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Autonomous wireless sensor networks consisting of different types of sensor modalities have been
receiving greater attention from researchers due to their versatility and portability. These autonomous
sensor networks commonly include passive sensors such as infrared, acoustic, vibration, and magnetic
nodes. However, fusion of active sensors in the integrated sensor network, such as Doppler radars,
may offer powerful capabilities for many different sensing and classification tasks. In this work, we
demonstrate the design and implementation of an autonomous wireless sensor network integrating a
Doppler sensor with commercial off-the-shelf components. We investigate the effect of various types
of target materials on the measured radar signal as one of the applications of the newly designed
radar–mote network. Different types of materials affect the amount of energy reflected back to the
source of an electromagnetic wave. We obtain mathematical and simulation models for the reflectivity
of different homogeneous non-conducting materials and study the effect of such reflectivity on the
classification of targets. We validate our simulation results using real experimental data collected through
our autonomous radar–mote sensor network using various types of targets.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Autonomous wireless sensor networks with different sensor
modalities are the objective of active research due to the versa-
tility and portability of their applications [1–5]. An autonomous
sensor network is a collection of sensor nodes with limited pro-
cessing, power, and communication capabilities that monitors a
real world environment with limited or no human intervention. In
a typical monitoring application, each node of the network gathers
information about the local environment, preprocesses the data,
and transmits via wireless channels to a base station [1,3]. His-
torically, this type of autonomous systems typically used infrared,
acoustic, vibration, and magnetic sensors for passive sensing, and
optic and ultrasound sensors for active sensing. However, Radio
Detection And Ranging (Radar) has not been used extensively in
wireless sensor networks except in a few research studies (e.g.,
[2]). Radar systems are widely used in defense, meteorology and
surveillance due to their versatility in working from a long range,
in adverse weather where other sensors may be unavailable, or
with non-cooperative targets. Radar is an object detection system
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that uses electromagnetic waves to identify the range, altitude, di-
rection, and speed of moving and fixed objects such as aircraft,
ships, motor vehicles, clouds, storms and terrain [6]. In addition
to the precise range and velocity measurements of the target ob-
jects, radar systems have the capability to classify targets based on
the Radar Cross Section (RCS) of different objects. Such classifica-
tion capability is related to the electromagnetic energy reflected
back from various classes of objects. The types of materials affect
the amount of reflection from an object [7,8]. The application of
Doppler radar has been limited in wireless sensor networks be-
cause conventional systems are expensive, bulky, and difficult to
use with very few exceptions [2]. Currently, with the advancement
of technology, a large variety of small, inexpensive radar sensors
with standard capabilities and low power requirements are com-
mercially available [9]. Therefore, there is an opportunity to inte-
grate a radar sensor with autonomous distributed wireless sensors.

The integration of radar into autonomous sensor systems pro-
vides a powerful and robust sensing modality that complements
the already available modalities, such as acoustic, magnetic, vibra-
tion, and passive infrared sensors. Effective integration designs can
provide a powerful distributed sensor network system with versa-
tile sensor modalities. In the integrated system, radar offers mea-
surements of the range, velocity, direction, and electromagnetic
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characteristics of the target to complement existing wireless sen-
sor node capabilities [10,11]. The intelligent combination of some
or all of the sensor modalities in certain application scenarios can
work as an effective tool to detect, track, and identify targets in
wide areas. The successful design and implementation of inte-
grated autonomous distributed sensor network may provide a low
tier data gathering system to be used with an intelligent decision
support system [10,11]. Furthermore, the successful development
of the integrated sensor system using the commercially available
low-cost products would be useful for widespread civil and de-
fense applications.

In this work, we design and implement an autonomous dis-
tributed sensor network that integrates a low-cost tiny Doppler
radar sensor with the commercially available wireless sensor
motes for dynamic surveillance and tracking. Our autonomous
distributed sensor network is then used to collect data from
an indoor experimental setup. The data collected from the net-
work is stored and analyzed in a computer system connected
to a base station. We investigate the effect of different types of
materials using Doppler radars in the integrated sensor system.
The material property is an important factor that influences how
much electromagnetic energy is reflected back to the source from
where it emits. For simplification of the model and the limited
scope of this work, we investigate the reflectivity of the non-
conducting materials only. The relation between refractive index
of non-conducting materials and the reflectivity of plain electro-
magnetic wave from non-conducting materials can be modeled
mathematically [7,8]. We modify the reflectivity model to incor-
porate the Doppler principle and simulate the effects of Doppler
signals reflected from non-conducting materials. Then radar reflec-
tion data from non-conducing material surfaces is collected using
our integrated radar–mote autonomous system. Finally, we classify
different types of non-conducting materials based on the radar
signals reflected back from the corresponding material surfaces. In
summary, the objectives of this work are as follows:

i. Design and implement a wireless autonomous radar–mote
sensor network integrating a Doppler radar into a wireless
sensor node with low-cost commercial off-the-shelf compo-
nents.

ii. Investigate the effect of different types of target materials on
return radar signal and use the newly built integrated radar–
mote sensor network as data collection tool for the investiga-
tion.

The paper is organized in multiple sections. In Section 2, we
review relevant background research and the essential technolo-
gies required for this work. In Section 3, we first briefly describe
the proposed design and implementation of an integrated radar–
mote autonomous system. We then present the modified reflec-
tivity model to show how material property affects the reflection
of electromagnetic waves. In addition, we present a simple sig-
nal processing algorithm to classify different types of materials. In
Section 4, we first describe our data collection process using our
integrated experimental setup. We then compare simulated and
experimental reflectivity of non-conducting materials. Moreover,
we present the classification of different types of non-conducting
materials using our electromagnetic reflection model. We also dis-
cuss the advantages of our system compared with standalone radar
systems and other mote systems. Finally, we discuss our conclusion
and future work in Section 5.

2. Background review

In this section, we briefly review relevant recent research ef-
forts and background materials describing the integration of radar
sensors with wireless motes and various applications. The capabil-
ity of these sensor networks is also discussed from a theoretical
point of view. Finally, we describe the theoretical model showing
the relation between material refractive index and reflectivity of
electromagnetic signal [7,8].

