
47IEEE Network • September/October 2014 0890-8044/14/$25.00 © 2014 IEEE

ith the Internet’s explosive growth, the
global routing table size has been increas-
ing very quickly. This rapid growth causes
serious concerns: Internet service providers

(ISPs) have to upgrade routers and switches more frequently
in order to keep up with the increasing routing table size, lead-
ing to higher cost in running ISP networks. We have developed
forwarding information base (FIB) aggregation algorithms that
can compress routers’ FIB considerably [1–3] and achieve the
same forwarding behavior as the uncompressed FIB. Our
implementation of the algorithms can reduce the FIB size by
40–70 percent with minimal processing overhead. Moreover,
FIB aggregation can be deployed by a software update on
routers and switches without any hardware change. Discussions
with many network operators revealed the present state of this
problem, and we obtained a clear message that FIB aggrega-
tion has great commercial utilization potential. However, our
standalone implementation is not convincing enough — we
need to integrate our implementation with a real software or
hardware router, and demonstrate its effectiveness quantita-
tively under a realistic network environment.

To convince network operators and router vendors, we
decided to build a real-time demonstration system of FIB
aggregation. However, we face several challenges. First,
routers from commercial companies have closed source soft-
ware that we cannot modify. Second, we do not have access to
operational networks to deploy our implementation. Consid-
ering all these factors, we built a virtual network system using
solely open source software including Quagga [4], VirtualBox
[5], and BGPSimple [6]. More specifically, we implemented
one of our FIB aggregation algorithms [3] in Quagga, a widely

used open source routing software suite. We then used Virtu-
alBox to build a virtual network consisting of many virtual
machines, each running an instance of Quagga. The virtual
network can be configured to emulate any network topology
and can be reconfigured easily. Finally, we fed real-time rout-
ing data from the BGPMon project [7] and the RouteViews
project [8] into the virtual routers. Through this system we are
able to monitor the virtual routers’ FIB size and CPU usage,
which demonstrate the performance of our FIB aggregation
algorithms under a realistic network environment.

In addition to using the system within our research team,
we can give access to interested network operators so that
they can log into the virtual routers and check the perfor-
mance in real time by themselves. We can also peer with
interested ISPs to receive and process their routing updates so
that the virtual routers will reflect what the ISP routers would
have if they run the FIB aggregation algorithm. Furthermore,
the system can be used to test other improvements to the
routing system. We plan to publish our code and scripts so
that others can use this platform to evaluate their design and
implementation.

The remainder of the article is organized as follows. First,
we give relevant background information and present a system
overview. We then describe the implementation of FIB aggre-
gation in Quagga. Next, we present our methodology for emu-
lating an ISP network and our experimental results. Then we
discuss related work and conclude our work.

Background
Routers are critical network equipment in the Internet infras-
tructure. They forward data traffic in a hop-by-hop fashion. At
each hop, the router uses a FIB, also called a forwarding table,
to store the next hop of each address prefix. A router typically
have multiple copies of its FIB, each residing on a line card con-
necting the router to one of its neighbors. This way, when a line
card receives a packet, it can consult its local FIB in order to
forward the packet, instead of having to look up a central FIB,
which can easily become a performance bottleneck.

W

Abstract
The rapid increase in routers’ forwarding table size is raising serious concerns for
ISPs. In particular, it exhausts the routers’ forwarding hardware capacity, leading
to more frequent upgrades and higher cost. In this article, we present the develop-
ment of a virtual network framework based on open source software that demon-
strates how solutions to this impending problem can be implemented and studied.
The system is capable of emulating an operational network environment with intra-
domain and inter-domain routing protocols as well as real-world Internet routing
traffic. By adding performance monitoring and FIB aggregation capabilities to this
system, we are able to evaluate the performance of FIB aggregation algorithms in
a realistic network environment.

A Flexible Quagga-Based
Virtual Network with FIB Aggregation

Jerald Paul Abraham, Yaoqing Liu, Lan Wang, and Beichuan Zhang

W

Jerald Paul Abraham and Beichuan Zhang are with the University of Ari-
zona.

Yaoqing Liu is with Clarkson University.

Lan Wang is with the University of Memphis.

