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ABSTRACT
When a sensor network is deployed to detect objects penetrat-
ing a protected region, it is not necessary to have every point
in the deployment region covered by a sensor. It is enough
if the penetrating objects are detected at some point in their
trajectory. If a sensor network guarantees that every pene-
trating object will be detected by at least � distinct sensors
before it crosses the barrier of wireless sensors, we say the
network provides � -barrier coverage. In this paper, we develop
theoretical foundations for � -barrier coverage. We propose
efficient algorithms using which one can quickly determine,
after deploying the sensors, whether the deployment region
is � -barrier covered. Next, we establish the optimal deploy-
ment pattern to achieve � -barrier coverage when deploying
sensors deterministically. Finally, we consider barrier cov-
erage with high probability when sensors are deployed ran-
domly. The major challenge, when dealing with probabilistic
barrier coverage, is to derive critical conditions using which
one can compute the minimum number of sensors needed to
ensure barrier coverage with high probability. Deriving criti-
cal conditions for � -barrier coverage is, however, still an open
problem. We derive critical conditions for a weaker notion of
barrier coverage, called weak � -barrier coverage.

Keywords
Wireless sensor networks, barrier coverage, network topol-
ogy.

1. INTRODUCTION
The US-Mexico border stretch for 2000 miles (Figure 1), much
of it barely patrolled and protected only by ditches or barbed
wire at best, while every day numerous aliens attempt cross
the border illegally. Recently, a senior US Congressman in-
troduced a bill to construct a fence along the entire length of�
A preliminary version of this paper appeared in the Eleventh
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Figure 1: The United States-Mexico border.

the US-Mexico border [3]. The proposed fence would be sur-
rounded by a border buffer zone to the north, equipped with
sensors to detect and respond to all illegal immigration (or in-
trusion) with extremely high probability. A prototype of such
sensor networks was recently deployed over a one-kilometer-
long region to demonstrate the feasibility of intrusion detec-
tion with wireless sensors [1].

When the goal of a sensor network is to detect penetrating
objects crossing a barrier, it is not necessary to detect an ob-
ject at every point in its trajectory. It is enough if the object
is detected at some point in its trajectory. A sensor network
providing this kind of coverage acts as a barrier for the pen-
etrating objects. More precisely, a sensor network deployed
over a belt region is said to provide � -barrier coverage, if every
path that crosses the width of the belt completely, is covered
by at least � distinct sensors1. This is in contrast to the other
type of coverage, where every point in the deployment region
is covered by at least � distinct sensors, referred to as � -full
coverage in this paper.

By their very nature, the deployments for barrier coverage are
expected to be in long (sometimes very long, as in interna-
tional borders) thin belts (a region bounded by two parallel
curves) as opposed to in regular structures such as squares
and disks [11]. Further, since the goal is only to detect in-
truders before they have crossed the border as opposed to
detecting them at every point in their trajectory, using the re-
sults on full coverage is often an overkill. Therefore, the tradi-
tional work on coverage [9, 12, 25] are not directly applicable

1A path is said to be � -covered if it intersects with the sensing
disks of at least � distinct sensors. This is in contrast with the
notion when every point in the path is covered by at least �
distinct sensors.
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to barrier coverage. A natural question then is how to deter-
mine the minimum number of sensors needed to ensure� -barrier coverage in a given belt region? And, how to de-
termine, after deploying sensors in a region, whether the
region is indeed � -barrier covered?

In this paper, we establish equivalence conditions between � -
barrier coverage and the existence of � node-disjoint paths
between two vertices in a graph. With such a condition, effi-
cient (global) algorithms already existing to test the existence
of � node-disjoint paths can now be used to test whether or
not a given region is � -barrier covered by a network of wire-
less sensors. We also establish that it is not possible to locally
come up with a yes/no answer to the question of whether the
given region is � -barrier covered. This should be contrasted
with the fact that for full � -coverage, it is possible to locally
come up with a no answer to the question of whether the
given region is fully � -covered [9].

Next, we prove that when deploying sensors deterministically,
the optimal deployment pattern to achieve � -barrier cover-
age is to deploy � rows of sensors on the shortest path across
the length of the belt region such that consecutive sensors’
sensing disks abut each other. This should be contrasted with
the fact that optimal deployment pattern to achieve full � -
coverage for general values of � are not known yet.

Finally, we consider barrier coverage with high probability.
The major challenge in this case is deriving critical conditions,
using which one can determine the minimum number of sen-
sors needed to ensure � -barrier coverage with high probabil-
ity, when deploying sensors randomly. This problem is ex-
tremely hard and is still open. We contribute toward a com-
plete solution to this problem in two respects.

First we provide details in Section 3.2 on why standard per-
colation theory results do not directly yield critical conditions
for � -barrier coverage in long belt regions.

Then, we derive critical condition for a weaker notion of bar-
rier coverage, called weak � -barrier coverage. Informally, a
belt region is said to be weakly � -barrier covered by a sen-
sor network if given a crossing path, all paths congruent to it
are � -covered with high probability. This, however, does not
ensure that all crossing paths are � -covered with high prob-
ability. Therefore, even if a belt region is weakly � -barrier
covered, there may exist some crossing paths that are not� -covered. The concept of weak barrier coverage with high
probability is useful if moving objects are known to be wide
(as in vehicles) or if the moving objects are known to move in
groups (as in groups of intruders). In both of these cases, mul-
tiple congruent paths will be used simultaneously for move-
ment, and with high probability, the object(s) will be detected
because most of the congruent paths being used for move-
ment will be � -covered, if the region is weakly � -barrier cov-
ered with high probability.

Our critical conditions can be used to design efficient sleep-
wakeup schemes for a sensor network providing continuous
weak � -barrier coverage. Because sensors can not locally de-
termine whether or not the region is � -barrier covered (a re-
sult established in this paper), it is not possible to design local
and deterministic sleep/wakeup algorithms to increase net-

work lifetime and still maintain barrier coverage of the region
with an arbitrary sensor network topology. However, it is pos-
sible to design a purely local, but randomized sleep/wakeup
algorithm to increase the network lifetime by a given factor,
while guaranteeing that the region is weakly � -barrier cov-
ered with high probability at all times.

Randomized Independent Sleeping (RIS) scheme proposed
in [12] is one such scheme. In this algorithm, time is di-
vided in intervals and in every interval each sensor is active
with probability ��� independently of every other sensor. With
this scheme, the network will last �	��
���
 -times the lifetime of
individual sensors. If the number of sensors to be deployed is
chosen using our critical conditions for weak � -barrier cover-
age, then the RIS scheme will increase the network lifetime by
the desired factor, �	��
���
�� while guaranteeing the continuous
weak � -barrier coverage of the region with high probability.

The rest of the paper is organized as follows. In Section 2, we
formally define the network model, key assumptions and the
conditions for � -barrier coverage. In Section 3, we describe
key contributions of this paper and discuss some related work.
In Section 4, we prove equivalence conditions that lead to ef-
ficient algorithms for determining whether a given belt region
is � -barrier covered. In Section 5, we establish the optimal de-
ployment pattern for achieving � -barrier coverage when de-
ploying sensors deterministically. In Section 6, we derive crit-
ical conditions for weak � -barrier coverage with high prob-
ability in an arbitrary belt region. In Section 7, we provide
some results from simulation. Section 8 concludes the paper.

2. THE NETWORK MODEL
We divide our network model discussion in two parts. First,
we discuss the basic model and assumptions needed through-
out the paper in Section 2.1. Then, in Section 2.2, we discuss
the model and assumptions needed specifically for the discus-
sion of probabilistic barrier coverage. Some definitions and
assumptions, which are needed in the proofs of results, are
not discussed in this section. They appear where needed.

2.1 Basic Model and Assumptions
DEFINITION 2.1. [ ������
 ] Sensing region of a sensor located

at point � is denoted by ������
�� When the sensing region is a disk
of radius ��� we denote it by ��������
��
We note that the sensing region need not be a disk for our re-
sults of Section 4 and Section 5 to hold, where we discuss al-
gorithms for � -barrier coverage and optimal deployment pat-
tern, respectively. We assume ������
 to be a disk of radius � for
the sake of simplicity in these sections.

DEFINITION 2.2. [Belt Region] A region bounded by two
long curves is called a belt region.

The border between United States and Mexico shown in Fig-
ure 1 is a belt region, and so are the regions shown in Fig-
ures 2, 3, 5, and 7. For a more precise definition of a belt
region, see Definitions 2.9, and 2.11

DEFINITION 2.3. [Intruder] An intruder is any person or
object that is subject to detection by the sensor network as it
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crosses the barrier.

DEFINITION 2.4. [ � -coverage of a Path] A path (i.e. line
or curve) � is said to be � -covered if ����������
 �!#" for at least� active sensors � . We denote this event by $&%'�(��
�� (In contrast,
a path is said to be “fully” � -covered if every point in it is
covered by at least � sensors. This paper is concerned only with� -coverage.)

Thus, if an intruder moves along a � -covered path, it will be
detected by at least � sensors.

DEFINITION 2.5. [Crossing line (or Crossing path)] A
line segment (or path) in a belt region is said to be a crossing
line (or crossing path) if it crosses the complete width of the
region. A crossing line is orthogonal if its length equals the
belt’s width.

Figure 3 illustrates orthogonal crossing lines.

DEFINITION 2.6. [ � -barrier Coverage] A belt region with
a sensor network deployed over it is said to be � -barrier cov-
ered if and only if all crossing paths through the belt are � -
covered by the sensor network.

