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ABSTRACT
It is well-known that placing disks in the triangular lattice pat-
tern is optimal for achieving full coverage on a plane. With
the emergence of wireless sensor networks, however, it is now
no longer enough to consider coverage alone when deploy-
ing a wireless sensor network; connectivity must also be con-
sidered. While moderate loss in coverage can be tolerated
by applications of wireless sensor networks, loss in connec-
tivity can be fatal. Moreover, since sensors are subject to
unanticipated failures after deployment, it is not enough to
have a wireless sensor network just connected, it should be
k-connected (for k > 1). In this paper, we propose an op-
timal deployment pattern to achieve both full coverage and
2-connectivity, and prove its optimality for all values of rc/rs,
where rc is the communication radius, and rs is the sensing
radius. We also prove the optimality of a previously proposed
deployment pattern for achieving both full coverage and 1-
connectivity, when rc/rs <

√
3. Finally, we compare the effi-

ciency of some popular regular deployment patterns such as
the square grid and triangular lattice, in terms of the number
of sensors needed to provide coverage and connectivity.

Categories and Subject Descriptors
C.2.1 [Computer-Communication networks]: Network Ar-
chitecture and Design – network topology

General Terms
Theory

Keywords
Coverage, Connectivity, optimal deployment pattern.

1. INTRODUCTION
It is well-known that placing disks on the vertices of a trian-

gular lattice (or, equivalently, at the centers of regular hexagons,
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as illustrated in Figure 3) is optimal, in terms of the number
of disks needed to achieve full coverage of a plane. Its asymp-
totic optimality was proved rigorously in a 1939 paper [6],
and was recently reproved in [9] using a different approach.

With the emergence of wireless sensor networks in the past
decade, consideration of coverage alone is no longer enough
when deploying sensors. The sensor network needs to be con-
nected too. On the problem of achieving both coverage and
connectivity at the same time, a few results are known in the
literature. First, when the communication range rc is at least
twice the sensing range rs (i.e., rc ≥ 2rs), then coverage of
a region implies connectivity in the sensor network [8]. Sec-
ond, if rc ≥

√
3rs, then deploying sensors in the triangular

lattice pattern provides both coverage and connectivity, and
is optimal in terms of the number of sensors needed. Third,
when rc = rs, a strip-based deployment pattern is near op-
timal [5]. But, no results are known for general values of
rc/rs.

It is important, however, to investigate the optimal deploy-
ment pattern to achieve both coverage and connectivity for
general values of rc/rs because in practice they can be any
value. For example, while the reliable communication range
of the Extreme Scale Mote (XSM) platform is 30 m, the sens-
ing range of the acoustics sensor for detecting an All Terrain
Vehicle is 55 m [1]. In this case, rc/rs ¿

√
3. Sometimes even

when it is claimed for a sensor platform to have rc/rs ≥
√

3, it
may not hold in practice because the reliable communication
range is often 60-80% of the claimed value [10].

Further, we note that having a wireless sensor network just
1-connected is not much useful in practice. This is because
some sensors fail right after deployment due to factors be-
yond human control, and more continue to fail gradually with
time [2]. Moderate loss in coverage may be tolerated by ap-
plications but loss in connectivity can be fatal as it can render
an entire portion of the network useless — their sensing data
can not reach the base station. Therefore, it is desirable to
have higher degrees of connectivity in wireless sensor net-
works. But, the problem of determining the optimal deploy-
ment pattern that achieves both coverage and k-connectivity
for general values of k and rc/rs is an open problem.

1.1 Our Contributions
In this paper, we propose and prove the asymptotic opti-

mality of a deployment pattern (shown in Figure 1) to achieve
both coverage and 2-connectivity for all values of rc/rs.

We also extend the result of [5] and show that the strip-
based deployment pattern (shown in Figure 2) is not only
near-optimal but asymptotically optimal for achieving both



Figure 1: Strip-based deployment pattern to achieve cov-
erage and 2-connectivity. The light-filled dots show the
sensor locations that form the horizontal strip, while
the dark-filled dots form the two vertical strips. Here,
α = min{rc,

√
3rs} and β = rs +

p
r2

s − α2/4. The verti-
cal strip of sensors may be removed when rc/rs ≥

√
3.

Figure 2: Strip-based deployment that is optimal for
achieving coverage with 1-connectivity, when rc/rs <

√
3.

The light-filled dots show the sensor locations that form
the horizontal strip, while the dark-filled dots form the
one vertical strip. Here, α = min{rc,

√
3rs} and β =

rs +
p

r2
s − α2/4.

full coverage and 1-connectivity. Moreover, its optimality holds
not only for rc/rs = 1 but for all rc/rs <

√
3.

In practice, wireless sensor networks are often desired to
follow regular patterns due to at least two reasons — 1) con-
venience of deployment and 2) to achieve a higher degree of
connectivity. Four popular regular deployment patterns are
hexagon, square grid, rhombus, and equilateral triangle, all
of which are exhibited in Figure 3. Note that the triangu-
lar lattice pattern provides at least 6-connectivity, square grid
provides at least 4-connectivity, rhombus provides at least 4
or 6 connectivity depending on its shape, and the hexagon
provides at least 3-connectivity1. Connectivity aside, it would
be interesting to know: (1) which of these four regular pat-
terns is more efficient than the others (in terms of the number
of sensors needed)? (2) what is the efficiency of these regu-
lar deployment patterns as compared to the optimal pattern?
Toward these two questions, we establish the following:

1These values of connectivity hold for appropriate internode
distances in the four patterns such that each sensor can com-
municate directly with all its closest neighbors.