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 47

IEEE Network • September/October 201448

Since the FIB contains information about how to reach all
the networks on the Internet, its size increases as the Internet
grows. As an example, Fig. 1 shows the super-linear growth of
the routing table size from 1989 to 2013 observed in Telstra,
Australia’s largest ISP [9]. The same trend is happening in all
ISP networks. This problem is widely recognized by the net-
work operation and standardization community (RFC 4984).
They are mainly concerned about the cost of upgrading line
cards to accommodate larger FIB tables. For high forwarding
performance, today’s routers store FIB in fast memory such as
TCAM or SRAM, which is much more expensive than regular
memory such as DRAM. According to Fall et al. [10], “SRAM
density is at least one order of magnitude less than DRAMs
while cost can be two orders of magnitude greater.”

While scaling the FIB is important to sustaining the growth
of the Internet, a major concern of the ISPs is the deployment
cost of the potential solution since it may require changes in
routing protocols, coordination among routers or ISPs, or
even changes in end-user computers.

FIB aggregation combines multiple FIB entries into one
without losing any useful information. This means that the
new table should not change the next hops that the packets
take to reach their destination. This approach leverages the
hierarchical organization of prefixes and exploits opportuni-
ties when multiple forwarding table entries can be represented
as one. For instance, when several consecutive prefixes share
a common next hop, they can be combined into a shorter pre-
fix with the same next hop. Table 1 illustrates this case.
Another case is when a prefix and its nearest ancestor prefix
share the same next hop; this prefix can be removed from the
FIB. In both cases, the longest prefix match will return the
shorter prefix, but the returned next hop will still be correct.
There are more complex cases where aggregation can be
applied. Our FIFA aggregation algorithm is an improvement
over Optimal Routing Table Constructor (ORTC), and the
specifics of our approach are discussed in great detail in [2, 3].

FIB aggregation is a promising approach as it not only
reduces the FIB size significantly but also has low deployment
cost. The deployment can be done by a software update on
routers and switches, and ISPs can deploy it incrementally in
their networks, one router/switch at a time. Moreover, it does

not affect any network communication protocols. There is no
need to change anything in network operations such as moni-
toring and traffic engineering.

Design
Our overall goal is to build a prototype system to demonstrate the
performance of FIB aggregation and serve as a reusable frame-
work for the analysis of improvements to the Internet routing sys-
tem. Figure 2 gives an overview of our system. The BGPMon [7]
server at Colorado State University provides real-time Border
Gateway Protocol (BGP) updates to the system. The stream con-
verters establish telnet connections to BGPMon, receive BGP
XML streams, and convert the streams into BGP tabledump for-
mat to further feed the BGP speakers. The BGP speakers estab-
lish eBGP sessions with Quagga’s BGP daemons and send
standard BGP messages to the virtual ISP network. Each virtual
machine (VM) within the virtual network runs Quagga daemons
(Open Shortest Path First, OSPF, and BGP in particular) with or
without FIB aggregation. In addition, each VM runs a live perfor-
mance monitoring tool to collect performance metrics and a
python Log Parser to parse logs. A web server collects all of the
parsed logs and utilizes the Asynchronous JavaScript and XML
(AJAX) technique to update a client web page with new content
without refreshing the whole page.

Network Virtualization
As mentioned previously, we do not have direct access to an
operational network, so we resort to emulating such a net-
work through virtualization. Ideally, the virtual network can
easily emulate any desired network topology. One option is to
use an existing shared virtualization resource such as Emulab.
The other is to use open source virtualization software to cre-
ate this network ourselves. We need a continuously running
system that can emulate a large number of routers, but a
shared virtualization environment may not have enough
resources and may not allow the experiment to run for a long
period of time. Therefore, we decided to adopt the second
option and use VirtualBox for our system. VirtualBox is a
GNU Licensed open-source software that enables creation of
high performance virtualization environments using powerful
servers. Through VirtualBox commands, we create VMs that
emulate routers as well as the communication links between
the routers based on a desired network topology.

Routing Software
We need routing software to transform each VM into a full-
fledged router. This software should support major routing
protocols and allow us to configure the routers easily. We
chose Quagga based on these considerations.

Figure 1. Global BGP routing table size observed at Telstra.

Date (year)
1991

50,000

0

Pr
ef

ix
es

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

1994 1997 2000 2003 2006 2009 2010 2015

Table 1. FIB entries before and after aggregation.