2.1. Previous research efforts on integrated radar–mote sensor networks
and their applications

Radar has been conspicuously absent from integrated sensor
systems because radar systems are typically quite bulky. With the
advent of the micro-power pulse radar at Lawrence Livermore Na-
tional Labs in mid 1990s, low power radars became a possibility.
Subsequently, technical progress in sensor networks has led the
effort to integrate radar as one of the sensor modalities to sensor
network platform.

The radar–mote, designed by researchers at UC Berkeley and
Ohio State University, consists of several circuit boards including a
main processor and radio board, an optional sensor board, an ul-
tra wideband radar sensor, and a power board [2]. They use Mica2
sensor mote and 2.4 GHz TWR-ISM-002 radar sensor from Advan-
taca [12] as two main components of their radar-enabled sensor
network. BumbleBee is an integrated radar–mote sensor developed
by the Samraksh Company [13] that includes a low-power Pulsed
Doppler Radar (PDR). The key features of the BumbleBee include:
a detection range between 1 m to 10 m that is controllable via
software, coherent output (both I and Q channels), on-board in-
ternal antenna, 60 degree conical coverage pattern, and detection
of radial velocities between 2.6 cm/s and 2.6 m/s [13]. The Bum-
bleBee package includes a BumbleBee radar board and a TelosB or
TMote Sky mote. The BumbleBee is suitable for variety of monitor
and surveillance applications [13].

Although these integrated radar–mote sensor network products
work well for certain applications, there is still room for improve-
ment. According to the BumbleBee’s user manual [13], complex
signal post-processing is required to compute range information
using BumbleBee. Furthermore, since BumbleBee is not intended
to be used as a ranging radar, it does not produce range infor-
mation simultaneously with velocity in general [13]. It is of great
practical benefit to have a radar–mote system with high sampling
rate, which computes the range and velocity simultaneously with
simple signal processing techniques. Our system accomplishes this
goal.

2.2. Components of our autonomous sensor network

Our integrated system includes a TelosB wireless mote from
Crossbow Technology [14] and a Ka-band Doppler transceiver from
M/A-Com Tech [15]. We integrate a Ka-band Doppler Radar into
the wireless node so that it can detect range and velocity of target
object simultaneously. We use a horn antenna with the Doppler
radar that sends a signal more specific to a target direction.

2.2.1. TelosB mote platform details
Crossbow’s TelosB mote (TPR2400) is an open source platform

designed for the research community [14]. The TPR2400 includes
the standard features such as USB programming capability, an IEEE
802.15.4 standard radio transceiver with built-in antenna, a low
power microcontroller (MSP430), and capability to integrate sensor
boards through standard ports. Fig. 1 shows a picture of TelosB
mote and its block diagram.

2.2.2. Ka-band Doppler transceiver (MACS-007802-0M1R1V)
We select a Ka-band (24–40 GHz) Doppler transceiver from

M/A-Com Tech for our integrated radar–mote sensor suite. It is
a low-cost ($50) and low-power Doppler transceiver that suits
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Fig. 1. (a) TelosB TPR2400 mote real picture (left), (b) block diagram of TelosB TPR2400 mote (right) (source: Ref. [14]).
Fig. 2. Doppler transceiver (MACS-007802 0M1RSV) (source: Ref. [15]).

Table 1
Pin configuration of the Doppler transceiver (MACS-
007802-0M1RSV).

PIN Function

1 DC input
2 Ground
3 IF output (Mixer1)
4 IF output (Mixer2)
5 Vtune input

our goal. This M/A-COM RF transceiver (Model MACS-007802-
0M1RSV) is primarily used for automotive applications such as
front and rear-ends collision detection, in-ground speed measure-
ment, and as motion detectors in automatic door systems [15].
The transceiver is very small in size (< 1 inch on each side),
resembling an ice cube, which makes it an excellent choice for
our autonomous integrated radar–mote sensor network system.
The radar transmits a continuous wave at 24.125 GHz and it has
an electronic tuning system that varies the frequency within a
bandwidth of 0.3 GHz. An external voltage ramp pulse can be
applied to the electronic or voltage tune input of the radar caus-
ing the radar to emit continuous frequency-modulated signal of
300 MHz bandwidth. The signal received by the radar through an-
tenna is mixed with the transmitted wave and low-pass filtered
to produce In-phase (I) and Quadrature (Q ) output which are
available on pin 3 and 4 of the radar respectively. Fig. 2 and Ta-
ble 1 show the Doppler transceiver and the organization of its
pins.
2.3. Radar signal processing of range and range-rate data

By applying different voltages to the electronic tuning input of
the Doppler radar, we can vary the frequency from a minimum
value f0 to a maximum value f1 between 24 to 24.3 GHz. In this
section, we discuss how we can use this frequency variation to
measure target range and velocity. To cover the frequency band
quickly we use ramp voltages as voltage tune input, which gen-
erates a continuous sweep from low to high frequency. When an
object moves away from the radar, it causes the reflected signal to
down shift slightly relative to the transmitted signal. The reverse
occurs when the object moves toward the radar. The radar receiver
mixes the transmitted and shifted received signal and passes it
through the low-pass filter. The final radar output oscillates at the
Doppler frequency, which is proportional to the range-rate or ve-
locity of the target object. We can get the magnitude of range-rate
by capturing any of the output channel signal of the radar and then
computing the Fast Fourier Transform (FFT) [16,17]. Moreover, we
can get the direction of the moving target in addition to range-rate
by processing the two output channels together.