• When
√

2 ≤ rc/rs ≤
√

3, the rhombus-based pattern
is better than the other three. It requires upto 21%
more sensors as compared to the optimal in this range
of rc/rs.

• When 1.14 ≤ rc/rs ≤
√

2, the square pattern is better
than the other three. It requires upto 60% more sensors
than the optimal in this range of rc/rs.

• When rc/rs ≤ 1.14, the hexagon pattern is better than
the other three. It requires a constant number of sensors
for 1 ≤ rc/rs ≤ 1.14; it uses upto 44% more sensors
than the optimal in this range of rc/rs.

• When rc/rs < 1, the number of sensors needed by the
hexagon pattern grows exponentially as compared with
the optimal. Evidently, the number of sensors needed by
the other three patterns are only worse when rc/rs < 1.

Figure 3: Four common regular patterns of deployment —
(a) Hexagon, (b) Square, (c) Rhombus, and (d) Triangular
Lattice (with equilateral triangles).

1.2 Applications of Our Results
Aside from the pure theoretical interest, solving the prob-

lem of optimal deployment pattern to achieve both coverage
and connectivity is important for several reasons.

First, since the sensor nodes still cost close to $100 a piece,
deploying the minimum necessary to achieve coverage and
connectivity is important for economic reasons. Second, as
summarized in Section 1.1, it is now possible to compute,
rather precisely, the efficiency of some regular patterns of de-
ployment that may sometimes be used in practice for con-
venience of deployment. Third, when heuristic algorithms
are developed for topology control (i.e., determining a sleep-
wakeup schedule for nodes that preserves coverage and/or
connectivity) as in [5, 9], it is possible to compute a pre-
cise bound on their performance, as compared to the opti-
mal. Fourth, when developing heuristic algorithms for topol-
ogy control, the insights from the optimal deployment pattern
proposed in this paper can be used to improve their perfor-
mance. For example, the topology control heuristic developed
in [9] leveraged the fact that triangular lattice is the optimal
deployment pattern when rc/rs ≥ 2. With the new results on
optimal deployment pattern to achieve coverage and connec-
tivity developed in this paper, such algorithms may suitably be
modified to provide good performance for all ranges of rc/rs.



Our results may have other practical utilities. For example,
our results may be used to determine the locations of Access
Points (AP) when deploying a wireless mesh network. Let the
communication range between the AP and clients be consid-
ered rs and that between the APs (assuming they communi-
cate over a different wireless channel) rc. With this parame-
ter translation, all the applications discussed in the previous
paragraph for wireless sensor networks will hold for wireless
mesh networks, as well.

1.3 Remarks on the Disk Model
In this paper, we assume that both the sensing and com-

munication ranges are regular disks. In practice, however, it
has been discovered that both the sensing and the commu-
nication ranges are non-isotropic, i.e., sensors exhibit differ-
ent ranges (in both sensing and communication) in different
directions [11, 10]. According to [3], the passive infrared
(PIR) sensor’s sensing range in different directions roughly
conforms to a Normal Distribution probability model. For the
communication range, two non-isotropic models — the De-
gree of Irregularity (DOI) model and the Radio Irregularity
(RIM) model — are presented in [11].

Even though we use a seemingly oversimplified disk model,
we believe our results are still applicable in several practi-
cal scenarios. For instance, when the irregular sensing and
communication ranges each have a lower bound, the sens-
ing and communication areas can be regarded as a disk with
radius equal to the lower bound. With this approach, our
results can provide a conservative bound on the number of
sensors needed to achieve coverage and connectivity deter-
ministically.

We feel that our results probably can be extended to pro-
vide statistical coverage guarantees while deterministically
ensuring connectivity. To do so, we will need to adopt a sta-
tistical sensing range model such as the one proposed in [3],
but still using the lower bound on the communication range.
We can extend our work further to provide statistical guar-
antees on both coverage and connectivity based on statistical
models such as the ones proposed in [3] and [11]. Extending
our results along these lines is part of our future work.

1.4 Related Work
There are three previous works closely related to ours. The

asymptotic optimality of triangular lattice was originally proved
in [6]. The issue of connectivity, however, was not addressed
for rc/rs <

√
3.

The strip-based deployment, which we prove to be the opti-
mal for achieving both coverage and 1-connectivity was pro-
posed in both [5] and [7]. In [5], the focus is on the case
when rc/rs = 1. A necessary condition is developed (Theo-
rem 1 in [5]) and it is used to assess the efficiency of the strip-
based deployment and of other deployment patterns such as
square, hexagon, and triangular lattice. Although the neces-
sary condition developed in this work is close to the optimal
when rc/rs ≤ 1 (within 2.7% of the optimal when rc/rs = 1),
it is loose by as much as 30.18%2.

2When rc/rs =
√

3, the condition in Theorem 1 of [5] be-
comes

dOPT ≥ 1

r2
s

�
2π
3

+
√

3
2

� =
0.5513

r2
s

,

where dOPT is the density of sensors necessary to achieve
coverage and connectivity. The density of sensors in the opti-

In [7], the strip-based deployment is carefully constructed
for rc/rs <

√
3, and it is suggested as the pattern of deploy-

ment for this range of rc/rs. Neither of these two works ([5,
7]) claim or prove the optimality of the strip-based deploy-
ment pattern.

We are not aware of any other work that claim or prove the
optimality of the strip-based deployment to achieve coverage
and 1-connectivity. Further, we are not aware of any work
that consider the problem of determining an optimal deploy-
ment pattern to achieve both coverage and 2-connectivity.