(a) Original FIB entries

Label Prefix Next hop

A 141.225.0.0/16 1

B 141.225.64.0/18 1

C 141.225.32.0/19 1

D 141.225.96.0/19 2

E 141.225.48.0/20 2

(b) Aggregated FIB entries

Label Prefix Next hop

A 141.225.0.0/16 1

D 141.225.96.0/19 2

E 141.225.48.0/20 2

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 48

IEEE Network • September/October 2014 49

Quagga [4] is a widely used open source routing software.
It supports a variety of network protocols including OSPFv2,
OSPFv3, RIPv1, RIPv2, RIPng, and BGP-4; the software is
available for UNIX platforms, specifically FreeBSD, Linux,
Solaris, and NetBSD. Originally forked out of GNU Zebra,
Quagga’s design abstracts the various protocol implementa-
tions as separate daemons that could be run individually on
top of the core daemon, Zebra. These daemons process the
protocol-specific routing updates and direct the forwarding
table modifications to the Zebra daemon. The Zebra daemon
then processes the received FIB changes and applies them
onto the kernel FIB. Figure 3 illustrates a high-level layout of
this workflow in Quagga. It supports a variety of routing pro-
tocols and is actively used by small networks with a configura-
tion interface similar to commercial routers. In Quagga, we
added two modules, a FIB aggregation module and an inter-
ception module, to convert an uncompressed FIB to a com-
pressed FIB.

External Speaker
Quagga does not accept live BGP update streams or archived
BGP data as its input, so we need to find a lightweight BGP
speaker that can accept such input and announce BGP routes
to the virtual network. We compared several open source
BGP speakers that can work with Quagga, including ExaBGP,
BRID, BGPfeeder, BGPSimple, and pyBGP. These applica-
tions differ in execution performance, implementation, and
input feed format. We selected BGPSimple [6] as it accepts
input update feeds in the most commonly available formats. It

offers fast and efficient execution performance and also
comes with several filtering options that enable customizable
BGP update generation. We modified its code to slow down
the rate of BGP update generation when reading an initial
table dump file so as to enable lossless reception by the BGP
peer.

Performance Monitoring
Quagga offers a wide variety of configuration options for each
protocol daemon and has a good command line interface for
each of them. However, we cannot acquire performance met-
rics such as CPU and memory usage through these features.
Additionally, we need to monitor the performance metrics
continuously over a period of time, so they must be logged at
periodic intervals. Hence, we implemented our own perfor-
mance monitoring module, which captures and logs perfor-
mance metrics periodically. This module is designed to be
installed as a command providing easy access for end users
working with Quagga. The monitoring process can be config-
ured for a variety of performance metrics and for their log-
ging at desired acquisition intervals.

Adding Route Aggregation to Quagga
The first objective of our work is to add FIB aggregation and
performance monitoring to Quagga without major code
changes and negative performance impact. This ensures that
we do not inadvertently change Quagga’s implementation
logic, and that our new features do not slow down the core
routing and forwarding functionality. These considerations led
to the updated Quagga system depicted in Fig. 4.

FIB Aggregation
In order to aggregate the FIB without changing Quagga sig-
nificantly, we keep our FIB aggregation code out of the exist-
ing Quagga code. We add an interception module to intercept
every FIB update after it is received by the Zebra daemon
and pass all of them to the FIB aggregation module (Fig. 4).
Once the interception module receives the aggregated FIB
changes back from the FIB aggregation module, it applies
them to the kernel FIB. Below we describe these two modules
in detail.

The interception module’s major functionality includes
fetching static routes, interception of inbound FIB updates,
application of aggregated FIB updates to the kernel FIB, and
logging. The FIB updates fall into two categories:
• Route installs: adding one or more entries to the FIB for a

new address prefix

Figure 2. System overview.

ISP
networks

Virtual machines emulating
routers in the studied ISP

Virtual machines emulating BGP
speakers in neighbors’ ISPs

Performance
monitor

Log
parser

Web serverWeb client

BGP
speakers

Stream
converter 9

8

7

6

5

4

I2bHOUS

I2HOUS

3

N Virtual router
node
BGP speaker
node

2

1

I2bLOSA

I2LOSA

I2bATLA

I2ATLA
I2bWASH

I2WASH

I2bNEWY

I2NEWY

I2bCHIC

I2CHIC

I2bSALT

I2SALT

I2bKANS

I2KANS

I2bSTTLngI2STTLng

BGPMon
A real-time demonstration system of FIB aggregation

Figure 3. Quagga modules without FIB aggregation.