2.2 Model and Assumptions for Probabilistic
Barrier Coverage

Model of Deployment. We consider a long, narrow region,
referred to as a belt, where sensors are deployed randomly
with Poisson distribution of rate ) . As proved in [8, Page 39]
for a region of unit area, as ) becomes larger and larger, Pois-
son distribution of sensors with rate ) is equivalent to random
uniform distribution of ) sensors, where each sensor has an
equal likelihood of being at any location within the deployed
region, independently of the other sensors. Therefore, all the
results we prove for Poisson distribution also hold for uniform
distribution.

DEFINITION 2.7. [RIS scheme [12]] Time is divided in
regular intervals and in each interval, each sensor is active with
a probability of ��� independently of all the other sensors.

DEFINITION 2.8. [Sensor network *+��),���-
 ] A sensor net-
work where sensors are distributed with Poisson distribution of
rate ) and each sensor has a sensing radius of � is denoted by*.��)/���-
 . If each sensor in a sensor network *+��),����
 sleeps ac-
cording to the RIS scheme [12] so that each sensor is active with
probability � , then the sensor network is denoted by *.��)/�(�0�	�-
��

DEFINITION 2.9. [Belt of dimension 132.�	��
�1�
 ] A rectan-
gular region is said to be a belt of dimension 1425�	��
-1�
 , if it
has length 1 and width ��
-1 .
Figure 3 illustrates such a belt.

Notice that even when 17698:� the area of the belt region
remains 1. We use this model because it results in simpler
expressions.

DEFINITION 2.10. [ ;����0�=<'
 ] Let the Euclidean distance be-
tween points � and < be denoted by ;������	<'
�� If � is a line or a
path, then ;������=��
 !?> @BA � ;������	<'
DC-< E��(� .

DEFINITION 2.11. [Belt of dimension �GF�HI��F�JK�I�	�I
-1�
=
 ] Two
curves � H and � J are uniformly separated with separation �I
-1
if ;��(�(HI�=LM
 ! ;���N��=�OJI
 ! ��
�1 for all points NPEQ�GH and all
points L in � J . A region bounded by two curves � H and � J , which
are uniformly separated with separation �I
-1 and are of lengthsF0H and F�J respectively, is referred to as a belt of dimensions�GF H ��F J �R�	��
-1�
=
 , in which case ��
�1 is referred to as the belt’s
width and F�H and F�J its lengths.

A belt as defined in Definition 2.11 occurs between railroad
tracks. Such a belt also occurs if sensors are dropped from
a moving vehicle. Figure 2 illustrates an example of such a
belt with dimensions �GS�T0� H ��SKTU� J �=� H'V � J 
 , which is the region
between the circumference of two concentric circles of radii� H and � J .

r
1

r
2

Figure 2: A belt region with dimension �GSKTU�WHR��S�T0�KJ��=��H V� J 
�� which is the region between the circumference of two
concentric circles with radii �WH and �KJK�

ASSUMPTION 2.1. [Small Width] We assume that the width
of the belt, ��
-1 , is in the same order of magnitude as the sensing
radius, �K� i.e. XWY.��Z[C�Y]\^�-
-1_\`Za�
In practice, most of the barrier coverage deployments are ex-
pected to satisfy Assumption 2.1. Notice that with this as-
sumption, as 1b6c8:�K� and �I
-1-� both approach 0.

ASSUMPTION 2.2. We also assume that )d6e8 as 1b6e8:�
With assumptions 2.1 and 2.2, it follows that the parameters� and ) are actually functions of 1 and should have been de-
noted as �M�G1�
 and )/�G1�
�� However, we write ),�0� in place of)/�G1�
����M�G1�
 to improve the clarity of presentation. The same
convention applies to any other parameter that is potentially
a function of 1-� Also, if some parameter is a function of ),�
then it is also a function of 1 because ) is a function of 1-�
We use Pr[ f ] to denote the probability that event f occurs;
and Pr[ f ], the probability that f does not occur. We use g,h idj
to denote the expected value of a random variable ik�
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DEFINITION 2.12. [With high probability (whp)] We say
that event fl��)0
 occurs with high probability (whp) ifm @n>o�p3q Pr[ fr��)0
 ] ! ���

DEFINITION 2.13. [ � -barrier coverage whp] Let s_t be a
belt region of dimension 1u2v�	��
-1�
 or �GF�HR��F�J��I�	��
�1K
=
 with a sen-
sor network *+��),�=�-
 deployed over it. Let w be a crossing path
through sxtK� Then, sxt is said to be � -barrier covered whp if
and only if m @n>t p3q.y{z}|n~ w�C�$ % ��w�
�� ! �-� (1)

We use the concept of congruency in the next definition. Two
curves in the Euclidean plane are said to be congruent iff one
can be transformed into another by an isometry [5]. An isom-
etry is a (Euclidean) distance preserving transformation. Of
all possible isometric transformations, we only consider trans-
lation and rotation.

Note that by the definition of congruency and by the defi-
nition of an orthogonal crossing line (Definition 2.5), all or-
thogonal crossing lines in a belt region (whether of dimen-
sion 1r2+�	��
-1�
 or of dimension �GF0HR��F�J��I�	�I
-1�
=
 ) are congruent
to each other.

Figure 3: A belt region showing some crossing paths that
are congruent (also parallel in this case) to the width of
the belt. Note that the total number of crossing paths that
are congruent to the width is uncountable.

DEFINITION 2.14. [ � -barrier coverage modulo � ] Let s
be a belt region with a sensor network deployed over it. Let� be a crossing path through s and let �b�(��
 denote the set of
all crossing paths congruent to � . s is said to be � -barrier
covered modulo � if and only if

Pr[~ w�Ek�u�(��
DC�$ % ��w�
 ] ! �-�
i.e. every path in �u�(��
 is � -covered by the sensor network.

Note that congruent crossing paths in a rectangular belt will
be parallel to each other as in Figure 3. But, if the belt region
is non-rectangular, then congruent paths need not be parallel.
For example, orthogonal crossing paths in a belt region such
as the one shown in Figure 2 will all be congruent to each
other, but not mutually parallel.

DEFINITION 2.15. [Weak � -barrier coverage whp] Lets t be a belt region of dimension 1�2��	��
�1K
 or �GF H ��F J �I�	�I
-1�
=


with a sensor network *+��),����
 deployed over it. Let � be a cross-
ing path through s t � Then, s t is said to be weakly � -barrier
covered whp if and only if2~ ��C m @B>t p3q+yDz	| sxt4���{������� z�z �G� z����K� � z �=�v� � �K�M� � � � ! ��� (2)

To see why the notion of weak � -barrier coverage is weaker
than the notion of � -barrier coverage when considering cov-
erage with high probability, note that (1) is equivalent to the
following condition:m @B>t p3q+�,� h ~ ��C�s�t @B� ���G��� �=� @n� ��� �K¡ � � �I¢d> � ¢'£ m � �¤j ! �-�
And, m @n>t p3q Pr[ ~ w�C�$ % ��w�
 ] ! �D¥ m @B>t p3q Pr[ X'w/C $ % ��w�
 ] !?¦ �
but~ � C m @B>t prq Pr[ s t is � -barrier covered modulo � ] ! ��§ m @B>t prq Pr[ XWw�C $ % ��w}
 ] !?¦ �
3. SUMMARY OF CONTRIBUTIONS AND

RELATED WORK
3.1 Summary of Contributions
In this section, we summarize our main results. We divide
them in three categories:

Algorithms for � -barrier Coverage:

We establish the following three key results on the issue of
how to determine whether a given belt region is � -barrier cov-
ered with a sensor network:

1) We establish that it is not possible to locally come up with
a “yes” or a “no” answer to the question of whether a given
belt region is � -barrier covered. This is in contrast to the re-
sults known for the case of full coverage, where it is possible
to locally come up with a “no” answer to the analogous ques-
tion [9].

2) We prove (in Theorem 4.1) that the condition for an open
belt region (such as the one shown in Figure 3) to be � -barrier
covered can be reduced to problem of determining whether
there exist � node-disjoint paths between a pair of vertices
in a graph. One can now use existing algorithms for testing
the existence of � node-disjoint paths between two vertices to
globally test � -barrier coverage.

2Although this definition is intuitively clear, it may be math-
ematically ambiguous. For rectangular belts sxt , this issue
can be addressed as follows. Let sxt be the belt regionh ¦ ��1 jD2�h ¦ �I��
�1 jG� In particular, srH is the sxt with 1 ! � . Let�{H be the set of all crossing paths in srHI� For each crossing
path ��E��{HI� define �¤t ! � ��N � 1-�=L � �I
-1�
{C¨��N��	LM
©Ed�(��� which is
a crossing path in sxt naturally corresponding to � . Now, (2)
can be more precisely stated as~ ��Ed�{H�C m @B>t p3q+�,� h s�t @B� ���G��� �=� @n� ��� �K¡ � � �I¢v> � ¢'£ m � �¤t�j ! ���
For non-rectangular belts s t , the issue can be addressed sim-
ilarly by introducing a natural one-one mapping between s H
(the s t with 1 ! � ) and s t .
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The problem of designing an efficient algorithm to determine
whether a sensor network deployed over a closed belt region
(such as the one shown in Figure 8) provides � -barrier cover-
age or not, is an interesting open problem. In Section 4.3, we
discuss why this problem is a difficult one.