Organization of the Paper. The rest of the paper is or-
ganized as follows. We list the common assumptions, defi-
nitions, and notations that we use throughout the paper in
Section 2. In Section 3, we propose the strip-based deploy-
ment pattern that achieves coverage and 2-connectivity and
prove its asymptotic optimality. In Section 4, we do the same
for coverage and 1-connectivity. In Section 5, we establish
which regular deployment pattern (out of hexagon, square,
rhombus, and equilateral triangle) is better than the others
for different ranges of rc/rs. In Section 6, we consider an ex-
ample deployment region and compute the number of nodes
needed to achieve coverage and connectivity when different
patterns are used. Section 7 concludes the paper.

2. ASSUMPTIONS AND DEFINITIONS
In this section, we describe our model, some assumptions,

and key definitions that we use throughout this paper.

ASSUMPTION 2.1. [Disc-based sensing] We assume a disc-
based sensing model where each active sensor has a sensing ra-
dius of rs; any object within the disc of radius rs centered at
an active sensor is reliably detected by it. The sensing disk of a
sensor located at location u is denoted by Drs(u).

ASSUMPTION 2.2. [Disk-based communication] We as-
sume a disc-based radio model where each active sensor has a
communication range of rc; two active sensors at a distance of
rc or less can communicate reliably. The communication disk of
a sensor located at location u is denoted by Drc(u).

ASSUMPTION 2.3. [Homogeneous sensing and commu-
nication range] We assume that the sensing range of all sen-
sors are the same, as are their communication range.

ASSUMPTION 2.4. [Bounded value of rs/rc] We also as-
sume that limrs→0 rs/rc < M, for some M > 0. The limit
rs → 0 signifies that we need an increasing number of sensors
to cover a given region, which is needed for the asymptotic anal-
ysis.

DEFINITION 2.1. [d(u, v)] Let the Euclidean distance be-
tween points u and v be denoted by d(u, v).

DEFINITION 2.2. [Distance between sensing disks] For
convenience, we define the distance between two sensing disks
Drs(u) and Drs(v) to be the distance between their centers,
d(u, v).

DEFINITION 2.3. [Voronoi Polygon, Area Per Node (APN)]
Let {a1, a2, ..., ap} be a set of p points on an Euclidean plane S.

mal triangular lattice pattern, on the other hand, is 2

r2
s3
√

3
=

0.3849
r2

s
.



The Voronoi polygon V (ai) is the set of all points in S, which
are closer to ai (in terms of Euclidean distance) than to any
other point, i.e.

V (ai) := {x ∈ S : ∀j ∈ [1, p], d(x, ai) ≤ d(x, aj)}.
We use Area Per Node (APN) to denote the Lebesgue measure
(or area) of a Voronoi polygon.

DEFINITION 2.4. [Connected Neighboring Sensors] Two
sensors located at points u and v are called connected neigh-
boring sensors, if
i) Drs(u) ∩Drs(v) 6= φ, i.e. their sensing disks intersect, and
ii) d(u, v) ≤ rc.

Figure 4 illustrates an example for connected neighboring
sensors.

DEFINITION 2.5. [`(rs, rc), ϕ(rs, rc)] Let two connected neigh-
boring sensors be located at u and v. Then, their sensing disks
(Drs(u) and Drs(v)) have a common chord (e.g. line segment
AB in Figure 4). As the locations (u and v) of the two sensors
are varied, the length of their common chord varies as well. A
common chord with the smallest possible length (for given val-
ues of rs and rc) is called a connection chord, and we denote
this minimum length by `(rs, rc). The angles that this common
chord of smallest length makes at the centers of Drs(u) and
Drs(v) are called connection angles. We denote these angles
by ϕ(rs, rc).

Notice that `(rs, rc) = 0 when rc ≥ 2rs.

Figure 4: The sensors located at points u and v are con-
nected neighboring sensors with further property that
d(u, v) = rc. Chord AB is the connection chord. And
∠AuB and ∠AvB are the connection angles.

DEFINITION 2.6. [Chord Polygon] Consider a deployment
of sensors that provides full-coverage. Then, we may assume the
sides of the Voronoi polygon generated by every node (except for
ones at the boundary) are common chords, since the common
area covered by three different sensing disks is expected to be as
small as possible in an optimal deployment to achieve one cov-
erage. To emphasize this relationship, we refer to such Voronoi
polygons as chord polygons.

Note that each chord polygon can be inscribed in a sensing
desk Drs .

DEFINITION 2.7. [Ak,2(rs, rc)] Consider a deployment of
sensors that provides full-coverage, where every sensor has at
least two connected neighboring sensors. Then, for given values
of k, rs, and rc, the maximum area achievable for a k-sided
chord polygon (over all possible deployments that provide full-
coverage), is denoted by Ak,2(rs, rc).

The following two definitions are made under the same as-
sumption as in Definition 2.7.

DEFINITION 2.8. [Φk,n(rs, rc)] A k-sided chord polygon that
has n (n ≤ k) edges of length at least `(rs, rc) is denoted as
Φk,n(rs, rc). Its area is denoted as |Φk,n(rs, rc)|.

The following definition refers to a special case of Φk,n(rs, rc).

DEFINITION 2.9. [Ψk,n(rs, rc)] A Φk,n(rs, rc) with n (n ≤
k) edges of length `(rs, rc) and the other k − n edges of equal
length (not equal to `(rs, rc)) is denoted by Ψk,n(rs, rc). Its
area is denoted by |Ψk,n(rs, rc)|.

For brevity, we often use `, ϕ, Ak,2, Φk,n, and Ψk,n in place
of `(rs, rc), ϕ(rs, rc), Ak,2(rs, rc), Φk,n(rs, rc), and Ψk,n(rs, rc).