Quagga layer

Kernel layer

Kernel FIB
table

BGP
daemon

OSPF
daemon

Zebra
daemon

.... RIP
daemon

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 49

IEEE Network • September/October 201450

• Route uninstalls: deleting one or more entries from the FIB
for an existing address prefix
The aggregation module interacts directly with the inter-

ception module but not with other parts of Quagga. It hous-
es some temporary data structures that are needed to
perform effective and incremental table aggregation. It cur-
rently encapsulates the logic of our FIFA-S algorithm [3],
which can easily be replaced with any other FIB aggregation
algorithm. Below we highlight several implementation issues
that we did not encounter in our previous standalone imple-
mentation.

Processing static routes: When we plugged in the aggrega-
tion module to Quagga, we found a few duplicate route pre-
fixes with different next hop values. It turned out that static
routes were preconfigured during Quagga’s startup. Our solu-
tion is to introduce these static routes into the aggregation
module but not to aggregate them. More specifically, we set
particular flags for these routes so that they are not aggregat-
ed with other routes.

Updating kernel FIB: Without aggregation, one route
change will generate one kernel FIB change. With aggrega-
tion, however, one route change may lead to zero or more
FIB changes because we have to remove redundant routes
from FIB to keep it compressed all the time. We also learned
an important fact: an update with a next hop value change
actually consists of two FIB operations: Quagga first with-
draws the prefix with the old next hop value and then injects
the same prefix with a new next hop value.

Handling recursive next hop: The FIB entries propagated
inside Quagga sometimes have next hops that are “recursive”
in nature. This means the next hop to reach a destination
does not refer to a direct neighbor but to another intermedi-
ate node that lies on the path to the destination. For example,
the recursive next hop could be the iBGP neighbor that is
closest to the destination (among all the iBGP neighbors of
the node), but may be several IP hops away from this router.
It is therefore necessary to look up the address of the recur-
sive next hop in the FIB (one or more times) until we resolve
this recursive next hop to a directly connected next hop neigh-
bor. We did not realize the usage of recursive next hop in
Quagga initially and had difficulty understanding why the
aggregated FIB was incorrect in some cases. In fact, the

Quagga route data structure includes a recursive next hop flag
to determine which data field (regular next hop or recursive
next hop) to use for the next hop value. Since our aggregation
module originally accepts and returns only non-recursive next
hop values, we had to modify our process to handle such
recursive updates.

Performance Monitoring
When adding FIB aggregation to routing software, we expect
the changes to result in as little CPU overhead as possible and
at the same time improve other performance metrics such as
memory usage. The impact of our changes can only be quanti-
fied through low-level performance metrics captured at run-
time. Some metrics pertain to the overall Quagga system
performance, such as CPU usage and routing process’ virtual
memory usage. Other metrics are specific to FIB aggregation,
such as FIB entry count, FIB memory usage, and number of
updates made to the FIB.

The primary statistics captured by the performance moni-
toring module include:
• CPU and virtual memory usage of the OS, BGP daemon,

and Zebra daemon
• Kernel FIB’s memory usage
• Kernel FIB entry count
• Number of route installs and route uninstalls intercepted

and actually performed
Part of the module is implemented within the Zebra daemon
to support capturing of statistics on Zebra’s updates to the
Kernel FIB.

We capture the memory and CPU utilization metrics
through periodic operations on the files that the Unix kernel
maintains in its proc directory. Similarly, some metrics related
to the kernel’s FIB are computed from the internal kernel file
/proc/net/route, which holds the kernel’s FIB. In addition, we
capture routing update statistics in terms of route installs and
route uninstalls by the addition of some program variables
within the Zebra daemon. All the information gathered by the
monitoring application is made available through command
line options and log files.