Consider that the Doppler radar transceiver emits a continuous
frequency sinusoidal signal as follows [16,17],

x0(t) = cos(2Π f0t + Φ), (1)

here, f0 is the carrier frequency, t is time and Φ is some random
phase. The transmitted signal is then propagated to a stationary
target, reflected, and propagated back to the Doppler transceiver.
The received signal is the replica of the transmitted signal with
a propagation delay corresponding to the round trip time required
for the propagation of the signal. If we assume that the transmitter
and receiver are synchronized with same clock, this propagation
delay can be represented as = 2r/c, where r is the distance be-
tween the radar and the target object in meter and c = 3×108 m/s
is the propagation velocity of the microwave signal. Now the re-
ceived signal can be expressed as:

xr(t) = σ x0(t − �t) = σ x0(t − 2r/c)

= σ cos[2Π f0t + Φ − 4Π f0r/c], (2)

where σ is a constant that corresponds to the target radar cross
section (RCS), geometric attenuation of the signal as well as other
terms related to the target object and signal characteristics. At the
receiver end of the Doppler transceiver circuitry, the received and
transmitted signals are multiplied and then filtered using low-pass
filter. The filtered signal output from the mixer is simplified using
the trigonometric identity, 2 cos a. cos b = cos(a + b) + cos(a − b),
and we get the mixer output expressed as follows,
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Fmix(t) = σ

2
cos[4Π f0t + 2Φ − 4Π f0r/c]

+ σ

2
cos[4Π f0r/c]. (3)

This mixer output signal is the summation of two terms having
frequency 2 f0 and a constant DC bias. If the sinusoidal signal is
discarded using a low-pass filter, we get the following signal as
the radar output which is a function of the target range r:

I = σ

2
cos[4Π f0r/c]. (4)

Now based on the relation between propagation delay �t and r,
the range-rate or velocity expressions are derived. If the target ob-
ject is changing the range at a constant rate ṙ meters/s then,

r(t) = r0 + ṙt, (5)

where r0 is range at time instant zero. Putting the value of r into
Eq. (2) and rearranging the term we get,

xr(t) = σ cos

[
2Π( f0 + � f )t − 4Π f0r0

c
+ Φ

]
, (6)

where � f = −(2ṙ/c) f0 and � f is known as Doppler frequency
shift [16]. From Eq. (4), it is evident that the reflected signal down-
shifts slightly relative to the transmitted signal when an object
moves away from the radar. The radar receiver mixes the transmit-
ted and shifted received signal and passes it through the low-pass
filter. The low-pass filtered signal after simplification with cosine
identity can be expressed as,

I(t) = σ

2
cos

[
2Π(� f )t − 4Π f0r0

c

]
. (7)

The final radar output oscillates at Doppler frequency � f . From
the relation between � f and ṙ we see that Doppler frequency is
proportional to range-rate or velocity of the target object. We can
get the magnitude of range-rate ṙ by capturing the I(t) signal with
a storage oscilloscope and then computing the Fast Fourier Trans-
form (FFT).

By using the I-component of the Doppler data, it is possible
to estimate the target velocity by sampling the outputs with an
oscilloscope and applying FFT. However, if we use the I-channel
data only, we cannot determine the direction of movement with-
out ambiguity. By using the Quadrature component (Q ) of dual
channel radar we can combine I and Q into a complex signal,
F (t) = I(t) + i Q (t), where Q -channel data is the 90 degree phase
shifted version of the I-channel data. Now application of FFT to the
complex signal allows us to get rid of the twin peaks. In our exper-
iment we capture I-channel and assign zero to the Q -channel. In
the rest of this section we briefly describe how to use ramp pulses
for computing range and velocity based on the above discussion.

The Doppler radar that we use has an electronic tuning input
with frequency band 24 to 24.3 GHz. To cover the frequency band
quickly we use ramp voltages as voltage tune input which gener-
ates a continuous sweep from low to high frequency. This type of
sweep is known as chirp signal. The transmitted signal is propa-
gated to the target object from radar focused using horn antenna.
The transmitted signal is reflected and propagated back to the re-
ceiver. We assume that the transmitter and receiver are co-located
and synchronized. So the signal received by the radar is the replica
of transmitted signal with a round trip propagation delay �t to the
target object. We can express the received signal during a chirp as
follows,

xr(t) = σ cos
[

A(t) + Φ(t)
]
, (8)

where A(t) and Φ(t) can be expressed as,
A(t) = 2Π f0t + Π( f1 − f2)

T
t2, (9)

Φ(t) = −2Π�t f0 + Π( f1 − f0)

T
(�t)2

− 2Π( f1 − f0)

T
(�t)t. (10)

We have derived the in-phase (I) output expression in Eq. (7).
Eqs. (6) show how we can express the received signal as a sum-
mation of two terms. Using the same derivation procedure we can
get the received signal as the summation of two terms in case of
chirp signal pulses as,

Fmix(t) = σ

2
cos

[
2A(t) + Φ(t)

] + σ

2
cosΦ(t). (11)

Putting the values of A(t) and Φ(t) from Eqs. (9) and (10) respec-
tively, we get a new expression for Eq. (11). The former term in
Eq. (11) is a chirp having minimum frequency 4Π f0 and the lat-
ter term is a cosine oscillation of frequency 2Π( f1− f0)

T (�t)t . As the
transmitted pulse is narrowband that means f0 � ( f1 − f0), we
can discard the first term using a low-pass filter from signal repre-
sented by Eq. (11). The in-phase (I) signal can be expressed only
with the second term, I(t) = σ

2 cosΦ(t). Now we substitute the
value of Φ(t) from Eq. (10) in the above mentioned second term
to obtain the relation between cosine signal and range of the tar-
get object. In Eq. (10) we discard terms containing f0 as it is large
compared to the Doppler frequency and as we have used low-pass
filter for getting the I-channel signal. Therefore, the I-channel sig-
nal can be expressed as,

I(t) = σ

2
cos

[
4Π f0r0

c
+ 4Π( f1 − f0)r

cT
t

]
. (12)

Similarly, we can get the Q output as,

Q (t) = −σ

2
sin

[
4Π f0r0

c
+ 4Π( f1 − f0)r

cT
t

]
. (13)