3. OPTIMAL DEPLOYMENT TO ACHIEVE
COVERAGE AND 2-CONNECTIVITY

In this section, we present and prove the asymptotic opti-
mality of a strip-based deployment pattern that achieves both
full coverage of a square region and forms a 2-connected net-
work. Under this deployment, every point in the square re-
gion is covered by at least one sensing disk, and there exist
at least 2 node-disjoint (potentially multi-hop) paths between
every pair of sensors.

3.1 Strip-based Deployment
The proposed strip-based deployment (see Figure 1) achieves

both full coverage of a square region and provides 2-connectivity.
It is a variant of the strip-based deployment pattern proposed
in [5] and [7] to achieve coverage and 1-connectivity, as il-
lustrated in Figure 2.

Consider a square region of deployment. A horizontal strip
of sensors is formed by putting together sensors at a regu-
lar separation of α = min{rc,

√
3rs}. These strips of sensors

are deployed horizontally with alternate rows shifted to the
right by a distance of α/2. The vertical separation between
the neighboring strips is β = rs +

p
r2

s − α2/4. Notice that
if rc/rs <

√
3, the neighboring horizontal strips are not con-

nected. In this case, we place additional sensors at the left and
right boundary of the deployment region (the dark-filled dots
in Figure 1). Denote the distance between the sensors at the
left boundary of two neighboring horizontal strips by δ, which
is equal to

p
(α/2)2 + β2. Then, we need 2 (dδ/rce − 1) sen-

sors to connect a pair of neighboring horizontal strips at both
of its boundaries.

3.2 Proof of Optimality
In this section, we prove that the strip-based deployment

shown in Figure 1 is asymptotically optimal to achieve cover-
age and 2-connectivity. The proof borrows several techniques
from [6]. For the convenience of readers, we state some key
results of [6] in Appendix B.

Let Ak,2(rs, rc) (or Ak,2, in short) be as defined in Defini-
tion 2.7 and ϕ(rs, rc) (or ϕ, in short) be as defined in Defini-
tion 2.5 for given values of rs and rc. We first prove some key
results that will be used in the proof of optimality.

LEMMA 3.1. For k ≥ 3,

Ak,2 =

(
r2

s
2

k sin 2π
k

, when 2π
k
≥ ϕ

r2
s sin ϕ +

r2
s(k−2)

2
sin 2π−2ϕ

k−2
, when 2π

k
< ϕ.

(1)



PROOF. We only provide a proof sketch here. A rigorous
proof can be carried out using the Lagrangian Multiplier The-
orem [4].

Consider a deployment as in Definition 2.7. As remarked
earlier, each k-sided chord polygon can be inscribed in a sens-
ing disk Drs . For such a polygon, the maximum area occurs
when each of its k sides are of equal length (which is a stan-
dard result proved using Lagrangian multipliers). The area
of this regular k-sided polygon is (r2

s/2)k sin(2π/k), and the
angle made by each of its edges at its center is 2π/k. When
2π/k ≥ ϕ, the regular k-sided polygon satisfies the conditions
of Definition 2.7, because 2π/k ≥ ϕ implies that all the k
neighboring sensors of Drs are its connected neighboring sen-
sors. Therefore, Ak,2 = (r2

s/2)k sin(2π/k) when 2π/k ≥ ϕ.
Now, if 2π/k < ϕ, the angle made by each edge of the reg-

ular k-sided polygon at its center is less than ϕ, and therefore
this regular polygon (though having the maximum area of all
k-sided polygons inscribed in Drs) is not formed by any disks
that are connected to Drs , and does not satisfy the conditions
of Definition 2.7. In this case, the maximum area of a k-sided
chord polygon occurs when the polygon is a Ψk,2. (This claim
can again be proved using the Lagrangian multipliers). We
refer to such a polygon as a semi-regular one. In this case,

Ak,2 = r2
s sin ϕ +

r2
s

2
(k − 2) sin

2π − 2ϕ

k − 2
.

This completes the proof.

The next lemma, which uses the results of Lemma 3.1, is
analogous to Lemma 2 of [6] (see Appendix B).

LEMMA 3.2. For k ≥ 4,

0 < Ak+1,2 −Ak,2 < Ak,2 −Ak−1,2. (2)

PROOF. We divide our proof obligation into four cases.
Case 1: ϕ ≤ 2π/(k+1). In this case, as proved in Lemma 3.1,

Ak+1,2, Ak,2 and Ak−1,2 all involve regular chord polygons.
Therefore, (2) follows from Lemma 2 in [6].

Case 2: ϕ ≥ 2π/(k−1). In this case, as proved in Lemma 3.1,

Ai,2 = r2
s sin ϕ +

r2
s

2
(i− 2) sin

2π − 2ϕ

i− 2

for i = k− 1, k, k + 1. The first inequality in (2) can be easily
proved using Taylor’s expansion for sin x. We now prove the
second inequality. Defining f(k) = Ak+1,2 −Ak,2, we have

f(k) =
k − 1

2
r2

s sin
2π − 2ϕ

k − 1
− k − 2

2
r2

s sin
2π − 2ϕ

k − 2
. (3)

Taking derivatives of both sides of (3), we get

df(k)

dk
=

r2
s

2

�
sin

2π − 2ϕ

k − 1
− 2π − 2ϕ

k − 1
cos

2π − 2ϕ

k − 1

�
− r2

s

2

�
sin

2π − 2ϕ

k − 2
− 2π − 2ϕ

k − 2
cos

2π − 2ϕ

k − 2

�
.