Emulating an ISP Network
The second objective of our work is to set up a realistic net-
work environment to demonstrate the performance of our
FIB aggregation algorithm. To this end, we use VirtualBox,
BGPSimple, and real ISPs’ routing data to emulate a real
operational network. Note that our methodology can be used
to emulate any network, but in this section, we use the Inter-
net2 Abilene topology as an example to il lustrate our
methodology. Figure 5 shows our virtual network, which
includes a total of nine routers in the Internet2 topology and
nine external BGP speakers belonging to other ISPs that
exchange routing information with Internet2. Each node is
on a separate VM. Each Internet2 router runs either the
original Quagga or our updated version of Quagga (specifi-
cally the Zebra, OSPF, and BGP daemons). Each BGP
speaker runs the BGPSimple program that sends real rout-
ing updates to the BGP peer.

We use OSPF to establish intra-domain connectivity among
all of the Internet2 nodes. The BGP daemons on each Inter-
net2 node then use this base connectivity to establish BGP
peering sessions with their iBGP peers. For simplicity, we use
full-mesh iBGP peering; that is, every router has an iBGP ses-
sion with every other router in the same network. For a larger
topology, we can use route reflectors to reduce the number of
iBGP sessions.

In order to attain equivalence between the virtual net-

Figure 4. Quagga modules with FIB aggregation.

Quagga
layer

Kernel
layer

Intercepted
updates

Aggregated
updates

Unaggregated
updates

BGP
daemon

OSPF
daemon

........ RIP
daemon

Zebra
daemon

Aggregated
updates applied
through IOCTL

Zebra code

Kernel FIB
table

Interception
module

Aggregation
module

Performance
monitoring

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 50

IEEE Network • September/October 2014 51

work and a real-world ISP, we need the presence of a huge
volume of BGP routing updates in the Internet. Fortunate-
ly, BGP routing tables and updates from many ISPs are
being collected by a number of projects. We use BGP data
from the RouterViews project of the University of Oregon
[8] and the BGPMon project of Colorado State University
[7]. The RouterViews project provides BGP table dumps
and update files archived at regular intervals while the
BGPMon project provides live BGP updates in addition to
archived BGP data.

We modified the BGPSimple program to pump the BGP
data into the network. The program first reads a routing table
from a BGP table dump file (from RouteViews or BGPMon)
and then sends the resulting BGP updates over its BGP ses-
sion so that the peer can establish an initial BGP table. Since
there are hundreds of thousands of entries in a full routing
table, we added pacing to the BGPSimple program so that the
peer does not become overwhelmed by the initial influx of
updates. The program then sends subsequent BGP updates as
they become available. These updates are obtained from
either the BGP update files downloaded from RouteViews or
a live stream of BGP updates from BGPMon. In order to
evaluate the performance of our system under high routing
load, we used large routing tables with 450,000 prefixes on
average.

Evaluation
To estimate the performance impact of FIB
aggregation, we ran Quagga with and without
aggregation at each virtual router in two sepa-
rate trials. Both trials used the same configura-
tion and BGP feed to maintain consistency in
network condition. The performance metrics
were captured by our monitoring module on a
node-by-node basis every 3 s, and the data was
saved to logs for post analysis. It is also possi-
ble through command line options for an end
user to get live performance stats during system
runtime. All the experiments are performed on
a single server with Dual Intel Xeon E5-2680
CPU (2.70 GHz), 128 Gbytes memory, and a 4
Tbyte disk. The server runs the 64-bit Ubuntu
Server 12.04 operating system. The results are
similar for all the routers, so we show the
results for one of them for brevity.

Figure 6 shows the FIB size as a router pro-
cesses routing updates (the X-axis is the

sequence number of the BGP update). The trial without
aggregation caused the kernel FIB to rise to a total of 480,000
entries and 60 Mbytes in size. With aggregation, however, the
FIB size rose to around 140,000 entries and 18.5 Mbytes. This
means FIB aggregation led to about 70 percent reduction in
FIB size (both entry count and memory usage).

Figure 7 shows how many route installs and route uninstalls
were performed on the kernel FIB. The system with aggrega-
tion performed slightly fewer route installs than the system
without aggregation. Meanwhile, the former had slightly more
route uninstalls than the latter. Consequently, the total num-
ber of FIB changes with aggregation (not shown in the figure)
is only 7.1 percent higher than that without aggregation. The
increased number of route uninstalls is necessary to remove
certain redundant FIB entries for keeping the FIB table com-
pact and correct. One concern regarding the increased num-
ber of FIB changes is that the overhead may lead to delays in
applying routing updates to FIB on time. However, we note
that the increase in FIB changes is small (7.1 percent). Fur-
thermore, we confirmed from router vendors that FIB updates
are handled in bulk mode; that is, FIB updates are not han-
dled one by one. Instead, they are processed and applied to
FIB in bulk after a certain time or a certain size of accumulat-
ed updates. This would further reduce the latency impact
caused by FIB aggregation.