Optimal Configuration for Deterministic Deployment:

For � -barrier coverage, we prove in Theorem 5.1 that the opti-
mal configuration for achieving � -barrier coverage in an open
belt region is to deploy � rows of sensors on the shortest path
across the length of the region, where each line has consecu-
tive sensors’ sensing disks abut each other. This is in contrast
to the fact that the analogous problem of determining an op-
timal configuration for achieving full � -coverage for general
values of � is still an open problem.

Critical Conditions for Weak � -barrier Coverage for Ran-
domized Deployments:

If in a Poisson distributed sensor network with rate ),� each
sensor sleeps according to the RIS sleep/wakeup scheme [12]
so that it is active with probability � at any given time, then
the distribution of the active sensors follows Poisson distri-
bution of rate )W� [20]. Assume that sensors are Poisson dis-
tributed with rate )W� over a belt region. We establish a critical
condition for the belt region to be weakly � -barrier covered
whp. Such a condition will allow us to easily compute the
number of sensors necessary to ensure weak � -barrier cover-
age of the region with high probability.

DEFINITION 3.1. [ ª,��)W��
 ] We use ª/��)W��
 to denote an arbi-
trary, slowly and monotonically increasing function that goes to
infinity, where ª,��)'��
 !:« � m �-¬ m ��¬ ��)'��
=
��

DEFINITION 3.2. We define­ �G1K
 ! SK)W���-
'�G1 m ��¬ ��)W��
=
 (3)® % ��)0
 ! ª,��)'��
0¯?�(� V ��
 m ��¬ m �-¬ ��)W��
m ��¬ ��)'��
 (4)

The following two results establish a critical condition for
weak � -barrier coverage in a belt region:

1) Let *.��)/�(�0�=��
 be a Poisson distributed sensor network over
a belt of dimension �GF0HR��F�JK�R�	��
-1�
=
 . We prove (in Theorem 6.5)
that if ­ �G1�
©°±�©¯ ® % ��)0

for sufficiently large 1 , then the belt region is weakly � -barrier
covered whp (as 1b6e8 ).

2) Again, let *+��),�����	��
 be a Poisson distributed sensor net-
work over a belt of dimension �GF�HI��F�JK�I�	��
�1�
=
 . We prove (in
Theorem 6.4) that if ­ �G1K
©\a� V ® J-��)0

then whp there exists an orthogonal crossing line in the region
that is not 1-covered as 1�6²8?� This implies that in order for
a belt region to be weakly barrier-covered whp, it is necessary
that ­ �G1�
D³a� V ® J ��)0
��

Notice that since ­ �G1�
 t p3qV 6´� in both of the results above, the
critical value of the function ­ �G1�
 is 1 for the case of weak � -
barrier coverage of a belt region of dimension �GF�HR��F�JK�I�	�I
-1�
=
��
Roughly speaking, the critical condition indicates that in or-
der to ensure barrier coverage whp, there must be at leastm �-¬ ��)W��
 active sensors in each orthogonal crossing line’s � -
neighborhood.

3.2 Related Work
Most of the existing work on coverage focus on full-coverage
[9, 12, 25] and that too in regular regions rather than in a
thin belt region. The proofs and the conditions developed for
full-coverage do not readily carry over to the case of barrier
coverage in thin belt regions.

The concept of barrier coverage first appeared in [6] in the
context of robotic sensors. Simulations were performed in [10]
to find the optimal number of sensors to be deployed to achieve
barrier coverage. To the best of our knowledge, ours is the
first work to address the theoretical foundation for determin-
ing the minimum number of sensors to be deployed (using
critical conditions) to achieve barrier coverage in belt regions.

Full-coverage in one dimension and barrier-coverage in a square
region were addressed in [14]. It is pointed out in this work
that percolation theory results can be used to establish criti-
cal conditions for the existence of a giant cluster of overlap-
ping sensing disks. It was concluded that beyond the critical
threshold, no crossing path will exist because a giant cluster
of overlapping sensing disks exists. However, as pointed out
earlier, deployments for barrier coverage are expected to be
in thin belt regions as opposed to square regions and the per-
colation theory results developed for square regions are not
directly applicable to thin belt regions. For instance, the cross-
ing probability (which, in a sense is equivalent to strong bar-
rier coverage) in rectangular regions approaches 0 at the per-
colation threshold, as the ratio of width to length approaches
0 (which is the case in our 1�2k�	��
�1�
 model with 1b6e8 ). For
details, we refer the reader to [13]. Also, notice that for bar-
rier coverage even in a square region, all one needs is a set
of sensors whose sensing disks overlap and cover the entire
length of the region. It does not need to be a giant compo-
nent, as is demanded by the percolation theory.

The work on maximal exposure paths in [15, 16, 22] focus
on devising algorithms to find a least covered crossing path
through the region between a given set of initial and final
points. The problems addressed in these work are comple-
mentary to our algorithm for determining whether a belt re-
gion is � -barrier covered. Once it is found out using our al-
gorithm that the region is not � -barrier covered, the Maximal
Breach Path algorithm [15] or its localized version [22] can
be executed for those sets of initial and final points that the
intruders are most likely to follow in the protected region,
to find the least covered paths. It may be too prohibitive to
use Maximal Breach Path algorithms to determine whether a
region is � -barrier covered. We also note that the work on
maximal exposure paths do not address the issue of deriving
critical conditions, although they do observe the existence of
critical thresholds in their experiments.

Another work related to ours is [7]. This work addresses the
issue of intruder tracking in regular regions such as a square.
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The focus of this work is the following problem — Given a
value of ��� what is the minimum number of sensors needed so
that if the nodes are independently and uniformly distributed,
the average length of an uncovered path traveled by an in-
truder that starts at a random (uniformly chosen) location
within the field, will be less than ��µ In other words, the ques-
tion addressed in this work is — Under what condition does
the largest uncovered region have a diameter of less than a
given value of ��µ Although this is an important problem for
tracking applications, it does not address the problem of � -
barrier coverage. For instance, a region may be � -barrier cov-
ered, and yet the largest hole may be as long as the length of
the entire region (for example, see Figure 5).

As can be seen from the discussion of some related work
above, a lot of interesting work have come close to the prob-
lem of barrier coverage, but none have addressed the issue
of deriving critical conditions for barrier coverage in a belt re-
gion, which is a more realistic model for sensor deployments
for barrier coverage than a square or a disk. Also, no existing
work, to the best of our knowledge, has addressed the issue
of developing efficient algorithms for determining whether a
given belt region is � -barrier covered.

4. ALGORITHMS FOR ¶ -BARRIER COV-
ERAGE

Looking at the sensor deployment in Figure 5, one can easily
conclude that the region is 3-barrier covered. However, if we
look at the sensor deployment in Figure 4, it would be harder
to see for what value of � this region is � -barrier covered.
Therefore, it is desirable to have an efficient algorithm for
determining whether or not a given belt region is � -barrier
covered.

We first establish in Section 4.1 that it is not possible to de-
termine locally if a given region is not � -barrier covered. We
then derive an equivalence condition, using which one can de-
sign efficient global algorithms to determine whether a given
region is � -barrier covered. Divide belt regions into two cat-
egories — open belts and closed belts. We show that the
problem of determining whether an open belt region is � -
barrier covered, can be reduced to the problem of determin-
ing whether two nodes in a graph are � -connected (in Sec-
tion 4.2). This reduction enables us to use existing graph
theoretic algorithms for � node-disjoint paths to determine if
an open belt region is � -barrier covered, or not.

The problem of determining whether a closed belt region is� -barrier covered is an interesting open problem. We discuss
in Section 4.3 why this problem is both hard and interesting.
Finally, in Section 4.4, we discuss how the condition we estab-
lish in Section 4.2 is different from a similar sounding result
developed in [23].

Finally, although we model the sensing region ������
 as a disk� � ����
�� for simplicity, the results of this section will continue
to hold even if ������
 is not a disk, including the case that it is
directional.

4.1 Non-locality of � -barrier Coverage
We first define what we mean by local algorithms. This defi-
nition is based on a model proposed in [19].

Figure 4: What is the largest value of � such that this
region � -barrier covered?

a

b

c

d

e

f

Figure 5: The above region is 3-barrier covered since
there does not exist any path that crosses the complete
width of the region without being detected by at least
three sensors.

DEFINITION 4.1. [Local Algorithms] Assume that each
computation step takes one unit of time and so does every mes-
sage to get from one node to its directly connected neighbors.
With this model, an algorithm is called local if its computation
time is ·4�	�I
�� in terms of the number of nodes ) in the system.

In [9], it was established that sensors can locally determine
if a given region is not fully � -covered. (If any point on the
perimeter of a sensor’s sensing disk is covered by less than �
sensors, then this sensor can locally conclude that the region
is not fully � -covered.) However, in the case of � -barrier cov-
erage, individual nodes can neither locally say “yes” nor “no”
to the question of whether a given region is � -barrier covered.
To see this, consider sensors deployed as in Figure 5. Assume
that the communication range of each sensor is exactly twice
its sensing range so that the sensors whose sensing disks over-
lap can communicate with each other.

The region is not 1-barrier covered iff there is at least one in-
active sensor in each of the three rows. No sensor can locally
determine whether at least one sensor in each of the three
rows is inactive. Therefore, it is not possible to locally de-
termine whether the belt region is not 1-barrier covered, in
general.

As a result of this non-locality property, one cannot possibly
design a deterministic local algorithm that allows sensors to
locally decide whether to go to sleep or remain active, and
still guarantees that the belt region is continuously � -barrier
covered.