Since sin x − x cos x is an increasing function of x in (0, π)
and (2π − 2ϕ)/(k − 1), (2π − 2ϕ)/(k − 2) ∈ (0, π) for k ≥ 4,
df(k)/dk < 0 for k ≥ 4. Hence, f(k) is a decreasing function,
and thus (2) holds when 2π/(k − 1) ≤ ϕ.

Case 3: 2π/(k+1) < ϕ ≤ 2π/k. For k ≥ 3, let Ar
k,2 denote

the area of a regular k-sided chord polygon, and As
k,2 the area

of a semi-regular k-sided chord polygon. That is,

Ar
k,2 =

r2
s

2
k sin

2π

k

and

As
k,2 = r2

s sin ϕ +
r2

s(k − 2)

2
sin

2π − 2ϕ

k − 2
.

In this case (case 3), Ak+1,2 = As
k+1,2, Ak,2 = Ar

k,2, and
Ak−1,2 = Ar

k−1,2. For the first inequality in (2), we have

As
k+1,2 −Ar

k,2

=
k − 1

2
r2

s sin
2π − 2ϕ

k − 1
+ r2

s sin ϕ− k

2
r2

s sin
2π

k

which is greater than 0 for 2π/(k + 1) < ϕ ≤ 2π/k.
For the second inequality in (2), we need to prove

As
k+1,2 −Ar

k,2 < Ar
k,2 −Ar

k−1,2,

which follows from Lemma 2 in [6] and the fact that As
k+1,2 <

Ar
k+1,2 (the latter inequality holds since As

k+1,2 is the maxi-
mum area possible of any (k + 1)-sided polygon inscribed in
Drs).

Case 4: 2π/k < ϕ < 2π/(k − 1). In this case, for the
first inequality in (2), 0 < As

k+1,2 −As
k,2 can be proved using

Taylor’s expansion for sin x. For the second inequality in (2),
we need to prove

As
k+1,2 −As

k,2 < As
k,2 −Ar

k−1,2,

which follows from the fact that

(As
k,2 −Ar

k−1,2)− (As
k+1,2 −As

k,2)

= (k − 2)r2
s sin

2π − 2ϕ

k − 2
− r2

s

2
(k − 3) sin

2π

k − 1

−r2
s

2
(k − 1) sin

2π − 2ϕ

k − 1

is greater than 0, for 2π/k < ϕ < 2π/(k − 1).
The four cases together prove (2) for all values of ϕ.

The next lemma, which uses the results of Lemma 3.2, is anal-
ogous to Lemma 4 of [6].

LEMMA 3.3. Let Γ denote a set of non-overlapping F finite
polygons that fully cover a bounded plane. Suppose that each
vertex of Γ is on at least three edges. Further, suppose that the
area of each k-sided polygon of Γ is at most Ak,2, where Ak,2 is
as defined in Definition 2.7. Then, the total area of Γ, denoted
by AΓ, satisfies

AΓ < FA6,2,

where (using (1))

A6,2 =

(
3
√

3
2

r2
s , when π

3
≥ ϕ

r2
s sin ϕ + 2r2

s sin π−2ϕ
2

, when π
3

< ϕ
(4)

PROOF. The proof of this Lemma can be carried out in the
same manner as in Lemma 4 of [6] using Lemma 3.2 in place
of Lemma 2 of [6] and using A6,2 in place of A6 in [6].

The next lemma, which uses Lemma 3.3, provides a lower
bound on the number of sensors needed to cover a rectangle
while forming a 2-connected network.

LEMMA 3.4. Let ρ denote a rectangle in the plane with area
R. Let N(rs, rc) denote the minimum number of sensing disks



Drs which can cover ρ and the centers of which form a 2-
connected network using the communication radius rc. Then

πr2
sN(rs, rc) >(
(R− 2πr2

s)(2π
√

3/9), when π
3
≥ ϕ

π(R− 2πr2
s)(sin ϕ + 2 sin π−2ϕ

2
)−1, when π

3
< ϕ

PROOF. To prove this lemma, we apply Lemma 3.3 after
showing that the two hypotheses made there are satisfied by
the set of Voronoi polygons (see Definition 2.3) generated by
the centers of the disks and the boundary of ρ. These Voronoi
polygons are non-overlapping and cover ρ.

These polygons satisfy the first hypothesis of Lemma 3.3
(namely, each vertex of the Voronoi polygons is on at least
three edges) if we follow the same technique as in the proof
of Lemma 5 of [6] that chops off the four corners of ρ. This
construction reduces the area of ρ by less than 2πr2

s . There-
fore,

AΓ ≥ R− 2πr2
s , (5)

where AΓ is as defined in the statement of Lemma 3.3.
To see how the second hypothesis of Lemma 3.3 (namely,

the area of each k-sided Voronoi polygon is at most Ak,2) is
satisfied, we argue as follows. Since the N(rs, rc) disks com-
pletely cover the rectangle ρ and the centers of these disks
form a 2-connected network, the center of each disk is at
a distance of less than rc of at least two neighboring disks.
Therefore, by the definition of Ak,2, the area of each Voronoi
polygon is at most Ak,2.

Since there is a one-to-one mapping between Voronoi poly-
gons and the disks Drs , there are N(rs, rc) Voronoi polygons
covering ρ. Using (5) and applying Lemma 3.3, we obtain

R− 2πr2
s < N(rs, rc)A6,2, (6)

where A6,2 is as defined in (4). Multiplying both sides of (6)
by πr2/A6,2 and then applying (4), we get (5).

We now derive the asymptotically optimal number of sen-
sors needed to provide full-coverage and 2-connectivity.