Figure 5. Virtual network setup.

9

8

7

6

5

4

I2bHOUS

I2HOUS

3

N Virtual router
node

BGP speaker
node

2

1

I2bLOSA

I2LOSA

I2bATLA

I2ATLA
I2bWASH

I2WASH

I2bNEWY

I2NEWY

I2bCHIC

I2CHIC

I2bSALT

I2SALT

I2bKANS

I2KANS

I2bSTTLng
I2STTLng

Figure 6. FIB size statistics: a) FIB entry count; b) FIB memory usage.

BGP update sequence number

(a)

22
3

100,000

Ke
rn

el
 f

or
w

ar
di

ng
 t

ab
le

 e
nt

ri
es

0

200,000

300,000

400,000

500,000

600,000

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

Without aggregation
With aggregation

BGP update sequence number

(b)

22
3

10,000

M
em

or
y

ut
ili

za
ti

on
 (

kb
yt

es
)

0

20,000

30,000

40,000

50,000

60,000

70,000

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

Without aggregation
With aggregation

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 51

IEEE Network • September/October 201452

Figure 8 shows the CPU utilization of the overall operating
system over time. It is surprising that the average OS CPU
utilization is 52.7 percent lower with aggregation (5.29 percent
with aggregation and 11.18 percent without aggregation).
However, the average Zebra CPU utilization (not shown in
the figure) is 59.4 percent higher with aggregation (1.22 per-
cent with aggregation and 0.76 percent with aggregation). This
is expected as Zebra runs the aggregation algorithm. The
exact cause of the lower operating system (OS) CPU utiliza-
tion with aggregation is still under investigation, but we sus-
pect that it is due to the lower cost for the kernel to maintain
a much smaller FIB table (e.g., the CPU time required to
insert/delete an entry is much lower when the table size is
small).

Figure 9 shows the virtual memory utilization at the OS
level, which indicates that the aggregation-based system
increases the OS memory usage by 0.3 Gbytes. Note, however,
that the aggregation module in the route processor uses
DRAM, while the FIB is typically stored in SRAM in line
cards, which is at least two orders of magnitude more expen-
sive than DRAM. Therefore, although we should try to
reduce the memory consumed by the FIB aggregation mod-
ule, the benefit offered by a 70 percent memory reduction in
the line card still significantly outweighs the cost incurred by
the memory increase in the route processor.

Typically, the more links a router has, the less aggregation
it may get. Our previous results in [1] show that the FIB
reduction ranges from 60 percent for routers with hundreds of
links to 90 percent for routers with dozens of of links. Now we
estimate the cost savings for routers with high and low con-

nectivity. We assume that DRAM price is about $1/Gb
($8/Gbyte) [11], and SRAM price is 100 times that of DRAM
(i.e., $0.1/Mb, $0.8/MB). For a router with 100 links and a
FIB size reduction of 60 percent (36 Mbytes), the cost savings
is 36 × 0.8 × 100 – 0.3 × 8 = $2877.6. For a router with 10
links and a FIB size reduction of 90 percent (54MB), the cost
savings is 54 × 0.8 × 10 – 0.3 × 8 = $429.6. Therefore, FIB
aggregation can reduce memory cost for both types of routers.
Furthermore, because FIB aggregation would extend the life
of a line card for a few more years, it would reduce the
replacement frequency of line cards, which can cost thousands
of dollars or more.

Figure 7. FIB change statistics: a) route installs on FIB; b) route uninstalls on FIB.

BGP update sequence number

(a)

22
3

200,000

N
um

be
r

of
 in

st
al

ls
 p

er
fo

rm
ed

0

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

Without aggregation
With aggregation

BGP update sequence number

(b)

22
3

200,000

N
um

be
r

of
 u

ni
ns

ta
lls

 p
er

fo
rm

ed

0

400,000

600,000

800,000

1,000,000

1,200,000

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

Without aggregation
With aggregation

Figure 8. Operating system CPU utilization.