6



4.2 Open Belt Regions
Corresponding to a sensor network deployed in a belt region,
we derive a coverage graph ¸&¹ !»ºG¼ �=½l¾�� where ¼ is the set
of all sensor locations plus two virtual nodes � and < (see
Figure 6). The set of edges ½ is derived as follows: Each
pair of sensors whose sensing disks overlap are connected by
an edge. Additionally, the sensors whose sensing disks inter-
sect with the left boundary are connected to node � and the
sensors whose sensing disks intersect with the right boundary
are connected to node <�� The resulting coverage graph for the
sensor network in Figure 5 is shown in Figure 6.

a

b

c

d

e

f

u v

Figure 6: Coverage graph ¸&¹ of the sensor network rep-
resented by Figure 5.

The following theorem establishes that the conditions for a
region to be � -barrier covered and the conditions for the cor-
responding coverage graph to have � -connectivity between
nodes � and < are equivalent.

ASSUMPTION 4.1. Let s be the belt region in consideration.
If two sensing disks ��H and �4J have overlap, then �(��HR¿©�4JI
��©s
is a connected sub-region in s �
To see the rationale for Assumption 4.1, observe in Figure 7,
that if we construct a coverage graph corresponding to the
sensor network deployed here, the two virtual nodes � and <
will be 1-connected. However, the sensor represented here,
does not provide 1-barrier coverage.

Figure 7: The coverage graph of this sensor network will
have 1-connectivity between the two virtual nodes, but
the sensor network does not provide 1-barrier coverage.

THEOREM 4.1. An open belt region s that satisfies Assump-
tion 4.1 is � -barrier covered iff � and < are � -connected in the
corresponding coverage graph, ¸&¹l�

PROOF. Let us first prove the “if” part. Assume that � and< are � -connected in the corresponding coverage graph ¸&¹l�
Then, by definition, there exist � node-disjoint paths in ¸&¹
that connect � to < . These paths define � disjoint sets of sen-
sors, each of which provides 1-barrier coverage for the belt.
This is because sensing disks of neighboring sensors overlap
with each other and, in addition, the sensor next to � (or to< ) has its sensing disk intersecting the belt’s left (or right)
boundary. Therefore, the sensing disks of the sensors in each
set cover the entire length of the belt and thereby provide 1-
barrier coverage. This last claim relies on Assumption 4.1.
Since there are � such sets (of sensors) which are mutually
disjoint, the belt region is � -covered.

Now, we prove the “only if” part. Assume that � and < are not� -connected in ¸&¹ . By Menger’s Theorem [24, page 167],
there exist �(� V ��
 vertices in ¼ V � ����<M� , removal of which
will make � and < disconnected in ¸&¹ . Let us denote one
such set of �(� V ��
 vertices by À . Let the coverage subgraph
induced by the vertex set ¼ V À be called ¸&¹_Á(�
Since � and < are disconnected in ¸&¹ Á , there exists a crossing
path Â in the belt region that is not covered by any sensor
(corresponding to any vertex) in ¼ V À . This path, Â , may be
covered by some or all of the sensors in À . Since Ã ÀÄÃ ! � V � ,Â is covered by at most � V � sensors in ¼ . The existence of
such a Â means that the belt region is not � -barrier covered
— it is at most �(� V ��
 -barrier covered.

Algorithm for an Open Belt:

After proving the equivalence between � -barrier coverage and� -connectivity between � and <�� we can now use the algo-
rithms developed for determining whether two vertices in a
given graph are � -connected to determine whether a given
belt region is � -barrier covered. According to [21], the best
known-algorithm for testing whether � and < are � -connected
has ·4�(� J Ã ¼ Ã 
 complexity.

4.3 Closed Belt Regions
The problem of designing an efficient algorithm to determine
whether a sensor network deployed over a closed belt re-
gion provides � -barrier coverage or not, is an interesting open
problem. In this section, we discuss why this problem is a dif-
ficult one. More specifically, we describe how it is different
from that for open belts.

It may appear that cutting a closed belt region open will make
it similar to an open belt. However, it does not work. For
instance, there is no crossing path, equivalent to the crossing
path shown in Figure 8, in an open belt. To further discuss the
differences between the closed belt and open belt, we need
some definitions:

DEFINITION 4.2. [Graph Embedding] An embedding of a
graph ¹ on a surface Å is a one-to-one map

® C�¹Æ6ÇÅ such
that vertices of ¹ map to points in Å and the edges of ¹ map to
simple disjoint curves in Å that connect their boundary points.
A graph ¹ is called embeddable on a surface Å if there exists
such a one-to-one map

® �
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Figure 8: A crossing path in a closed belt that has no
equivalent crossing path in an open region.

DEFINITION 4.3. [Disjoint Essential Cycles] Let ¹ be a
graph embedded on some surface. A cycle ¸ of ¹ is called es-
sential if ¸ is non-contractible on the surface. A set of essential
cycles are disjoint if they do not share a vertex in ¹l�
In Figure 9, w�È V w=H V w�J V wGÉ V w�È is a cycle, but not essential; the
edges of this cycle can be “contracted.” The cycle that starts
at w=HI� goes through w�È and comes back to w�H through Ê�H after
looping the entire belt is an essential cycle; this cycle can not
be contracted on the belt’s surface. In Figure 9, there exist
two disjoint essential cycles. We refer the reader to [17] for
more details on essential cycles and to [18] for more details
on graphs embedded on surfaces.

i
1


i
2


j
1


j
2


i
3


i
4


Figure 9: Coverage graph over a closed belt region.

Disjoint essential cycles are a close equivalent of node disjoint
paths in an open belt region. There are two major differ-
ences between them, though — 1.) there is no equivalent of
Menger’s Theorem, which was instrumental in proving The-
orem 4.1, for disjoint essential cycles, except for the graphs
embeddable on a compact surface [21], and 2.) there is no
known polynomial-time algorithm for determining the exis-
tence of � -node disjoint essential cycles for general graphs.

In the conference version of this paper, we had proposed an
equivalence condition for closed regions (Theorem 4.2 in the
conference version) similar to Theorem 4.1, in terms of dis-
joint essential cycles. As discussed in the previous paragraph,
it will work only for those sensor networks whose coverage
graphs can be embedded on a compact surface, but not for
arbitrary sensor networks deployed over closed regions.

Finally, we observe that in real-applications, polynomial-time
algorithm developed in Section 4.2 can be used for closed
belt regions also. This is because in most sensor network de-
ployments in closed belt regions, there will be one or more
openings for authorized access. This opening will be guarded

via other mechanisms (such as human guards or video cam-
eras). Such an opening will make the region of deployment
open, from the perspective of sensor network deployment for
barrier coverage, although it is closed in principle.

4.4 Difference Between Our Results and Other
Known Results

The equivalence condition we established in Theorems 4.1 is
different from the result on the relation between full-coverage
and connectivity established in Theorem 3 of [23] in several
ways:

1. Goal: The goal of Theorems 4.1 is to derive a condition
that can be used to determine whether a belt region is� -barrier covered. The goal of Theorem 3 in [23] is to
establish conditions such that � -full coverage of a region
will imply � -connectivity among all the sensors if the
communication range is at least twice the sensing range.

2. Result: The equivalence condition in Theorem 4.1 im-
plies that if one uses a communication radius at least
twice the sensing radius and if the region is � -barrier
covered, then there will exist � node-disjoint paths be-
tween the two shorter sides of the belt region. This
is not the same condition as the existence of � node-
disjoint paths between every pair of sensor nodes as is
implied by Theorem 3 in [23].

3. Proofs: The proof of Theorem 4.1 is very different than
that of Theorem 3 in [23].

5. OPTIMAL CONFIGURATION FOR DE-
TERMINISTIC DEPLOYMENTS

It is well known that the optimal configuration for achieving
full 1-coverage is to deploy sensors on a triangular lattice [4].
However, to the best of our knowledge, the problem of deter-
mining an optimal configuration for achieving full � -coverage
for general values of � is still an open problem.

For � -barrier coverage, we prove in the following theorem
that the optimal configuration for achieving � -barrier cover-
age in an open belt region is to deploy � rows of sensors along
a shortest path (line or curve) across the length of the region,
where each path has consecutive sensors’ sensing disks abut-
ting each other. For instance, for a rectangular belt region
such as the one shown in Figure 3, the shortest path across
the length of the region is a line parallel to its length. So, the
optimal configuration to achieve � -barrier coverage in this re-
gion is to deploy � rows of sensors parallel to the length such
that consecutive sensors are separated by a distance of SK�K�

THEOREM 5.1. Consider an open belt region. Let 1 denote
the length of the shortest path across the length of the region.
Then, the number of sensors necessary and sufficient to achieve� -barrier coverage in this region is � �bË 1�
-S���Ì�� assuming sensors
are deployed to satisfy Assumption 4.1.

PROOF. The sufficient part of the theorem is obvious. For
the necessary part, we proceed as follows. By Theorem 4.1,
for the region to be � -barrier covered, it is necessary that the
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two shorter sides of the belt region are connected via � node-
disjoint paths in the coverage graph. Each such path entails
at least Ë 1K
�SK�KÌ sensors. Since the � paths are node-disjoint, a
total of � ��Ë 1�
-SK�KÌ sensors at least are needed.