THEOREM 3.1. Let N(rs, rc) denote the minimum number
of sensing disks, Drs , which can cover a square with area L2,
and the centers of which form a 2-connected network using the
communication radius rc. Then,

lim
rs→0

πr2
sN(rs, rc) = K(rs, rc)L

2, (7)

where

K(rs, rc) =

(
2π
√

3/9, when π
3
≥ ϕ

π(sin ϕ + 2 sin π−2ϕ
2

)−1, when π
3

< ϕ

PROOF. To prove (7), we need to prove

lim inf
rs→0

πr2
sN(rs, rc) ≥ K(rs, rc)L

2, (8)

and

lim sup
rs→0

πr2
sN(rs, rc) ≤ K(rs, rc)L

2. (9)

Using Lemma 3.4 in place of Lemma 5 of [6] in the proof of
Theorem in [6], we get the proof of (8).

We will now prove (9) using the strip based construction
shown in Figure 1.

Let N ′(rs, rc) be the number of disks needed in the strip
based deployment. It can be verified that this deployment

provides coverage of the square and the centers of the disks
form a 2-connected network. Therefore, we have

N(rs, rc) ≤ N ′(rs, rc). (10)

Multiplying both sides of (10) by πr2, and taking limit as
rs → 0, we obtain

lim sup
rs→0

πr2
sN(rs, rc) ≤ lim

rs→0
πr2

sN ′(rs, rc)

Figure 5: One of the non-overlapping hexagons that tile
the plane.

We divide N ′(rs, rc) into two parts — N ′
h(rs, rc) that de-

notes the number of disks in all the horizontal strips (see Fig-
ure 1), and N ′

v(rs, rc) that denotes the number of disks in the
two vertical strips, so that

N ′
h(rs, rc) + N ′

v(rs, rc) = N ′(rs, rc). (11)

Note that N ′
v(rs, rc) = 0 when π/3 ≥ ϕ (i.e. rc ≥

√
3rs).

To derive an expression for N ′
h(rs, rc), we observe that the

entire square is tiled with non-overlapping hexagons such as
the one shown with dotted lines in Figure 5. It can be shown
that the area of each such hexagon is A6,2 (defined in (4)).
Therefore, we have

lim
rs→0

πN ′
h(rs, rc)A6,2 = πL2,

which can be rewritten (using (1)) as

lim
rs→0

πN ′
h(rs, rc)r

2
s = K(rs, rc)L

2, (12)

where K(rs, rc) is as defined in the statement of this theorem.
For N ′

v(rs, rc),

N ′
v(rs, rc)πr2

s < 2

�
L

rc
+ 1

�
πr2

s = 2πrs

�
L

rs

rc
+ 1

�
, (13)

which follows from the construction of the strip-based deploy-
ment. As rs → 0, the right hand side of (13) approaches zero,
as well, as rs/rc is bounded. Hence,

lim sup
rs→0

πr2
sN ′

v(rs, rc) = 0. (14)

Using (11), (12), and (14), we obtain

lim
rs→0

πr2
sN ′(rs, rc) = K(rs, rc)L

2,

which together with (10) proves (9).

The next theorem, which follows immediately from the proof
of Theorem 3.1, proves the optimality of the strip-based de-
ployment presented in Figure 1.

THEOREM 3.2. The strip based deployment, as described in
Section 3.1 and shown in Figure 1 is an asymptotically optimal
deployment pattern to achieve 2-connected-cover.



4. OPTIMAL DEPLOYMENT TO ACHIEVE
COVERAGE AND 1-CONNECTIVITY

In this section, we prove the asymptotic optimality of the
strip-based deployment (shown in Figure 2) that was pro-
posed in both [5] and [7] to achieve coverage and 1-connectivity
when rc/rs <

√
3. The construction of the strip-based deploy-

ment pattern for coverage and 1-connectivity is the same as
the strip-based deployment pattern to achieve coverage and
2-connectivity, presented in Section 3.1, except for two differ-
ences. First, only one vertical strip is needed here. Second,
the vertical strip need not connect the horizontal strip at their
boundaries. We note that when rc/rs ≥

√
3, the triangular

lattice [6] is the optimal deployment pattern to achieve both
coverage and connectivity.

We now state a simple result that we use later in the proofs.

LEMMA 4.1. Let p1, p2, . . . , pn be points on a plane and for
each pair i, j with 1 ≤ i, j ≤ n, we say that pi and pj are
connected if d(pi, pj) ≤ C, where C > 0 is a constant. Let
mi be the number of points pj 6= pi such that d(pi, pj) ≤ C.
If p1, p2, . . . , pn form a connected network, i.e., there exists at
least one path between every pair of points, then for n ≥ 2,

nX
i=1

mi

n− 1
≥ 2 (15)

By Lemma 4.1, as n → ∞, the average number of mi is at
least 2. Therefore, it is not surprising that we get very similar
optimal deployment patterns for providing coverage and 1-
connectivity as for providing coverage and 2-connectivity.

However, since having two connected neighboring sensors
is not necessary to achieve 1-connectivity, the method for
proving the necessity of the strip based deployment (shown
in Figure 2) for achieving coverage and 1-connectivity is more
involved.

Let ϕ, Φk,n, Ψk,n be as defined in Section 2. The following
lemma is a key result towards proving the asymptotic opti-
mality for coverage and 1-connectivity.