Finally, we discuss about computing range and velocity using mul-
tiple chirp pulses which in our case are ramp pulses. If we assume
that the target is moving with a constant velocity and we express
the motion as

r(ξ) = r0 + ṙξ, (14)

where r0 is the range of the object at time instant zero, ṙ is range-
rate or velocity of the target object and ξ is called slow time. The
time at which each successive pulse is transmitted from the radar
is known as slow time and fast time is the typical time taken by
the signal propagation. If we substitute the value of r from Eq. (14)
into Eqs. (12) and (13), we get the following two new equations:

I(t, ξ) = σ

2
cos

([
4Π f0

c
+ 4Π( f1 − f0)

cT
t

]
(r0 + ṙξ)

)
, (15)

and

Q (t, ξ) = −σ

2
sin

([
4Π f0

c
+ 4Π( f1 − f0)

cT
t

]
(r0 + ṙξ)

)
. (16)

If we sample I and Q we get functions of fast time t and slow
time ξ . Therefore, I and Q are two-dimensional functions. I and
Q vary in fast time t with frequency 2r0( f1− f0)

cT which is propor-
tional to the target range. I and Q also vary with the slow time
with frequency 2ṙ f0

c , which is proportional to the target velocity or
range-rate. Now we can perform a two-dimensional FFT on the an-
alytical signal F (t, ξ) = I(t, ξ) + i Q (t, ξ) and scale the graph axes
properly to get an ambiguity function that determines the target
range and velocity correctly.
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Fig. 3. Wave propagation from a point source through a medium (source [8]).

2.4. Relation between material refractive index and reflectivity of
microwave signal

We use a model developed for Through-the-Wall Imaging (TWI)
in THz range [7,8]. The model offers the reflectivity of plain elec-
tromagnetic wave from different types of material surfaces in THz
frequency range. Our proposed integrated radar mote includes a
Ka-band Doppler radar. Therefore, we extend the existing reflectiv-
ity model to incorporate Doppler shift and relevant frequency band
in our experimental radar. In this section we explain the existing
model while our modified model will be discussed in later section.

For the existing model [7,8], we consider reflecting materials to
be non-conducting for simplicity. Since the materials are assumed
to be non-conducting, they have no conductivity and constant per-
mittivity. Therefore, the refractive index is constant and real-valued
for a specific material type. Reflectivity of a radar signal depends
on some factors and material property is one of those important
factors. The reflectivity model equation and transfer function of
the reflecting medium are obtained from planar expansion of the
Green’s functions by employing spherical coordinates [8]. Consider
that the wave propagates into the medium with an index of re-
fraction (nm). The source of the signal is located at r0 = −z0 ẑ and
coordinates are shown in Fig. 3.

The wave equation with source s(r, t) is given as follows:

∇2 E − n2

c2

∂2 E

∂t2
= s(r, t). (17)

Here, E is the electric field intensity, n is the refractive index, c is
the speed of light, s(r, t) is the source at time t and location r. Now
we express the source terms of angular frequency (ω) as follows,

s(r, t) = 1

2π

∞∫
−∞

S(r,ω)eiωt dω. (18)

Here, S(r,ω) is the source angular frequency. Next we use the
identity between angular frequency and oscillation frequency as
follows ω = 2π v and dω = 2π dv . Based on the solution of the
plane wave equation, we get a time independent wave equation.
Substituting the source at point r0 = −z0 ẑ and using Green’s func-
tion we get the following equation,(∇2 + k2n2(z)

)
g(r, r0) = δ(r + r0) = δ(x)δ(y)δ(z + z0). (19)

Here wave number is k = 2π/λ and λ is the wavelength in free
space. The refractive index of the system is,

n(z) =
{

1 for z < 0,

n for 0 � z � L, (20)

1 for L < z.
From Fig. 3 we observe that the refractive index is 1 as the
medium between the point source and the reflective object is air
and that is shown in first condition of Eq. (20). Similarly n(z) is
equal to the refractive index of the medium when the wave prop-
agates inside the reflective object and finally the refractive index
is 1 when the signal reaches in air passing through the medium.
Some portion of the wave passes through the object and some por-
tion is reflected back to the source. We are concerned about the
reflected portion, so the first two conditions of Eq. (20) are rele-
vant for our system. The frequency domain solution for E is given
as,

E(r, v) =
∫

g(r, r0)S(r, v)d3r0 (21)

where g(r, r0) is the Green’s function in the spatial domain. The
time domain solution of E is computed doing the inverse Fourier
transform of Eq. (21). Due to the assumption that the materi-
als are non-conductive, the electromagnetic wave can propagate
the medium with little damping [8]. As we have put the source
at r0 = −z0 ẑ along the ẑ direction, Eq. (19) can be converted in
Fourier domain, and using the wave number definition we can get
the homogeneous wave equation. The solution of the homogeneous
wave equation can be expressed as a sum of two terms: right go-
ing wave or wave transmitted through the medium and left going
wave or wave reflected back to the source. The solutions of the
wave equations in each region must satisfy the boundary condi-
tions, which state that the wave and derivative must be continuous
at all boundaries. Then we can compute the coefficients of each
component wave. If the refractive index obeys the three conditions
mentioned in Eq. (20), we can get the solution for the coefficient
of the Green’s function. Using the solutions of the coefficient of
the Green’s function the reflection and transmission amplitudes
can be expressed in terms of incident wave, reflected wave and
wave transmitted through medium.