BGP update sequence number

(a)

22
3

5

O
S

C
PU

 u
ti

liz
at

io
n

(%
)

0

10

15

20

25
30

35

40
45

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

Without aggregation

BGP update sequence number

(b)

22
3

5

O
S

C
PU

 u
ti

liz
at

io
n

(%
)

0

10

15

20

25
30

35

40
45

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

With aggregation

Figure 9. Operating system virtual memory utilization.

BGP update sequence number

22
3

200,000

O
S

m
em

or
y

ut
ili

za
ti

on
 (

kb
yt

es
)

0

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

3

20
,3

01

14
5,

51
2

32
6,

94
7

52
7,

00
6

70
3,

40
8

83
4,

05
3

91
0,

55
2

91
7,

30
2

91
7,

77
4

91
8,

20
9

Without aggregation
With aggregation

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 52

IEEE Network • September/October 2014 53

Related Work
Zhao et al. [12] projected that FIB caching [13] and FIB aggre-
gation are two of the most promising solutions to reduce FIB
size in the near future. The first major work on FIB aggrega-
tion is by Draves et al., who proposed a one-time aggregation
algorithm called ORTC [14]. More recently, Zhao et al. pro-
posed an update handling algorithm for FIB aggregation [1].
Liu et al. proposed improved update handling algorithms
based on the ORTC aggregation algorithm [2, 3]. Note that all
of these FIB aggregation algorithms can be easily incorporated
into Quagga according to our implementation experience.

Sarrar et al. ([15 16]) present traffic offloading approaches
and analyze the benefit of incorporating locality in aggregation.
Bienkowski et al. [17] present another online aggregation algo-
rithm that aims to optimize FIB and provide asymptotic bounds
on their performance. However, they did not show the perfor-
mance of their algorithms when applied to a real-world Internet
topology and did not provide results on system resource usage
such as CPU cycles and memory, which are critical for a router.

The work most closely related to this project is SMALTA
[18], which proposed an update handling algorithm based on
ORTC and implemented it in Quagga. In [19], we have shown
through simulation that our FIFA algorithms (implemented in
this work) outperform SMALTA. In this work, we focused on
implementing a complete system to emulate a real network
that takes real-time BGP updates and archived BGP data as
input. This system can be used to evaluate not only FIB
aggregation algorithms but also other improvements to the
Internet routing system.

Conclusion and Future Work
We have designed and implemented a flexible system that can
receive real-time BGP messages, simulate any network, moni-
tor the performance, and demonstrate the results to any indi-
vidual who has access to the Internet. Using this system, we
were able to test the effectiveness of our FIB aggregation
algorithms quickly, and the experiment results confirm the
previous findings based on our standalone simulation code.

Apart from demonstrating the performance of our FIB
aggregation algorithm, there are a wide variety of applications
for which this network can be utilized. First, this system can
be used by network operators for internal testing prior to
their actual deployment of a new feature. This framework can
also be beneficial in analyzing other problems of the growing
Internet. With modular changes in protocol and other data
structure components, it is possible for researchers to incorpo-
rate their own algorithms in the system and study their perfor-
mance at any required scale depending on their resources.
Furthermore, we hope our research and development experi-
ence, especially the challenges and corresponding solutions
during the implementation of FIB aggregation, sheds some
light on similar problems faced by Quagga users.

We will continue to use this system to evaluate potential
impact of FIB aggregation on the forwarding plane (e.g.,
delay and loss in data delivery). Moreover, we plan to improve
the usability of our system by automating system configuration
and providing an easy-to-use GUI for users to set up their
experiments.