6. CRITICAL CONDITIONS FOR WEAK ¶ -
BARRIER COVERAGE

In this section, we develop critical conditions for weak � -
barrier coverage in a belt region. We first establish a key
lemma (Lemma 6.1) in Section 6.1 to move from the con-
tinuous domain to the discrete domain. Then, we establish
critical conditions for the � -coverage of orthogonal crossing
lines in a rectangular 1�2Í�	�I
-1�
 belt region (sufficient condi-
tion for coverage whp in Section 6.2 and sufficient condition
for non-coverage whp in Section 6.3). We then extend these
results when the region of deployment is a belt of dimension�GF H ��F J �I�	��
�1�
=
 in Section 6.4 (Theorem 6.3 and Theorem 6.4).
Finally, we extend the results to the � -coverage of any set of
congruent crossing paths in a belt of dimension �GF�HR��F�J��I�	�I
-1�
=

in Section 6.5 (Theorem 6.5). Theorems 6.5 and 6.4 together
provide critical conditions for weak � -barrier coverage in an
arbitrary belt when the model of deployment is Poisson or
random uniform.

6.1 Finite Set of Orthogonal Crossing Lines
Let �/Î for any positive integer Ï be the set of Ï regularly-
spaced orthogonal crossing lines in an 1l25�	�I
-1�
 belt region,
as illustrated in Figure 10, with any two consecutive lines a
distance of 1K
IÏ apart. The �/Î in the following lemma refers to
this set.

Figure 10: An 1r2+�	��
�1K
 belt region. The dotted lines rep-
resent virtual crossing lines. The number of such lines isÏ and the separation between neighboring lines is Ð ! 1K
IÏ��

LEMMA 6.1. All orthogonal crossing lines in an 1�2��	��
�1�
 belt
region are � -covered by a sensor network with a sensing radius
of � if all orthogonal crossing lines in ��Î are � -covered by the
same network with a sensing radius of ��Á ! � V 1�
W�GS�ÏR
 .

PROOF. Assume that all lines in �/Î are � -covered by a sen-
sor network with a sensing radius of �-Á ! � V 1�
'�GSIÏI
 . Letw be an arbitrary orthogonal crossing line in the region, and
let w Á be an orthogonal crossing line in � Î that is closest tow . Obviously, w and w Á (which are parallel to each other, if not
identical) are apart by a distance no more than 1�
�S�Ï . By as-
sumption, w Á is � -covered and, thus, intersects at least � active
sensors’ sensing discs � ��Ñ ����
 . Let � be any of such sensors,
and let Ò be any point in the intersection of wGÁ and � ��Ñ ����
 .
Note that ;������=ÒM
&ÓÔ� Á � Let < be the point on w that is closest
to Ò . Then, ;���Ò��}<'
{\`1�
'�GSIÏI
�� From triangle inequality,;������=<'
©\�;������	ÒM
U¯5;���Ò��}<'
{Ó^� Á ¯ 1SIÏ ! ���

Therefore, < is covered by � and so is line w . Since there are
at least � such sensors � , w is � -covered using a sensing radius
of � . This proves the lemma.

With this lemma, when wanting to show that all orthogonal
crossing lines in the protected region are � -covered by a sen-
sor network with a sensing radius of � , we will only have
to show that all orthogonal crossing lines in �/Î , with an ap-
propriate value of Ï and with a reduced sensing radius of� V 1K
W�GS�ÏR
 , are � -covered. This result also helps in simula-
tion because whenever we need to show that all orthogonal
crossing lines (uncountable) are covered using a sensing ra-
dius of ��� we will only need to show that all crossing lines in�,Î (finite) are covered using a sensing radius of � V 1K
W�GS�ÏR
��
6.2 Sufficient Condition for k-Coverage of Or-

thogonal Crossing Lines
In this section, we prove a sufficient condition for the cover-
age of all orthogonal crossing lines in a rectangular belt re-
gion. Note that orthogonal crossing lines in a rectangular belt
region are not only congruent, but also parallel to each other.

Let *+��),�����=�-
 be as defined in Definition 2.8, ­ �G1�
 be as de-
fined in (3), and ª,��)'��
 be as defined in Definition 3.1. LetÏ ! ��)W��
	ª,��)W��
�� (5)

And again, let �/Î be the set of Ï orthogonal crossing lines as
defined in Section 6.1.

The following lemma indicates a sufficient condition for all
crossing lines in � Î to be � -covered whp.

LEMMA 6.2. Let *.��)/�(�0�	�-
 be a Poisson distributed sensor
network over an 1¨2u�	��
-1�
 belt region. If ­ �G1�
 ! S�)W����
W�G1 m �-¬ ��)W��
=

satisfies ­ �G1�
 ! �Õ¯ ª,��)W��
�¯a�(� V �I
 m �-¬ m ��¬ ��)W��
m �-¬ ��)W��
 � (6)

for sufficiently large 1 , then all orthogonal crossing lines in � Î
are � -covered whp as 1b6e8 .

PROOF. Since the probability of a crossing line to be � -
covered partly depends on whether it is close to either of the
two vertical sides, we partition �/Î into two sets: Ö and Å . SetÖ contains all the inner crossing lines which are at least a dis-
tance of � away from either of the belt’s two vertical sides. SetÅ contains the remaining crossing lines, which are less than a
distance of � away from a side. We will follow the following
approach for both the subregions.

Let $ % ��w}
 denote the event that the crossing line w is � -covered.
For ×±E � Ö���Å�� , we will obtain a lower bound on Pr[ ØrÙ(Ú�Û3$_%'��w�
 ]
and show it to approach 1 as 1x6Ü8 . Let i % ��w�
 be a random
variable assuming a value of 1 if the crossing line w is not� -covered, and 0 otherwise. In other words, i % ��w�
 is an indi-

cator of the event $ % ��w�
�� Let i %KÝ Û ! i % �	��
�¯�i % �GS�
�¯±ÞRÞRÞ�¯i %'��Ã ×3Ã 
�� Now, g,h iß%U��w}
�j ! Pr[ $_%���w}
 ] � Further, since i %�Ý Û is a
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nonnegative integral valued random variable, Pr[ i %�Ý Û ³ ¦ ] \g�h i %KÝ Û j(� and therefore, we have

Pr[ Ø Ù(Ú�Û $ % ��w�
 ] ! Pr[ i %KÝ Û !?¦ ]! � V Pr[ i %�Ý Û ³ ¦ ]° � V g�h i %KÝ Û j(� (7)

By showing g,h i %KÝ Û j�6 ¦ , we will prove the � -coverage of all
crossing lines in ×u� whp.

We first apply the above approach to prove the � -coverage
of all orthogonal crossing lines in the interior, Ö�� Let Â�à'��w�

denote the probability that exactly Ê sensors cover crossing
line w . Since sensors are deployed with Poisson distribution,
for any line w�EdÖ�� we have

Â à ��w�
 !:� á'âkã V S�)W���1 äæå�ç J oIè �tÆé àÊMê ë � (8)

This is because sensors are distributed in the � -neighborhood
of the crossing line w=� whose area is SK�-
-1-� with a Poisson dis-
tribution of rate S�)W����
�1-� Using the definition of ­ from (3),
we can simplify (8) to the following, when Ê4³ ¦ :Â à ��w�
 ! ��)W��
�ì�í ã � ­ m �-¬ ��)W��
=
 àÊMê ä\ ��)W��
�ì�íK� ­ m �-¬ ��)W��
=
 à! ��)W��
 ì�í ��î/
 à � (9)

where î ! ­ m �-¬ ��)W��
�� (10)

Now, the event $ % ��w�
 occurs iff w is covered by less than �
sensors. Thus,

Pr[ $ % ��w�
 ] ! % ì Hïà�ðUñ Â à ��w�
D\ò��)W��
 ì�í % ì Hïà ð�ñ î à_ó ��)W��
 ì�í î % ì H (11)

and, therefore,

g�h i %KÝ ô j !öõ ô õï Ù ð H g,h i % ��w�
�j�\5Ï���)W��
 ì�í î % ì H � (12)

We claim that g,h iß%KÝ ô�j�6 ¦ as 1x6c8 . To verify this, take the
logarithm of both sides of (12) and simplify it using (5) and
(6) as follows:m �-¬ ��g�h i %�Ý ô�j�
D\ V ª,��)'��
U¯ m �-¬ �(ª,��)W��
=
�¯a�(� V �I
 m �-¬ � ­ 
�� (13)

Since V ª,��)W��
 dominates the other two terms,
m �-¬ ��g�h i %KÝ ô jO


goes to V 8 making g�h i % j to approach 0, as 1ß6Ç8:� Thus,
from (7), we conclude Pr[ Ø�Ù�Ú ô $ % ��w�
 ] 6÷� as 1b6e8 .