LEMMA 4.2. Consider a deployment of m sensors that pro-
vides both coverage and 1-connectivity. Let {Φki,ni : 1 ≤
i ≤ m} be the set of k-sided chord polygons generated by this
deployment. If this set satisfies the following conditions for
rc/rs <

√
3 (i.e., π/3 < ϕ < π):

(1)
Pm

i=1 ki ≤ 6m,
(2)

Pm
i=1 ni ≥ 2m,

(3) ∀1 ≤ i ≤ m, ni ≥ 1
then

Pm
i=1 |Φki,ni | attains its maximum (over all deployments

that achieve coverage and 1-connectivity) when Φki,ni (∀1 ≤
i ≤ m) is an Ψ6,2.

See Appendix A for a proof of Lemma 4.2. The following
theorem states the number of sensors necessary for providing
coverage with 1-connectivity.

THEOREM 4.1. Let N(rs, rc) be the minimum number of
sensing disks, Drs , which cover a square with area L2 and the
centers of which (sensors) form a 1-connected network using rc.
If rc/rs <

√
3, then

lim
rs→0

πr2
sN(rs, rc) = π

�
sin ϕ + 2 sin

π − 2ϕ

2

�−1

L2. (16)

PROOF. To prove (16), we need to prove

lim inf
rs→0

πr2
sN(rs, rc) ≥ π

�
sin ϕ + 2 sin

π − 2ϕ

2

�−1

L2 (17)

and

lim sup
rs→0

πr2
sN(rs, rc) ≤ π

�
sin ϕ + 2 sin

π − 2ϕ

2

�−1

L2.

(18)
We use Lemma 4.2 to prove (17). Consider a deployment that
uses N(rs, rc) sensors to provide full coverage and connectiv-
ity. Let {Φki,ni : 1 ≤ i ≤ N(rs, rc)} be the set of k-sided
chord polygons generated by this deployment. Since this de-
ployment provides full coverage, we have

N(rs,rc)X
i=1

|Φki,ni | ≥ L2. (19)

Observe that the three conditions stated in Lemma 4.2 are
satisfied by this deployment. Lemma 1 in [6] ensures that
condition (1) is satisfied by all deployments that provide full
coverage. Lemma 4.1 ensures that condition (2) is satisfied by
all deployments that provide 1-connectivity. Condition (3) is
trivially satisfied by all deployments that provide connectivity.
Applying Lemma 2, we obtain

N(rs,rc)X
i=1

|Ψ6,2| ≥
N(rs,rc)X

i=1

|Φki,ni |. (20)

Using (19), (20), and the fact that |Ψ6,2| = r2
s(sin ϕ+2 sin π−2ϕ

2
),

we obtain

N(rs, rc)r
2
s

�
sin ϕ + 2 sin

π − 2ϕ

2

�
≥ L2, (21)

which yields (17).
The proof of (18) closely follows the proof of (9) in the

proof of Theorem 3.1. When rc/rs <
√

3 so that π/3 < ϕ,
|Ψ6,2| = A6,2. Therefore, when rc/rs <

√
3, (18) reduces

to (9). Further, since the strip-based deployment presented in
Figure 2 asymptotically needs the same number of sensors as
that of Figure 1, (18) follows from the proof of (9).

The next theorem, which follows immediately from the proof
of Theorem 4.1, proves the optimality of the strip-based de-
ployment presented in Figure 2.

THEOREM 4.2. The strip based deployment, shown in Fig-
ure 2, is asymptotically optimal for achieving coverage and con-
nectivity, when rc/rs <

√
3.

5. HOW GOOD ARE SOME REGULAR DE-
PLOYMENT PATTERNS?

In this section, we consider four popular regular patterns
of deployment — hexagon, square grid, rhombus, and equi-
lateral triangle (all of which are shown in Figure 3). These
patterns are often used in practice for convenience of deploy-
ment (or to achieve a higher degrees of connectivity). We ad-
dress the following two questions in this regard — (1) which
of these regular patterns is more efficient than the others (in
terms of the number of sensors needed)? (2) what is the ef-
ficiency of these regular deployment patterns as compared to
the optimal pattern? We comprehensively address the first of
these questions in Section 5.1 and the second in Section 6.

5.1 Efficiency of Some Regular Deployment
Patterns



In a regular topology (composed of homogeneous patterns),
the area of the APN (see Definition 2.3), denoted by γ, can be
computed as follows:

γ =
Ap

Np
·Nn, (22)

where Ap is the area of the pattern, Np denotes the number
of nodes that compose a pattern, and Nn denotes the number
of pattern blocks that share a node. For example, as shown
in Figure 6, in a hexagon pattern, Np = 6 and Nn = 3; in
a triangular lattice pattern, Np = 3 and Nn = 6; and in a
square pattern, Np = 4 and Nn = 4.

Figure 6: Regular pattern based networks, (a) A hexagon
pattern is composed of 6 nodes, and any single node is
shared by 3 pattern blocks. (b) An equilateral pattern is
composed of 3 nodes and any single nodes is shared by
6 pattern blocks. (c) A square pattern is composed of 4
nodes, and any single node is shared by 4 pattern blocks.
The polygons with the dotted line are Voronoi Polygons in
different deploy pattern.

We now state a lemma for ease of reference. A simple,
convex polygon whose vertices all lie on its circumcircle is
said to be a cyclic polygon. (For instance, all regular simple
polygons, all triangles, and all rectangles are cyclic.)

LEMMA 5.1. Let sensors be deployed at the vertices of a cyclic
polygon P . If P ’s circumcenter falls in its interior, then the
polygonal region (enclosed by P ) is fully covered by the sensors
iff P ’s circumcenter is covered.