References
[1] X. Zhao et al., “On the Aggregatability of Router Forwarding Tables,”

Proc. IEEE INFOCOM, 2010.
[2] Y. Liu et al., “Incremental Forwarding Table Aggregation,” Proc. IEEE

GLOBECOM, 2010.
[3] Y. Liu, B. Zhang, and L. Wang, “FIFA: Fast Incremental FIB Aggregation,”

Proc. IEEE INFOCOM, 2013.
[4] “Quagga Routing Software Suite, GPL Licensed,”

http://www.nongnu.org/quagga/
[5] “Oracle VirtualBox,” https://www.virtualbox.org/
[6] “BGPSimple,” http://code.google.com/p/bgpsimple/
[7] “BGP Monitoring System (BGPmon) — Colorado State University,”

http://bgpmon.netsec.colostate.edu
[8] Advanced Network Technology Center and University of Oregon, “The

RouteViews Project,” http://www.routeviews.org/
[9] “Global BGP Table Growth,” http://en.wikipedia.org/wiki/File:BGP Table

growth.svg
[10] K. Fall et al., “Routing Tables: Is Smaller Really Much Better?,” Proc.

ACM HotNets, 2009.
[11] “DRAMeXchange,” http://www.dramexchange.com/.
[12] X. Zhao, D. J. Pacella, and J. Schiller, “Routing Scalability: An Opera-

tor’s View,” IEEE JSAC, vol. 28, no. 8, Oct. 2010, pp. 1262–70.
[13] Y. Liu, S. O. Amin, and L. Wang, “Efficient Fib Caching Using Minimal Non-

Overlapping Prefixes,” SIGCOMM Comp. Commun. Rev., vol. 43, no. 1, pp.
14–21, Jan. 2013, http://doi.acm.org/10.1145/2427036.2427039.

[14] R. Draves et al., “Constructing Optimal IP Routing Tables,” Proc. IEEE
INFOCOM, 1999.

[15] N. Sarrar et al., “Leveraging Zipf’s Law For Traffic Offloading,” ACM
SIGCOMM Comp. Commun. Rev., vol. 42, no. 1, 2012, pp. 16–22.

[16] N. Sarrar et al., “Exploiting Locality of Churn for Fib Aggregation,” tech.
Rep. 2012/12, Technische Universität Berlin.

[17] M. Bienkowski and S. Schmid, “Competitive Fib Aggregation for Inde-
pendent Prefixes: Online Ski Rental on the Trie.”

[18] Z. A. Uzmi et al., “SMALTA: Practical and Near-Optimal FIB Aggrega-
tion,” Proc. CoNEXT, 2011.

[19] Y. Liu, B. Zhang, and L. Wang, “FIFA: Fast Incremental FIB Aggrega-
tion,” Univ. Memphis, tech. rep. CS-13-004, 2013.

Biographies
JERALD PAUL ABRAHAM (jeraldabraham@email.arizona.edu) is a Master’s gradu-
ate from the Computer Science Department at the University of Arizona. He
received his Bachelor’s in computer science and engineering from Mahatma
Gandhi University, India. His research interests are in future Internet routing
architectures and artificial intelligence. He worked at the Network Research
Lab during his Master’s and contributed toward multiple projects in FIB aggre-
gation and named data networking.

YAOQING LIU (liu@clarkson.edu) is an assistant professor of computer science
at Clarkson University, Potsdam, New York. He received his Bachelor of Com-
puter Science degree from Dalian Maritime University, China. He received
both his Master’s and Ph.D. degrees in computer science (networking) from
the University of Memphis, Tennessee. His research interests include net-
worked systems (routing, security, algorithm, measurement and protocol), soft-
ware defined networking, future Internet architecture, and named data
networking.

LAN WANG [SM] (lanwang@memphis.edu) is an associate professor in the
Computer Science Department at the University of Memphis. She holds a B.S.
degree (1997) in computer science from Peking University, China, and a
Ph.D. degree (2004) in computer science from the University of California, Los
Angeles (UCLA). She received an Early Career Research Award (ECRA) from
the College of Arts and Sciences at the University of Memphis. Her research
interests include Internet architecture, Internet routing, network security, net-
work performance measurement, and sensor networks.

BEICHUAN ZHANG (bzhang@cs.arizona.edu) is currently an associate professor
in the Computer Science Department of the University of Arizona. His research
interest is in Internet routing architectures and protocols. He has been working
on named data networking, green networking, network topology, and overlay
multicast. He received the first Applied Networking Research Prize in 2011
from the ISOC and IRTF, and the best paper award at ICDCS in 2005. He
received his Ph.D. and M.S. degrees from UCLA in 2003, and his B.Sc. from
Peking University in 1995.

ABRAHAM_LAYOUT_Layout 1 9/10/14 12:47 PM Page 53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