Next, we prove the � -coverage whp of all orthogonal crossing
lines in the side region, Å . Let Â à ��w�
 be as defined above.
Since the � -neighborhood of any orthogonal crossing line wDEÅ is at least �-
-1-� we obtain the following in place of (8)

Â à ��w�
D\ � á'â�ø V )W���1úùÍå4ç oIè �tÍé àÊMêûë � (14)

In place of (9), we obtainÂ à ��w�
D\±��)W��
MüMýþ ø î S©ù à � (15)

where î is as defined in (10); and in place of (11), we obtain

Pr[ $ % ��w�
 ] \ò��)W��
 üMýþ ø î S ù % ì H (16)

Since the total number of orthogonal crossing lines in Å isSK��ÏR
-1-� we obtain the following in place of (12):g�h i %KÝ ÿ jU\ S��KÏ1 ��)W��
�ì�í ø î S ù % ì H \�ª/��)W��
 ��)W��
�ì¨í�î % (17)

where notice that S��KÏR
-1 can be written as ­ m �-¬ ��)W��
	ª,��)W��
 us-
ing (5) and (3). Take the logarithm of both sides of (17) and
simplify it using (6) as follows:m �-¬ ��g,h i %�Ý ÿ jO
Ç\ m ��¬ �(ª,��)'��
=
 V m �-¬ ��)W��
 V ª/��)W��
¯_� m �-¬ � ­ 
U¯ m ��¬ m �-¬ ��)W��
�� (18)

Observe that the right hand side of (18) approaches V 8 , and
hence g�h i %�Ý ÿ j,6 ¦ , as 136 8?� Thus, from (7), we conclude
Pr[ Ø�Ù(Ú ÿ $_%���w}
 ] 6÷� as 1b6e8 . This completes the proof.

Now, let us consider the same sensors deployed on the long
belt, but with the original sensing radius of �K� We will now use
Lemma 6.2 together with Lemma 6.1 to establish a sufficient
condition for the � -coverage whp of all orthogonal crossing
lines in the protected region, in the following theorem.

THEOREM 6.1. Let *.��)/�(�0�	�-
 be a Poisson distributed sensor
network over an 1¨2u�	��
-1�
 belt region. If ­ �G1�
 ! S�)W����
W�G1 m �-¬ ��)W��
=

satisfies ­ �G1�
©°a�D¯ ª,��)W��
�¯a�(� V ��
 m �-¬ m ��¬ ��)'��
m �-¬ ��)W��
 (19)

for sufficiently large 1 , then all the orthogonal crossing lines in
the region are � -covered whp as 1�6²8?�

PROOF. First, assume that condition (19) is satisfied with
equality. Let �,Î be the set of orthogonal crossing lines intro-
duced in Section 6.1. Let ��Á ! � V 1�
W�GS�ÏR
 be a reduced sensing
radius; let ­ Á �G1�
 ! S�)W��� Á 
'�G1 m ��¬ ��)'��
=
 ; and Ï ! )W�Õª,��)'��
 as de-
fined in (5). It is easy to verify that­ Á �G1�
 ! SK)W�r��� V 1K
W�GS�ÏR
=
1 m ��¬ ��)'��
! ­ �G1�
 V S�
�ª,��)W��
m �-¬ ��)W��
! � V ª Á ��)W��
U¯a�(� V ��
 m �-¬ m ��¬ ��)'��
m �-¬ ��)W��
 � (20)

where ª�Á���)W��
 ! ª/��)W��
 V S-
�ª,��)W��
 . Note that ª�Á���)W��
 sharesª,��)W��
 ’s property of being asymptotically monotonically in-
creasing, approaching infinity, and in « � m ��¬ m �-¬ ��)W��
 . Applying
Lemma 6.2 now ensures the � -coverage whp of all crossing
lines in �,Î when the reduced sensing radius � Á is used; and,
applying Lemma 6.1 ensures the � -coverage whp of all cross-
ing lines in the protected region when the original sensing
radius � is used.

Now suppose the inequality in (19) holds. Then there exists
an � � \^� for which ­ � �G1�
 ! SK)W��� � 
W�G1 m �-¬ ��)W��
=
 satisfies­ � �G1K
 ! �©¯ ª/��)W��
�¯?�(� V ��
 m ��¬ m �-¬ ��)W��
m ��¬ ��)'��
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and so, by the first part of this proof, all the orthogonal cross-
ing lines in the region are � -covered whp using this smaller
sensing radius � � � All the crossing lines in the region are ev-
idently covered when the original, larger sensing radius � is
used.

6.3 Sufficient Condition for Non-coverage of
Orthogonal Crossing Lines

In this section, we prove a sufficient condition for the exis-
tence of an uncovered orthogonal crossing path in a rectan-
gular belt region.

If Â4�G1�
 denotes the probability that all the orthogonal cross-
ing lines in the protected region are � -covered by Poisson dis-
tributed sensors of rate )W��� in view of Theorem 6.1, a nec-
essary condition for � -coverage whp may take the following
form: If ­ �G1�
©Ó ® �G1�
 for sufficiently large 1 , then

m @B> t prq Â4�G1�
ÓÜ� . In the next theorem, we establish a condition under
which it is not just

m @n> t p3q Â4�G1�
xÓ � , but
m @B> t p3q Â4�G1�
 ! ¦ .

Such a result is stronger than a mere necessary condition
when we are dealing with probabilities. This is because if
the probability of the event of non-coverage is close to one
then we expect that if the condition for non-coverage is satis-
fied, then there will exist a non-covered orthogonal crossing
line, whp. Whereas, if we were to prove a necessary condition
for coverage, then all we could claim is that if the necessary
condition is not satisfied, then sometimes there may exist a
non-covered orthogonal crossing line, but not always.

In the following theorem and its proof, ­ �G1�
 and ª/��)W��
 , as well
as Ï and �/Î , are all the same as defined in Section 6.2.

THEOREM 6.2. Let *+��),�(���=�-
 be a Poisson distributed sensor
network over an 1¨2u�	��
�1�
 belt region. If ­ �G1�
 ! SK)W���-
'�G1 m ��¬ ��)'��
=

satisfies ­ �G1�
D\a� V ª,��)'��
0¯ m �-¬ m ��¬ ��)'��
m �-¬ ��)W��
 (21)

for sufficiently large 1 , then there exists a non- � -covered orthog-
onal crossing line in the region whp as 1b6e8:�

PROOF. First assume that the ”=” in condition (21) holds.
That is, ­ �G1�
 ! � V ª,��)'��
0¯ m �-¬ m ��¬ ��)'��
m �-¬ ��)W��
 (22)

Consider the set of interior crossing lines Ö � � Î as defined
in the proof of Lemma 6.2. We show that whp there exists a
non-1-covered crossing line in Ö .
For any crossing line wkEæÖ , let $l��w�
 denote the event thatw is 1-covered; and $r��w�
 , its negation. Also, let i Ù be the

indicator random variable of event $l��w�
 , i.e. i Ù = 1 if w is not
1-covered and 0, otherwise. Let i be the number of lines inÖ which are not 1-covered. Then, i ! i H ¯5i J ¯?ÞRÞRÞK¯5i�� ,
where � ! Ã Ö�Ã . We will show that iQ³ ¦ whp using Corollary
4.3.4 of [2], which states that whp i ³ ¦ ifg�h ikj,6e8 and � !?« ��g J h idjO
�� (23)

where g�h ivj denotes the expected value of i and� ! ï�	��
 Pr[ $l����

� $r��<'
 ] �
where ��� < means �±�! < and $l����
 and $r��<'
 are not inde-
pendent.

We first show g,h ikj�6ö8:� From the first equality of (9) and

the fact g�h i Ù j ! Pr[ $l��w�
 ] ! Â ñ ��w�
 , we obtaing�h i Ù j ! Pr[ $l��w�
 ] ! Â�ñ���w�
 ! ��)W��
 ì�í � (24)

and g,h ikj ! �ï Ù ð H g�h i Ù j ! �0��)'��
 ì�í � (25)

where � ! Ã Ö�Ã ! �	� V SK�-
-1�
�Ï�� (26)

Taking the logarithm of ����)W��
 ì¨í and simplifying it using (22)
and the relation Ï ! ��)W��
	ª,��)W��
 yieldsm �-¬ ç ����)W��
�ì�í é ! m �-¬ �	� V SK�-
-1�
U¯^ª,��)W��
�¯ m ��¬ m �-¬ ��)W��
¯ m ��¬ �(ª,��)'��
=
�� (27)

As 1�6²8 , the right hand side of (27) goes to infinity, thereby
forcing g�h idj to go to infinity.

Next, we show � !Ä« ��g J h idjO
 by obtaining an upper bound
on � and then showing the upper bound to be « ��g J h idjO
 . To

this end, we first obtain an upper bound on Pr[ $l��w�
�� $l�nÊ�
 ]:
Pr[ $r��w�
�� $l�nÊ�
 ] \ Pr[ $l��w�
 ] ! Â ñ ��w}
 ! ��)W��
�ì�í�� (28)

There are no more than SK��Ï J 
-1 pairs of w and Ê such that w��^Ê ,
for Ã Ö�Ã�\òÏ and, for any wbE Ö , at most SK��ÏI
�1 lines satisfy the
” � ” relation with w . Therefore,

� ! ï� Ù�� à���� � Ù Ý à Ú ô � Pr[ $l��w�
�� $r�nÊ�
 ] \ SK��Ï J1 ��)'��
�ì�íI� (29)

Using (25) and (29), we obtain an upper bound on �4
Ig�j J h i :�g J h idj \ S��M��)W��
 ì¨í1��	� V SK�-
-1�
 J ��)W��
 ì J í \ m ��¬ ��)W��
 ��)W��
 � í�ì H ��	� V SK�-
-1�
 J � (30)

In the last inequality, we have used �-
-1 ! ­ �G1�
 m �-¬ ��)W��
=
'��)W��
 ,
a relation that follows from (3) and the fact ­ �G1�
{\±� implied
by (22).

Taking the logarithm of the right hand side of (30) and sim-
plifying it using (22) yieldsV ª,��)W��
 V S m ��¬ �	� V S���
�1K
�� (31)

which goes to V 8 as 1&6÷8 , thereby forcing the right hand
side of (30) to approach 0. This proves � !±« ��g J h idjO
 . From
this and the earlier proved result, g�h idjl6 8 , we conclude
by Corollary 4.3.4 of [2] that iQ³ ¦ whp and, therefore, whp
there exists a non-covered crossing line.