A few algebraic simplifications of Eq. (21) and solutions of the
coefficient of the Green’s function yield the reflectance or reflec-
tivity coefficient

R = (N − Nm) + (Nm − N)ei2L
√

Nm

√
Nm + √

N
2 − √

Nm − √
N

2
ei2L

√
Nm

(22)

where,

√
Nm =

√
n2

mk2 − (2π vx)2 − (2π v y)2, (23)

and

√
N =

√
k2 − (2π vx)2 − (2π v y)2. (24)

Here, nm is the refractive index of the reflecting material, L is the
thickness of the reflecting material, k is the wave number and k =
2π f /c, c is the speed of light, vx = 1/λx and v y = 1/λy , and λ

is the wavelength of the electromagnetic signal. 1/λ is known as
wave number in electromagnetic radiation. Here vx and v y are x-
axis and y-axis components of the wavenumber. Now using the
spherical coordinate representation we obtain, 2π vx = k sin θ cos θ ,
2π v y = k sin θ cos θ , and 2π v y = k cos θ and putting these values
in Eqs. (23) and (24) we get,

√
Nm = k

√
n2

m − sin2 θ, (25)

√
N = k

√
1 − sin2 θ = k cos θ. (26)

Now inserting the above results in Eq. (22) we obtain the reflectiv-
ity as follows [8],
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Fig. 4. Schematic diagram for integration of Ka-band Doppler radar and TelosB wireless sensor platform.
R(θ) = (1 − n2
m) + (n2

m − 1)ei2kL
√

n2
m−sin2 θ

(√
n2

m − sin2 θ + cos θ
)2 − (√

n2
m − sin2 θ − cos θ

)2
ei2kL

√
n2

m−sin2 θ

.

(27)

If we consider the incident wave angle θ = 0, then we obtain:

R = (1 − n2
m) + (n2

m − 1)ei2knm L

(nm + 1)2 − (nm − 1)2ei2knm L
. (28)

3. Design and methods

In this section we start describing the design and implementa-
tion of our proposed integrated radar–mote sensor system. Next, a
modified version of the reflectivity model is proposed.

3.1. Design and implementation of integrated sensor systems

This section describes our integrated sensor system. Commer-
cially available wireless sensor mote platforms are often equipped
with a range of built-in passive sensors such as light, tempera-
ture, vibration etc. Standard mote platforms also support the ex-
tension of sensor modalities by allowing specific plug-in sensor
circuit boards using the standard expansion ports of the mote.
For example, WiEye and SBT80 built by EasySen are two stan-
dard sensor circuit boards which can work with TelosB through
its expansion ports [18]. Our miniature Doppler radar has an out-
put pin that produces analog output signal. We connect the output
pin of the miniature Doppler radar to the analog expansion input
pin of TelosB in our integrated autonomous sensor suite. Using the
built-in analog-to-digital converter (ADC) in the microcontroller
(MSP430) of TelosB mote, we sample the analog radar output. We
modify the user program to allow the sampling of the analog sig-
nal at different rates using adjustable program parameters.

The ADC core converts the analog input to a 12 bit digital repre-
sentation and stores the results in conversion memory. We can use
two reference voltage levels V R+ (maximum) and V R− (minimum),
which are selectable by programming. The formula of converting
analog signals to digital is represented in the following equation,

NADC = 4096 ∗ V in − V R−
V R+ − V R−

. (29)

The first step is the hardware level integration of the Doppler radar
and wireless mote. Fig. 4 shows the schematic diagram of the in-
tegrated radar–mote sensor system.
The next step is the software-level integration. We replace the
data capturing task from manual processing to autonomous record-
ing at the TelosB mote using hardware level design. This step
requires connecting analog radar output as analog input of the al-
ready available ADC of the TelosB and sampling the analog signal
using the ADC12 with the help of a user program stored in the
mote. We have a base station TelosB mote connected to a worksta-
tion via USB port. A user program is loaded into the base station
mote to manage the wireless connection between the sensing mote
and the workstation. We can trigger the sensing mote with an
ACTIVATE signal from the workstation to the sensing mote via base
station.

Our user program defines and configures the components and
modules required for the desired operation of digitizing an analog
signal and sending it to a base station wireless mote. The digitized
data is stored in internal flash buffer. The wireless control module
sends the data as small packets. The host computer through the
base station mote can store the sensed data from a remote radar
sensor mote.

3.2. Reflectivity model of microwave signals adopted to incorporate
Doppler shifts

The reflectivity model discussed in an earlier section de-
scribes the reflectivity of plane wave from different types of non-
conducting surface [7,8]. This section discusses our modifications
to the plane wave reflectivity model to incorporate Doppler prin-
ciple. Adding Doppler shift to the plane wave does not change the
amplitude of the original signal. The plane wave model in Eq. (28)
can be re-written using Doppler shift as follows [8],

R = (1 − n2
m) + (n2

m − 1)eiωnm L

(nm + 1)2 − (nm − 1)2eiωnm L
. (30)

Here, ω = 4π f /c, c is the speed of light, f is the frequency of
the plane wave signal, nm is the refractive index of the reflecting
material and L is the thickness of the reflecting material. The two
outputs of the radar (Q and I) can be expressed as,

F (t) = I(t) + i Q (t). (31)

The I-channel radar output can be expressed as follows,

I = σ
cos[4π f0r/c], (32)
2
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Fig. 5. Reflected Doppler radar signal from non-conducting materials.
where f0 is the carrier frequency, σ is a constant which corre-
sponds to the target radar cross section (RCS) and r(t) = r0 + ṙt .
Note r0 is a range at instant zero and ṙ is the rate at which the
object is changing its range, range-rate or velocity of the object.
The Q -channel signal or Q (t) can be expressed similarly as,

Q = σ

2
sin[4π f0r/c]. (33)

Substituting Eqs. (32) and (33) into Eq. (31) and using well-known
identity, eix = cos x + sin x, we can write F (t) as,

F (t) = σ

2
e

i4π f0r
c , (34)

and finally,

F (t) = σ

2
eiωr . (35)

Now we are ready to derive an approximation for the reflec-
tivity index to include the Doppler shift. Based on Eqs. (30), (34),
(35), and ignoring the Doppler effect within the non-conducting
material, we arrive at the following expression for the reflectivity,

R = (1 − n2
m) + (n2

m − 1)ei[4 π
c ( f0r0+ f0nL+( f1− f0)/T ṙt)]

(nm + 1)2 − (nm − 1)2ei[4 π
c ( f0r0+ f0nL+( f1− f0)/T ṙt)] . (36)

Eq. (36) is our final approximate reflectivity model of differ-
ent non-conducting materials considering Doppler effect between
radar and the material.

