciphertext C(f) and C(j),
respectively. At decryption time, the reverse process takes
place: an encapsulating name is decrypted component by
component to retrieve the inner name (see later for details on
the type and usage of credentials to perform such operation).

Two optimizations warrant further discussion. First, the
above per name component encryption can be applied se-
lectively to part of the hierarchy. The top portion of the
name is used for network forwarding activities, if it does
not expose privacy information, such components can be
mapped to a cleartext outer name, or directly copied from
the inner name. As shown in Figure 3, “/a/b” components
are copied directly into the outer name. This optimization is
consistent with the Transport mode deployment discusses in

Subsection II-C, where only the trailing part of the name,
dedicated to transport and application state, is protected for
privacy and confidentiality.

The second optimization refers to the encryption scheme
used for each component. Given that the encryption of each
name component can yield lengthy ciphertext representation
(especially when padding and block encryption is used), a
cryptographic keyed hash can be used instead. Since such
hashing is a one-way function, the inner name cannot be
obtained directly from the hash, making the decapsulation
more challenging. The entire encapsulated packet can be
decrypted instead, and the hash can be applied to the clear
text name for the outer name verification.

While this scheme is straightforward, it has two drawbacks.
The first drawback is that it can produce lengthy outer names.
Even with the hash-based optimization discussed above, a
name consisting of ten components will be mapped to an
outer name with 32×10 bytes using a SHA256 hash function,
which is arguably excessive for just the name portion, without
counting the encapsulated packet carried as payload. The
second and more concerning drawback is that per-component
encryption exposes the structure of the application namespace,
which may allow a direct observation by an adversary of the
state machine transition of the application. This reduces the
traffic confidentiality of the secure encapsulation.

Fig. 4: Privacy-Oriented Name Encryption

b) Privacy-Oriented Secure Encapsulation: Exposing
the entire hierarchical structure of the inner name is not only
undesirable, but also unnecessary. The rightmost components
of the outer names are not expected to be employed in
forwarding of interests or delivery of data over the public
network, so they are hardly expected to be used as individual,
separable, entities. Instead, an entire portion of the inner
name can be mapped and encrypted as a single component,
hence collapsed into a single name component. This brings
about a number of advantages, such as increased efficiency
due to shorter outer names, and increased privacy. Figure 4
shows such an approach. On the right-hand side of each
name tree, the inner name “/a/c/h/k” is encapsulated in
the outer name “/public/group3/C(/a/c/h/k)”, where the
entire path is encrypted (or hashed according to the above-
described optimization) as a whole. This encapsulating name
exhibits a clear-text prefix designed to help its forwarding in
the public network. While the savings in outer name length
may look minor in this example, for a deep namespace it
will be substantial. The encapsulation scheme shown here is
equally suitable for NDN-in-NDN Transport mode as well as
Tunnel mode. The example is geared towards Tunnel mode



operations. Figure 4 shows another important aspect of this
design. While name collapsing brings distinct advantages, it
also introduces some challenges. Consumers may send interest
packets with partial names, i.e., prefixes, to fetch data, and
producers may register prefix for serving data. When such
prefixes are encrypted as a unit (e.g., “C(/a/c/h)”), they
will not match any data encapsulated with the encrypted full
name (e.g., “C(/a/c/h/k)”), hence breaking the functionality.
The proposed design introduces an intermediary component
that separately encrypts the prefix, and adds it as an outer
name component. As shown at the left of Figure 4, the inner
name “/a/b/d/i” is encapsulated as “/public/group1/C(/a
/b/d)/C(/a/b/d/i)”, such that the prefix is exposed as a
separate component. If the consumer issues a prefix-based
interest “/a/b/d”, this will be encapsulated as a “/public
/group1/C(/a/b/d/)” and it will match any data with such
prefix, including “/public/group1/C(/a/b/d)/C(/a/b/d/i)”.
While this approach solves the problem, it assumes that the
encapsulation mechanism is aware of the prefixes that the
application will use, which can be a limiting factor.

IV. IMPLEMENTATION

We implemented two versions of the Privacy-Oriented
design described above: 1) a security library-based imple-
mentation, called Face Level Secure Encapsulation (FLSE),
and 2) an appliance-based implementation, called Appliance
Level Secure Encapsulation (ALSE). Differences between the
implementations are highlighted in Figure 5.