Now suppose the inequality in (21) holds. There exists an� � ° � for which ­ � �G1K
 ! SK)W��� � 
W�G1 m �-¬ ��)W��
=
 satisfies (22),
and so by the first part of this proof whp there exists a non- � -
covered orthogonal crossing line when using the sensing ra-
dius � � � Thus, when the original, smaller sensing radius � is
used, evidently there there will exist a non- � -covered orthog-
onal crossing line in the region.
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6.4 Coverage of Orthogonal Crossing Lines in
a Belt

In this section, we extend the critical conditions for the � -
coverage of orthogonal crossing lines (sufficient condition for
coverage derived in Section 6.2 and sufficient condition for
non-coverage derived Section 6.3) in rectangular belt regions
to belt regions of dimension �GF H ��F J �I�	�I
-1�
=
 .
Recall the definition of a belt of dimension �GF�HI��F�JK�I�	�I
-1�
=
 from
Section 2 (Definition 2.11). For ease of presentation, we as-
sume in this paper that belts have a nominal total length of
2s; i.e. F H ¯?F J ! S-1 . Under this assumption, the area of a
belt with dimension �GF�H ��F�J��I�	��
�1�
=
 is 1.

Recall from Definition 2.5 that a crossing line over a belt of
width ��
�1 is said to be orthogonal to the belt if its length
is ��
�1 (i.e. it crosses the belt along a shortest path). No-
tice that the orthogonal crossing lines for a belt of dimension�GF H ��F J �I�	��
�1�
=
 need not be parallel to each other. For exam-
ple, at most two orthogonal crossing lines (out of uncountably
many of them) in the belt region shown in Figure 2 are paral-
lel to each other. At the same time, since orthogonal crossing
lines are the shortest paths through the belt region, we would
like to establish a sufficient condition for their coverage whp,
for use in applications. This is the subject of the following
theorem.

THEOREM 6.3. Let *.��)/�(�0�	�-
 be a Poisson distributed sen-
sor network over a belt of dimension �GF H ��F J �I�	��
�1K
=
 . If ­ �G1K
 !S�)W����
W�G1 m �-¬ ��)W��
=
 satisfies­ �G1K
D°a�Õ¯ ª,��)W��
�¯?�(� V �I
 m �-¬ m �-¬ ��)W��
m �-¬ ��)W��
 (32)

for sufficiently large 1 , then all orthogonal crossing lines over
the belt are � -covered whp as 1�6e8?�

PROOF. The proof is not much different from that of Theo-
rem 6.1, so we will only give a sketch of it here.

First, let Ï ! ��)W��
	ª,��)W��
 as in (5). We claim that if *.��)/�(�0�	�-

satisfies (32), then *+��),�����=� Á 
 with � Á ! � V 1�
'�GSIÏI
 and ­ Á �G1�
 !S�)W��� Á 
'�G1 m ��¬ ��)'��
=
 , will satisfy­ Á �G1K
©°a�Õ¯ ª Á ��)W��
U¯a�(� V ��
 m �-¬ m ��¬ ��)'��
m �-¬ ��)W��
 � (33)

This claim can be easily proved in the same way as (20) was
obtained in the proof of Theorem 6.1.

Second, we define a set of crossing lines � ÁÎ such that if (33)
holds for all sufficiently large 1 then all crossing lines in ��ÁÎ
will be � -covered whp by *.��)/�(�0�=� Á 
 . � ÁÎ is defined as follows.
Let the two lines of the belt be ��H and ��J , which have lengthsF0H and F�J , respectively. (Recall that F�H ¯rF�J ! S�1 .) On the two
lines, mark a total of S�Ï points regularly spaced at a distance
of 1�
�Ï . This results in ÏRF H 
�1 marked points on line � H andÏRF�JR
�1 points on line ��J . Connect each marked point to the
nearest point on the other line with a line segment of length�I
-1 . Let � ÁÎ be the set of all such line segments, which are
each an orthogonal crossing line. Note that Ã �ÕÁÎ Ã0\ S�Ï . Now,

we divide � ÁÎ into two subsets, Ö Á and Å Á , just as we divided�,Î into Ö and Å in the proof of Lemma 6.2, then Ã ÖWÁ�Ã'\`S�ÏK�
In place of (8), we obtain the following

Â�à���w�
{\ � á'âkã V SK)W���1 ä å ç J o�è �t é àÊMê ë � (34)

because the � -neighborhood of an orthogonal crossing line
may now be larger than SK�-
-1-� Corresponding to (9), we ob-
tain Â�àW��w�
D\ò��)W��
 ì¨í ��î/
 à � (35)

where î is as defined in (10).

Since with the above inequalities, (11) continues to hold, we
obtain the following in place of (12)g,h i % j�\`SIÏ-��)W��
�ì¨í�î % ì H � (36)

and in place of (13), we obtainm ��¬ ��g,h i % jO
©\ V ª,��)W��
U¯ m ��¬ �GS�ª,��)W��
=
U¯a�(� V ��
 m �-¬ � ­ 
�� (37)

Since V ª,��)W��
 still dominates the other two terms,
m �-¬ ��g,h i % jO


goes to V 8 making g,h iß%'j to approach 0, as 1ß6 8?� Thus,
Pr[ Ø�Ù(Ú ô Ñ $ % ��w�
 ] 6[� as 1r6 8 . The proof for crossing lines
in Å can be carried out in a similar manner.

Third, we claim that if all (orthogonal) crossing lines in � Á are� -covered by *+��),�����	��ÁO
 , then all orthogonal crossing lines in
the protected belt are � -covered by *+��),�(���	��
 . To see this,
we observe that for any orthogonal crossing line � in the belt,
there is a crossing line � Á in � ÁÎ such that � and � Á are separated
by a distance no more than 1�
'�GS�ÏR
 . The proof of Lemma 6.1
can now be carried over here to prove the claim. From the
above three claims, the theorem follows immediately.

The following theorem establishes a sufficient condition for
the existence of an uncovered crossing path in a belt of di-
mension �GF0HR��F�JK�I�	�I
-1�
=
 .

THEOREM 6.4. Let *+��),�(���}��
 be a Poisson distributed sen-
sor network over a belt of dimension �GF�HR��F�JK�I�	�I
-1�
=
 . If ­ �G1�
 !SK)W���-
'�G1 m ��¬ ��)W��
=
 satisfies­ �G1K
©\a� V ª/��)W��
U¯ m ��¬ m �-¬ ��)W��
m �-¬ ��)W��
 � (38)

for sufficiently large 1-� then there exists a non- � -covered orthog-
onal crossing line in the belt whp as 1�6²8?�

PROOF. Again, the proof is not much different from that of
Theorem 6.2, so we will only give a sketch.

Let � ÁÎ and Ö Á be as defined in the proof of Theorem 6.3. Leti and $l��w�
 be as defined in the proof of Theorem 6.2 and let� be as defined in (26). Then, �7\æÃ Ö Á Ã � Since (24) continues
to hold here, we obtain the following in place of (25),g�h idj ! Ã Ö Á Ã ��)'��
 ì�í °�����)W��
 ì¨í � (39)
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As was shown in the proof of Theorem 6.2, the right hand
side of (39) approaches 8 as 1&6÷8?� Therefore, g�h ivjD6÷8
as 1�6²8?�
We further note that (28) continues to hold here. Now, given
a crossing line w_E^� ÁÎ � there are at most Ð}�KÏR
-1 crossing linesÊÍE?� ÁÎ for some constant Ð such that w�� Ê-� This is because
of our model assumption that the lengths F�H and F�J are both
of the order 1 and the width is �I
-1-� Since there are at mostS��KÏ lines in � ÁÎ � total number of pairs of crossing lines in � ÁÎ
that satisfy w���Ê is at most SIÐ	��Ï J 
-1-� Therefore, we obtain the
following in place of (29)

�#\ S�Ð}�KÏ J1 ��)W��
�ì¨íK� (40)

and in place of (30), we obtain

�g�h idj J \ S�Ð}�M��)W��
 ì¨í1���)W��
 ì J í \5Ð m �-¬ ��)W��
 ��)W��
 � í�ì H � (41)

Taking the logarithm of the right hand side of (41) and sim-
plifying it using (38) yieldsm ��¬ ø m �-¬ ��)W��
 ��)W��
 � í�ì H � ù ! m �-¬ ��Ð=
 V ª,��)W��
�� (42)

The right hand side of (42) still goes to V 8 as 1?6 8 ,
thereby forcing the right hand side of (41) to approach 0.
This proves � !:« ��g J h idjO
 .
The rest of the proof is the same as in Theorem 6.2.

6.5 Coverage of Any Set of Parallel Crossing
Paths

In this section, we extend Theorem 6.3 to the � -coverage
whp of any set of congruent crossing paths in Theorem 6.5.
The sufficient condition for non-coverage established in The-
orem 6.4 continues to hold when considering any set of con-
gruent crossing paths and therefore it constitutes one of the
two components of a critical condition for weak � -barrier cov-
erage.