4. Experimental results

In this section we describe the experimental results of the re-
flectivity of non-conducting materials based on the modified re-
flectivity model. We design experiments to test the capability of
the newly built system and to validate the result of the simu-
lations. We process the data with simple signal processing tech-
niques to compute the range velocity of the targets. We classify
different types of non-conducting materials exploiting extracted
features from the Doppler data.
4.1. Simulation results on reflectivity for selected non-conducting
materials

The reflective model derived in Eq. (36) assumes the reflec-
tive materials are non-conducting and homogeneous. Accordingly,
we choose several non-conducting materials for reflectivity simula-
tion. The example materials in our simulation are wood, paper and
glass. The refractive indices of the materials depend on the fre-
quency with which it is measured [8]. However, constraining the
frequency range, the refractive index is constant with good accu-
racy for any material. For simplicity, we vary the index of refraction
for the three materials in our experiment while keeping the fre-
quency range the same as in our Doppler radar. Therefore, the sim-
ulated signal will represent the reflectivity of Doppler signals from
those material surfaces. Typical refractive indexes of wood, com-
monly used glass and paper are 1.41, 1.51, and 1.73, respectively
[7,8]. Fig. 6 shows the simulated reflectivity of Doppler radar sig-
nal using Eq. (36) for wood, glass, and paper, respectively. We show
five pulses of the reflected signal for each case. The y-axis shows
the amplitude of reflection and the x-axis indicates the number
of data points per signal pulse (time). Fig. 5 confirms that our re-
flectivity model correctly obtains increased reflectivity for objects
with higher refractive indices. The amplitude of reflection increases
with the increase of the refractive index of the non-conducting
materials, assuming that all other factors are constant or vary in-
significantly.

Since we add the Doppler shift to our reflectivity model, the
simulated signal shows the range and velocity of the target ma-
terial along with reflectivity. Fig. 6 shows the plots of velocity vs.
range of the simulated signal for wood reflector as an example.
Note that the Doppler shift is not related to the amplitude of the
reflected signal. Hence, we obtain the same plot for all three mate-
rials in our experiment. We perform Fast Fourier Transforms (FFT)
of the simulated signal and obtain corresponding range and veloc-
ity plot. The distance between the moving target and the source
of the signal is 0.5 m and 1 m as shown in Figs. 6(a) and 6(b) re-
spectively and the corresponding velocity of the moving reflector
is 0.5 m/s and 1 m/s for respective cases. Since the Doppler shift
expression is the same for all the reflectors, we show the corre-
sponding plots for one example reflector (wood) in this example.
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Fig. 6. Range-rate (velocity) vs. range plot of simulated signal, (a) the velocity of the target (ṙ) was 0.5 m/s and distance (r0) between the reflector (wood) and the source of
signal was 0.5 m, (b) ṙ = 1 m/s and r0 = 1 m.

Fig. 7. (a) Ramp signal (peak to peak voltage 200 mV) captured and reconstructed using integrated wireless mote with sampling frequency of 200 KHz, (b) an example radar
signal captured and reconstructed successfully by the integrated radar–mote system.
4.2. Testing the integrated radar mote sensor with sample data
collection

In this section we present the test data collection using our
integrated radar–mote system. We perform a series of baseline
experiments with the initial integrated system and collect some
known standard signals such as a ramp wave with certain ampli-
tude and frequency. Fig. 7(a) shows a ramp wave captured and
reconstructed by the integrated radar–mote system. We gener-
ate an analog signal with voltage output similar to the Doppler
radar using the standard lab signal generator. The signal gener-
ator output is connected to the mote as ADC input instead of
the radar output in this particular case. We captured the same
ramp wave signal with a storage oscilloscope which was previ-
ously used to capture radar output. Comparing the ramp signal
captured with radar mote with that of the storage oscilloscope,
we find that radar mote can capture the analog ramp signal
with almost the same accuracy and precision as storage oscillo-
scope.

Finally, we test our integrated radar–mote system to collect
radar output by connecting the radar output to the wireless mote.
The stored data contains sampled digital value of the analog radar
signal. Fig. 7(b) shows an example radar signal captured and re-
constructed successfully by the integrated radar–mote system with
significant accuracy. The reconstructed radar signal is slightly dis-
torted as shown in Fig. 7(b). The observed slight distortions may
be due to the unshielded amplifier circuit and connecting wires
used to bridge the radar and sensor mote. However, this slight dis-
tortion does not have any significant impact on further processing
as shown in subsequent results.
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Fig. 8. Flow diagram showing the experiment process.

Fig. 9. The experimental setup of our autonomous distributed sensor including radar mote and SBT80 sensor motes [18].
4.3. Experimental setup and data collection

In this section we discuss the experimental setup and differ-
ent experimental scenarios using our integrated radar–mote sys-
tem. The goal of the experiment is to explore the capability of the
integrated radar–mote sensor system and validate the simulation
observation about reflectivity of non-conducting materials. We use
a toy train with different reflective materials mounted on it as our
target. The train is run by battery power and moves round an oval
shaped track. We emulate different events by making changes to
the toy train configurations. Fig. 8 shows an overview of how the
radar–mote system works during experiments and Fig. 9 shows the
experimental sensor network setup with a toy train on the track.

We integrated SBT80 sensor board [18] with TelosB motes and
use the visual light sensor on SBT80 to detect presence of a mov-
ing target and activate the radar–mote system to collect the data.
Details of the experiments and results of velocity measurements
and target classification are given in [10,11]. In the present work
we focus on describing the results concerning material composi-
tion identification.

We use the raw radar signals for classifying the different ma-
terials the reflector is made of with the help of simple signal pro-
cessing and classification algorithm. For testing, we create three
different types of reflection profiles with three non-conducting
materials such as wood, glass and paper (same materials used in
simulation) of the train. We place these different reflection mate-
rials at the front of the train such that the directed beam of radar
signal is reflected back from these reflection plates. The data is col-
lected for the same configuration with different speeds of the toy
train and different distances between the radar mote and toy train.
Table 2 summarizes different test cases for our toy train applica-
tion.