Fig. 5: Implementations of Secure NDN-in-NDN Encapsulation
FLSE has been implemented as an extension to the ndn-cxx,

the standard NDN library [6]. It augments the application-level
entry point to NDN networking (Face API in ndn-cxx) with
automatic encapsulation and encryption functionality, allowing
applications to use the new functionality by merely switching
the compile-time libraries. In this respect, FLSE provides
Transport Mode functionality, as expressed interests and pub-
lished data out of the application are already encapsulated
and encrypted. The name is transformed using the Privacy-
Oriented design; the NFD to which the application connects
via ndn-cxx may place constraints on the allowed published
prefix, so this name transformation obeys such constraints.

ALSE has been implemented as a standalone appliance
(process/service). This service resides outside of the appli-
cation and acts as a border forwarder. Multiple applications
(or even upstream NFDs) can connect to an ALSE service,
which encrypts and encapsulates the traffic arriving on the
upstream faces, and forwards the encapsulated traffic on a
single downstream face. ALSE is particularly suited to provide

secure NDN-in-NDN encapsulation in Tunnel Mode, enabling
applications using private namespaces to be deployed over
public networks.

In terms of deployment, applications can use either of the
two implementations. Additionally, the two implementations
do not preclude stacking or recursive usage. For instance, the
ALSE can be positioned between an NFD instance and NDN
application compiled with FLSE. Conceptually both solutions
have similar processing pipelines, but their implementations
can (and do) use different packages and security libraries for
added diversity and protection.

Fig. 6: NDN interest and Data Secure Encapsulation
Our encapsulation implementation follows the NDN packet

format specification v0.3 [7].4 We selected an encapsulation
strategy and mapping design highlighted in Figure 6. Specif-
ically, for data packets, we chose to encrypt the complete
original data packet using a symmetric cryptography and
include it as a payload of the new data packet that has the new
mapped name (see Section III), as well as new “MetaInfo”
(new “EncryptedBlob” content type and, for simplicity, the
same value of “FreshnessPeriod” if it was present in the
original packet), and “Signature” fields (generated by ALSE
or FLSE according to the desired trust policy).

For each interest packet, we also encrypt the complete
original packet and include it as “ApplicationParameter”
in the new interest, which carries the new encapsulating
name and, for simplicity, the copy of all original qualifiers
to preserve type and timing of the request (i.e., the name
matching and timing constraints described in II-B).

The secure NDN-in-NDN encapsulation requires crypto
keys for inner packet encryption, outer packet authentication,
and cryptographic name transformation (Section III). To this
end we use a symmetric key kp controlled by the encapsulation
producer. Prior to encapsulation, the encapsulation consumer
must be able to securely obtain the credentials (including
key kp). In our implementation, a set of per-encapsulator
producer credentials including key kp is associated to Security
Parameter Index (SPI), representing a custom name component
managed by a data producer that enables the decapsulating

4In FLSE implementation we made a small deviation from the specification
regarding computation of “ParametersDigest” component of the name.
We plan to resolve this in future versions.



system to select the Security Association (SA) under which
a received encapsulated packet will be processed. The SPI
can be included in the outer NDN packet header, or it can be
derived from the outer name of the received encapsulated NDN
packets. The approach is broadly similar to the employment of
the SPIs by IPSec (as per RFC 2401). The configuration and
distribution of the SAs and associated key material is beyond
the scope of this paper. Our scheme uses a pre-shared encap-
sulation table ET that maps 〈inner pfx, outer pfx, SPI〉.
Upon interest encapsulation, the consumer matches the ex-
pressed interest to the inner pfx entry in ET , it uses the
outer pfx entry for the encapsulated name and the SPI-
identified credentials to encrypt the interest.

V. RELATED WORK

Instead of relying on channel-based security (as in TLS/IP),
NDN adopts a data-centric security paradigm: all NDN data
packets are cryptographically signed and encrypted if needed,
hence alleviating many of the security problems that plague IP
networks [8]. In addition, Name-based Access Control (NAC
and NAC-ABE) [9] encrypts the payload of NDN data packets
with automated encryption/decryption key management. NAC
supports granular per-namespace access policies, and only
authorized data consumers can obtain decryption keys to get
access to data. While this design secures the content of NDN
data packets, it exposes the original data names in both interest
and data packets.

Partridge et al. [10] proposed encapsulating encrypted ICN
packets inside other ICN packets that can be safely forwarded
over an untrusted network, similar to VPN encapsulation.
Different from our proposed solution, this approach explicitly
addresses content encryption only and requires that all nodes
in the private network share the same security association, as
any one of them might be required to respond to an encrypted
interest.