THEOREM 6.5. Let *+��),�(���=�-
 be a Poisson distributed sensor
network over a belt s t of dimensions �GF H ��F J �R�	��
-1�
=
 . If ­ �G1�
 !S�)W����
W�G1 m �-¬ ��)W��
=
 satisfies­ �G1K
D°a�Õ¯ ª,��)W��
�¯?�(� V �I
 m �-¬ m �-¬ ��)W��
m �-¬ ��)W��
 (43)

for sufficiently large 1 , then the belt region s t is weakly � -
barrier covered whp as 1�6²8?�

PROOF. Recall the definition of weak � barrier coverage
from (2). The basic difference between the claim made here
and that in Theorem 6.3 is the following: Here we claim that
for each set of congruent crossing paths, all the crossing paths
in that set are � -covered whp. In Theorem 6.3, we consid-
ered only the set of orthogonal crossing lines. The proof here,

though, is not much different from that of Theorem 6.3, so
we will only make key observations.

As in the proof of Theorem 6.3 we divide the proof into three
claims. For the first claim, there is no change from Theo-
rem 6.3. For the second claim, there are two differences. The
first is the following observation: Let Â�àW��w}
 be as defined in
the proof of Lemma 6.2. We observe that for any crossing
path � in the belt region and any orthogonal crossing line ��� ,Â à �(��
3\ Â à �(� � 
�� This is because with Poisson distribution the
rate of Poisson distribution depends only on the area of the
region and not on the location of the region and the regions
in consideration here are the � -neighborhoods of � and � � � and
the � -neighborhood of � is larger than that of � � �
The second change is in the construction of ��ÁÎ � Given a cross-
ing path w=� we construct a set �/Î���w}
 (corresponding to � ÁÎ )
that comprises ·4��ÏR
 crossing paths congruent to w . Envision
the belt as having the left end and the right end. We first in-
clude in � Î ��w�
 the leftmost crossing path Ê that is congruent
to w . Next, we consider all crossing paths that are congru-
ent to w but not entirely contained in the �G1�
�ÏR
 -neighborhood
of any path that is already in �/ÎK��w�
 , and include the leftmost
such crossing path in �/Î���w�
�� We continue this process until the
right end of the belt. Since there are at most ·4��ÏR
 crossing
paths in �,Î���w�
 for any crossing path w=� the proof of the second
claim in Theorem 6.3 can be carried over here.

For the third claim, we observe that Lemma 6.1 can be proved
for the coverage of any set of congruent crossing paths in the
same way as in the proof of Theorem 6.3, with � ÁÎ replaced by�,Î���w}
 constructed in the preceding paragraph. Notice that for
any crossing path Ê that is congruent to w=� there is a crossing
path ��Ek� Î ��w}
 that is at most a distance of 1�
W�GS�ÏR
 from Ê-�
7. SIMULATION
In this section, we present some numerical computation and
simulation results to gain more insight and understanding of
our critical conditions for weak � -barrier coverage. We focus
on four main issues in this section.

1) How to use our critical conditions to derive the number of
sensors needed to achieve weak � -barrier coverage with high
probability (whp), which includes translating the dimensions
of a given region to the parameters of our model?

To address this issue, consider, for example, a deployment sce-
nario where a rectangular belt region of dimension � ¦��W> 2� ¦�¦�> is to be barrier-covered by sensors, each of which has
a sensing radius of 30m. To convert this region of deploy-
ment to our model of a rectangular belt region of dimension1ß2^�	�I
-1�
�� we observe that � ¦ � ¦-¦�¦ Y[CD� ¦-¦ Y corresponds to1�C,�I
-1-� Therefore, 1 ! � ¦ � which becomes the length of the
region and the width becomes ��
-1 !?¦ �B�-� The radius that was� 
�� ¦	�! that of the width becomes � ! � � 
W� ¦ 
 � �	��
�1K
 ! ¦ � ¦ � �
Let us suppose that the network is desired to last 5 times
longer than the active lifetime of an individual sensor. This
implies a duty cycle of 20%. Therefore, � !a¦ � SW�
The number of sensors needed to achieve weak � -barrier cov-
erage whp from analysis, which we denote by )
"M�(�����0�=��
�� is
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Figure 11: The variation in Pr[weak 1-barrier coverage] in
simulation (represented by the solid plot) as the number
of sensors deployed randomly varies from 3,000 to 17,000
in steps of 1,000. Here � !±¦ � SW� and � !ò¦ � ¦ � � The vertical
bar shows the value of ) " �(���(���	�-
��
given by the following> @nA # ).C SK)W���1 m �-¬ ��)W��
 °a�Õ¯ ª,��)W��
�¯?�(� V �I
 m �-¬ m �-¬ ��)W��
m �-¬ ��)W��
 $ �

(44)

2) How to find an appropriate function for ª/��)W��
 so that ana-
lytical results closely match the reality (modeled as simulation
here)?

It is the value of ª,��)W��
 that determines the window of phase
transition. The larger the value of ª/��)W��
�� the larger the win-
dow. We first show via simulation that there is indeed a
phase transition, i.e., the probability of weak � -barrier cov-
erage shoots from 0 to 1 within a small window of variation
in ) (see Figure 11). The window of phase transition in re-
ality becomes smaller as the length of the deployment region
gets larger (for fixed � and � ). This implies that a larger value
of ª/��)W��
 will be suitable when the length of the deployment
region is small and a smaller value of ª,��)'��
 will be needed
when the length of the deployment region becomes large. For
the region of deployment considered in this section, we find
that % m �-¬ m �-¬ ��)W��
Õ¯'&'� ( is an appropriate choice for ª,��)W��
��
Notice how closely the analysis plot matches the plot from
simulation in Figure 12.

In Figure 11, we show by vertical bar the value of ) " �(���(���	�-

when � ! ���	� !?¦ � S�� and � !?¦ � ¦ � � The value of )
"¨�(�����0�	�-
 for
this case comes out to be 13,089 (using (44)). The solid plot
shows how the probability of weak 1-barrier coverage varies
with ) in simulation. From analysis, we expect the probability
of weak 1-barrier coverage to be close to 1 when the number
of sensors deployed exceeds )
"M�(�����0�=��
 ! � � � ¦*)*+ � Figure 11
shows that the probability of weak 1-barrier coverage is in-
deed 1 in simulation when )7°a� � � ¦*)	+ �
3) Observe how the number of sensors needed to achieve weak

� -barrier coverage whp varies with ���
To determine how the number of sensors needed to achieve
weak � -barrier coverage whp varies with ��� we plot the val-
ues of ) " ��),�����=�-
 and )Ut���),�(���}��
�� where ) " ��),�����	��
 is given
by (44) and )0t���)/�����=�-
 is the number of sensors needed to
achieve weak � -barrier coverage with probability 1 in simula-
tion. We next discuss how we derive the values of )�tK��),�����=�-
��
In simulation, we perform 500 iterations for each value of),� In each iteration, we determine the fraction of orthogonal
crossing lines (from a total of Ï ! )W��ª,��)W��
 regularly spaced
lines) that are � -covered with a suitably reduced sensing ra-
dius. If, in an iteration, all Ï orthogonal crossing lines are � -
covered, then from Lemma 6.1, we know that all the orthog-
onal crossing lines will be � -covered with the actual sensing
radius. If all the crossing lines are � -covered in all 500 it-
erations, then we say that the probability of weak � -barrier
coverage is 1 from simulation for this particular value of ),�
The value of ) t ��),�(���	�-
 is the minimum value of ) at which
the probability of weak � -barrier coverage is observed to be
1.

Figure 12 shows the plots for both ) " �(���(���}��
 and )Ut-�(�������=�-
��
We observe that there is a sharp increase in the number of sen-
sors needed to achieve weak 1-barrier coverage. However, the
number of additional sensors needed to achieve 2-coverage is
only marginal. This trend continues with increasing values of���
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Figure 12: The variation in )�"M�(�������=�-
 and ) t �(�������	��
 with� when � !?¦ � S and � !a¦ � ¦ � �
4) Discuss how the number of sensors needed to achieve weak� -barrier coverage whp varies with ���
Observe that in all the critical conditions, ) and � appear to-
gether. If we set ) Á ! ) � ��� then the value of ) Á" �(�����0�=��

is uniquely determined given the values of � and ��� Further,
given a value of �0� the value of ) " �(�������=�-
 is uniquely deter-
mined from )UÁ" �(�����0�	�-
�� since ) ! )�Á�
���� Therefore, the im-
pact of varying � on ) " �(�������=�-
 is linear. In other words, if �
gets reduced by half, )
"¨�(�������	��
 gets doubled, and vice versa.
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Since )Ut-�(�������}��
 closely follows ) " �(�������=�-
�� the impact of � on) t �(�������	��
 is linear too.

8. CONCLUSION
In this paper, we proposed � -barrier coverage as an appro-
priate notion of coverage when a sensor network is deployed
to detect objects penetrating a protected region, which repre-
sents a promising and popular class of applications for wire-
less sensor networks. We derived some fundamental results
for this notion of coverage such as the optimal deployment
pattern to achieve � -barrier coverage, efficient algorithm to
determine whether a region is � -barrier covered or not, and
critical conditions for a weaker notion of � -barrier coverage,
called weak � -barrier coverage.

As the concept of barrier coverage is relatively new, several
problems still remain open in this space. One such problem
is the derivation of critical conditions for ensuring � -barrier
coverage for a belt region. Another open problem is that
of designing an efficient algorithm to determine whether a
closed region of deployment is � -barrier covered by an arbi-
trary sensor network, or not. Solution to these and other open
problems (many of which are not even known yet) will pro-
vide a solid foundation to the issue of � -barrier coverage with
wireless sensors.
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