4.3.1. Experimental results on reflectivity for selected non-conducting
materials

The simulated signal reflected from three non-conducting ma-
terials is discussed in Section 4.1. In this section, we collect the
corresponding experimental radar signal reflected back from rect-
angular reflective plate made of the same non-conducting materi-
als respectively. Figs. 10(a), (b) and (c) show experimental signals
reflected back from reflector made of wood, glass, and paper re-
spectively. The experimental signals in Figs. 10(a), (b) and (c) do
not match exactly to the simulated signals in Fig. 5 in respect to
magnitude values. However, they follow the same pattern of in-
crease in reflection magnitude with increase of refractive indices
of the non-conducting materials. Since the simulated model is a
simplified case of reflectivity computation, the difference between
simulation and experiment is expected. Furthermore, the reflec-
tivity signal may be modulated by line frequency and hence the
saw-tooth type pattern is visible in Fig. 10. The overall results
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Table 2
Different test configuration for toy train experiment.

Configuration Type Description

Reflector Wood, glass, paper The front of the train holds a rectangular plate that works as a reflector. The reflector is made of the non-
conducting materials (wood, glass, paper) in different configurations.

Range 0.8 m, 1.2 m, 1.6 m The distance between the moving target and the static radar is 0.8 m, 1.2 m, 1.6 m for two different configurations.

Velocity (position of speed
control dial of the toy train)

100, 80, 60 The toy train has a dial to control the speed of the train. The value in previous column indicates the position of
the dial such as 100, 80, 60.

Fig. 10. Experimental signal reflected back from (a) wood reflector, (b) glass reflector and (c) paper reflector.
show that the reflectivity of the materials is an important factor
which influences how much energy reflects back to source from a
materials surface.

4.3.2. Experimental results on reflectivity for selected non-conducting
materials

One of the goals of this work is to explore whether we can
use material properties, specifically refractive index of materials,
to classify the materials types of the targets. For simplicity and
limited scope of this work, we obtain a modified model for non-
conducting materials as shown in Eq. (36). We collect reflected
radar signals from three non-conducting materials such as wood,
glass and paper with our integrated radar–mote autonomous sys-
tem. The pseudo-spectrum of the signal, computed with MUSIC
algorithm, is selected as the feature to classify the non-conducting
material types of the target. The MUSIC technique has been widely
used in telecommunication, biomedical, signal processing and elec-
tromagnetic disciplines to solve problems such as spectrum and
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Table 3
Result of classification with WEKA machine learning tool.

Class Number of runs Classifier True
positive
rate

False
positive
rate

ROC
area

Kappa
statistic

Accuracy
(%)

Wood, glass, paper 540 Random Forest 0.74 0.13 0.89 0.60 73.82
LMT: Logistic Model Trees (Decision tree based) 0.77 0.12 0.90 0.66 77.04
Functional Tree (Decision tree based on logistic regression) 0.77 012 0.84 0.65 76.67
Support Vector Machine (SVM) 0.76 0.12 0.82 0.63 75.56
Multilayer Perceptron 0.80 0.10 0.92 0.70 79.81
signal estimation, the direction of arrival [19–23]. The MUSIC algo-
rithm estimates the pseudo-spectrum of a signal using Schmidt’s
eigenspace analysis method [24]. The MUSIC algorithm produces a
spectral estimate of a signal performing the eigenvector–eigenvalue
decomposition of the autocorrelation matrix of the signal [25].

We provide a brief description of the classification process here.
Each instance of the radar signal is treated as one run and we col-
lect 20 instances for all three non-conducting reflecting materials
for each configuration. We take the raw signal for each instance
and perform preprocessing. The MUSIC technique is then applied
to the signal to obtain feature vector for that instance following the
steps shown in Fig. 11. Then we classify the instances with WEKA
machine learning toolbox with some standard classifiers available
in WEKA. Table 3 shows the result of classification using different
types of classifier for the three non-conducting materials.

The classifiers used from WEKA toolbox are random forest,
logistic model tree (LMT), functional tree, Multilayer Perceptron
(MLP) and support vector machine (SVM). Table 3 shows that Mul-
tilayer Perceptron classifier provides the highest percentage of ac-
curacy when individually compared to the other classifiers. The
classifier accuracy is between 75–80% for most of the classifiers
which is reasonably good considering the very small variations in
classes. The area under ROC overall, which is another test of accu-
racy, is also in the range of 0.8 to 0.9 in scale of 1.0 for most of
the cases. The Kappa statistic is a measure of the stability for ma-
chine learning applications. If the Kappa statistic value is greater
than 0.6, it indicates substantial agreement for the classification
result [26]. For most of the classifiers in Table 3 the Kappa statistic
is above 0.6. Therefore, the classification results are substantially
stable.

4.4. Comparison of our integrated radar–mote system to standalone
systems

The aim of our work is to integrate a powerful active sensor
such as Doppler radar into a wireless sensor mote, which achieves
all the capabilities of the standalone radar systems. Table 4 shows
a summary comparison between an integrated radar–mote system
versus standalone radar system.

4.5. Comparison of our integrated radar–mote system with other
similar systems and potential applications

Integrated radar–mote system is emerging as an effective tech-
nology for detection, classification, surveillance and tracking appli-
cations [2,10,11,13,27]. Recently the Samraksh Company launched
a new product which is a modification of BumbleBee known as
GuardBee [28]. GuardBee integrates BumbleBee pulsed Doppler
Radar (PDR) with an ultra-low power FPGA board which eliminates
the need of an additional wireless mote previously used for sig-
nal processing. The Pulsed Doppler radar used in BumbleBee has
a center frequency of 5.8 GHz [13]. Furthermore, although Bum-
bleBee has the capability to compute range, velocity and direction
of moving target, computation of range involves complex off line
signal post processing [13].
Fig. 11. Methods of feature extraction and classification.