Another set of related solutions are based on proxy en-
cryption concept, allowing parties to exchange encrypted data
without sharing private keys by using multiple layers of
encryption [11]. The use of proxy encryption for content-based
networking was first proposed by Chaabane et al. [12], al-
though this work did not implement or evaluate the mechanism
described. PrivICN [13] described a detailed implementation
of proxy-encrypted ICN using the Elgamal cryptosystem [14],
including a performance evaluation and an open-source li-
brary. This system applies encryption to both data names
and contents, preserves the full benefit of ICN caching by
encrypting each name component individually, and also allows
for the revocation of user keys. However, the encryption
scheme creates large overhead for typical NDN name sizes
and reduces the confidentiality of the application flow control.
Additionally, the proxy encryption approach relies on a central
key management server to distribute credentials, creating a
level of persistent centralization that is at odds with the design
points of NDN and other ICN systems.

A number of papers have been published on NDN name
obfuscation to protect user privacy. Although the majority

of the proposed solutions use proxy servers to perform this
translation, the proxy-less name encryption and encapsulation
mechanisms developed in this work seem to represent the most
promising direction [15].

VI. CONCLUSION

This paper addresses the problem of secure packet en-
capsulation in NDN networks. While the NDN data centric
approach to networking increases the security of the content,
improves data robustness, and increases efficiency in group-
based communications, this paper shows that the very same
properties make secure data encapsulation difficult, especially
when considering the introduced overhead and loss in appli-
cation traffic flow privacy. This novel NDN-in-NDN approach
addresses these challenges and demonstrates an implementa-
tion that is both practical as well as flexible for a large set
of use cases. Rigorous performance evaluation, testing and
deployment against diverse NDN-based applications, and key
management aspects of the solution are left for future work.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. Thronton, M. F. Plass, N. H. Briggs,
and R. Braynard, “Network Named Content,” ACM CoNEXT, 2009.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Review, Jun. 2014.

[3] W. Simpson, “RFC 1853 - IP in IP Tunneling,” IETF Network Working
Group, RFC, 1995.

[4] S. Hanks, T. Li, D. Farinacci, and P. Traina, “RFC 1701 - generic routing
encapsulation (GRE),” IETF Network Working Group, RFC, 1994.

[5] K. S. S. Kent, “RFC 4301 - security architecture for the Internet
protocol,” IETF Network Working Group, RFC, 2005.

[6] NDN Project Team, “ndn-cxx: Ndn c++ library with experimental
extensions,” Online: https://docs.named-data.net/ndn-cxx/current/, Last
accessed: Feb. 12, 2023.

[7] ——, “NDN packet format specification,” Online: https://docs.
named-data.net/NDN-packet-spec/0.3/, Last accessed: Feb. 12, 2023.

[8] Y. Yu, A. Afanasyev, D. Clark, K. Claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in Named Data Networking,” in Proceedings of
2nd ACM Conference on Information-Centric Networking, Sep. 2015.
[Online]. Available: http://dx.doi.org/10.1145/2810156.2810170

[9] Z. Zhang, Y. Yu, S. K. Ramani, A. Afanasyev, and L. Zhang, “NAC:
Automating access control via Named Data,” in IEEE Military Commu-
nications Conference (MILCOM), 2018, pp. 626–633.

[10] C. Partridge, S. Nelson, and D. Kong, “Realizing a virtual private
network using named data networking,” in Proceedings of the 4th ACM
Conference on Information-Centric Networking, 2017, pp. 156–162.

[11] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in International Conference on the Theory and
Applications of Cryptographic Techniques, 1998, pp. 127–144.

[12] A. Chaabane, E. De Cristofaro, M. A. Kaafar, and E. Uzun, “Privacy
in content-oriented networking: Threats and countermeasures,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 3, pp. 25–33,
2013.

[13] C. Bernardini, S. Marchal, M. R. Asghar, and B. Crispo, “PrivICN:
Privacy-preserving content retrieval in information-centric networking,”
Computer Networks, vol. 149, pp. 13–28, 2019.

[14] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, 1985.

[15] Z. Zhang, S. Y. Won, and L. Zhang, “Investigating the design space
for name confidentiality in Named Data Networking,” in IEEE Military
Communications Conference (MILCOM), 2021, pp. 570–576.