Our prototype integrated radar sensor mote, on the other hand,
is implemented using low-cost commercial-off-the-shelf compo-
nents [10]. We use a K -band Doppler radar with a center fre-
quency of 24.125 GHz with electronic tuning system capable of
varying the frequency within a bandwidth of 0.3 GHz. Therefore,
our system is amenable to applications operating in higher fre-
quency band such as in K -band. Our prototype system has a ca-
pability to compute the range, velocity and direction of moving
target by simply applying Fast Fourier Transform to captured raw
data with very little preprocessing.
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Table 4
Comparison between standalone radar and integrated radar–mote system.

Features Standalone Doppler
radar

Integrated
radar–mote
system

Description

Automated data collection No Yes The standalone radar system usually needs human intervention to store data in the storage
system. Some current digital oscilloscopes may have the software control over the data
gathering. However, triggering the digital scope requires complex circuitry and system to
operate. Whereas in the integrated radar–mote system data gathering system is automated
with the help of the wireless network framework of the wireless motes.

Event driven No Yes The data capturing is triggered when the integrated radar mote gets a triggering signal from a
sentry node. In our case the WiEye sensor mote sends the triggering signal when it detects
the presence of any object within its field of view. Similar ways using the other sensors
available in the wireless node different triggering events can be designed. Whereas the data
capturing is not event driven in case of the standalone radar system.

Large-scale data collection Not suitable Suitable In case of the standalone system requires human intervention and the storage oscilloscope
also takes at least 5 seconds to store the data at any instant. Therefore, the standalone system
is not suitable for large scale data collection where one needs to collect many instances of a
repeatable event.

Portability and mobility Not easily portable
and not suitable for
remote operation

Yes Need large supporting systems like oscilloscope, signal generator and power supply. Therefore,
the standalone system cannot be deployed at any place due to specific requirements of the
supporting equipments. Whereas the storage oscilloscope is replaced with the tiny wireless
mote in the integrated system and the motes are run by battery power. The work is going on
to replace the signal generator and power source equipments with the on-board signal
generator and power source circuit. That would make the integrated system fully portable
and mobile.

Remote operation Not suitable Suitable The integrated system can be triggered by the sentry nodes from a distant place through
wireless communication. Similarly the base station node which works as bridge between the
integrated system and a workstation can also be placed in distant place from the integrated
radar mote.

Power requirement High Low The wireless mote which replaces the storage oscilloscope is run by 3 battery power. Whereas
the scope requires high power source to operate
In addition, fusion of PDR passive infrared (PIR) sensor enables
our system to automatically trigger when a moving object enters in
the field of view. Consequently, the data collection process is fully
autonomous that makes our system suitable to use in real life re-
peatable experiments without any human intervention. The sample
experiments in this work demonstrate that this radar–mote system
can be used for effective surveillance and tracking of moving ob-
jects (human, animal, or vehicles) as well as non-cooperative target
similar to comparable wireless radar sensor networks reported in
the literature [27,29,30]. However, unlike similar systems [2,12,13,
27,29], our prototype system offers additional capability of discern-
ing target materials as demonstrated in this work. This capability
may offer additional insights about target types in hostile environ-
ment.

5. Conclusion and future work

Our contribution in this work can be divided into two parts.
The first contribution is a successful design and implementation
of an integrated autonomous radar–mote system. The second con-
tribution involves experimentation and simulation of reflectivity of
non-conducting materials. We have modified an analytical reflec-
tivity model [7,8] to incorporate Doppler shift. We obtain simu-
lated Doppler signal for various non-conducting materials. Finally,
we experimentally verify and classify the non-conducting material
targets using real data collected with our newly designed radar–
mote system.

We incorporate active radar sensor into the wireless sensor
network. We successfully design and implement an autonomous
radar–mote system integrating a Ka-band Doppler radar to TelosB
wireless mote. Our integrated radar–mote system can success-
fully replicate the data collection capabilities of a standalone
radar system. We experimentally collect reflected radar signals
from the same three non-conducting materials using our newly
implemented integrated radar–mote system. The radar–mote au-
tonomously captures large amounts of signal for different con-
figurations. Our experimental radar–mote reflection data validates
our simulated data for the selected non-conducting materials. Fi-
nally, we successfully classify three non-conducting materials using
the collected reflectivity signals. The additional benefits of our in-
tegrated radar–mote system include increased automation, large-
scale data collection, portability, remote operation and reduced
power requirement.

The second part of the work proposes a modified reflectivity
model [7,8] to obtain reflected signals from non-conducting mate-
rial surfaces. The original model offers the reflectivity of a plane
electromagnetic wave from non-conducting materials. We modify
the model to incorporate Doppler shift into the reflectivity model
such that the signal offers range-velocity information of the target
in addition to reflectivity of different target materials. We simu-
late reflectivity of three non-conducting materials such as wood,
glass and paper using our modified reflectivity model. The sim-
ulated signal is processed with FFT to compute range and veloc-
ity from Doppler shift. The simulation results confirm that the
Doppler shift is successfully incorporated into the analytical reflec-
tivity model.

In this work, we assume Doppler effect is negligible while sig-
nal travels within the non-conducting material for simplicity. In
future, more accurate derivation for reflection and Doppler effects
inside the material needs to be considered. This will allow one to
study material specific reflection and its interaction with Doppler
property within a material in addition to free space Doppler phe-
nomena studied in this work. Furthermore, there is still oppor-
tunity to improve the system. The heavy laboratory equipments
used in current setup pose inconveniences such as lack of porta-
bility and mobility. In a new generation of radar–mote integration,
we replaced the standard laboratory signal generator and power
supply equipment with equivalent on-board circuit implementa-
tion [31]. Such design is expected to be less affected by line
frequency as noted in this work. Implementing the whole exper-
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imental radar–mote system in a single IC package would be the
final target. This work can be extended to explore object detection
for different types of conducting as well as non-conducting ma-
terials in complex outdoor environment. One of the directions of
improvement is to integrate the reflectivity of the conducting ma-
terials into our model. Successful integration of conducting mate-
rials into the model will make the model complete and applicable
for a range of practically relevant scenarios.
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