PROOF. The “only if” part is obvious. For the “if” part, let
P be any cyclic polygon with its circumcenter, o, inside the
polygon. Assume o is covered. Then the sensing range satis-
fies rs ≥ d(o, v) for any vertex v in P . Let x 6= o be any point
inside the polygon. There is an edge (a, b) on P such that x
is inside (or on the boundary of) the triangle abo. Evidently,
either d(x, a) ≤ d(o, a) or d(x, b) ≤ d(o, b). Thus, x is cov-
ered by at least one of the sensors at a and b. This proves the
lemma.

Since APN denotes the average contribution of each node
to the coverage in a regular pattern based topology, we use
it to determine the efficiency of a pattern. For each pattern,
we want to maximize its APN, while guaranteeing that each
point in the deployment region is covered and the network
is connected. According to Lemma 5.1, it can be shown that
the maximum APNs for the regular hexagon-based topology,
square grid topology, and the triangular lattice topology, de-
noted by γH

max, γS
max, γT

max respectively, are given by the fol-

lowing expressions:

γH
max =

3

4

√
3(min{rc, rs})2 (23)

γS
max = 2

�
min

�
rs,

√
2

2
rc

��2

(24)

γT
max =

3

2

√
3

�
min

�
rs,

√
3

3
rc

��2

(25)

We now derive the maximum APN for the rhombus-based
topology, denoted by γR

max. Observe that a rhombus can be
divided into two congruent acute isosceles triangles as shown
in Figure 73. Also, observe that when the acute angle of a
rhombus is π/2, we get a square. Therefore, the grid topol-
ogy, which is based on a square pattern, is a special case of
the rhombus-based topology. Similarly, when we set the acute
angle of a rhombus equal to π/3, we get two equilateral trian-
gles composing the rhombus. In this case, the rhombus-based
topology becomes a triangular lattice topology (which is com-
posed of equilateral triangles).

THEOREM 5.1. Let γR(rc, rs, θ) denote the APN in a rhombus-
based topology with acute angle θ that provides both coverage
and connectivity with a communication radius of rc and a sens-
ing radius of rs. Then,

γR(rc, rs, θ) = α2(rc, rs, θ) sin θ (26)

where α(rs, rc, θ) = min{rc, 2rs cos θ
2
}. The maximum value

of γR(rc, rs, θ), γR
max, occurs at θ = π

2
when rc

rs
≤ √

2, at
θ = π − 2 arcsin rc

2rs
when

√
2 ≤ rc

rs
≤ √

3, and at θ = π
3
,

when
√

3 ≤ rc
rs

.

PROOF. To maximize the APN of a rhombus-based pattern,
it is sufficient to maximize the area of the rhombus. This is
because for θ > π/3, Nn/Np = 1, and therefore APN is the
same as Ap, the area of the rhombus pattern. For θ ≤ π/3, the
rhombus pattern deployment can be considered a deployment
in the triangular pattern since the three sensors making up a
triangle are within a distance of rc or less of each other. In
this case, Nn/Np = 2, and therefore APN is the same as twice
the area of a triangle, which is same as the area of a rhombus.

Now, any rhombus can be divided into two congruent acute
isosceles triangles. Therefore, to maximize the area of a rhom-
bus, it is sufficient to maximize the area of each of its isosceles
triangles. Without loss of generality, we consider one of these
isosceles triangles, as shown in Figure 7. In Figure 7, we con-
sider the triangle abc so that ∠abc = θ.

Figure 7: half of the rhombus pattern with d, θ1 and θ2

The point o in Figure 7 is the circumcenter of the triangle
abc. Let d be the length of the radius of the circumcircle for the
triangle abc. This implies that d(o, a) = d(o, b) = d(o, c) = d.

3We consider an isosceles triangle an acute isosceles triangle
if every angle of this triangle is at most π/2.



By Lemma 5.1, we know that in order for the sensors located
at the vertices of the triangle abc, the circumcenter o must
be covered by each. Therefore, to achieve full-coverage, we
must have

d ≤ rs (27)

To achieve connectivity, we must have d(a, b) ≤ rc. This con-
straint holds even if d(a, c) < d(a, b); otherwise connectivity
in the horizontal direction will not be ensured. Let ∠aob = θ1,
then θ1 = π−θ. The constraint d(a, b) ≤ rc can be now rewrit-
ten as

d ≤ rc

2y
, (28)

where y = sin(θ1/2).
Now, we find the maximum value of the area of the trian-

gle abc while satisfying the constraints (27) and (5.1). Let
∠aoc = θ2. Then, the area of this triangle, At, is given by

At =
1

2
d2(sin(θ1) + sin(θ1) + sin(θ2)). (29)

Using the fact that θ1 and θ2 satisfy: 2θ1 + θ2 = π and with
some calculation, (29) can be rewritten as

At = 4d2y3
p

1− y2, (30)

where 0 < y = sin(θ1/2) < 1.
We consider two cases for maximizing At while satisfying

the constraints (27) and (5.1) —
[Case 1]: When rs ≤ rc/2y, only constraint (27) need be

considered i.e. d ≤ rs. The objective function At can now
be considered as the product of two independent functions
At = f(d)g(y), where f(d) = 4d2 and g(y) = y3

p
1− y2.

Since both f(d) and g(y) are positive functions, we can
maximize them separately to maximize the objective function
At. The function f(d) is maximized when d = rs, because
f(d) is a monotonically increasing function on 0 < d ≤ rs.
The function g(y) is a concave for 0 < y < 1, achieving
its maximum when y =

√
3/2. So, g(y) is increasing when

0 < y ≤ √
3/2 and decreasing when

√
3/2 ≤ y < 1. There

are two constraints on y : 0 < y < 1 and y ≤ rc/2rs. There-
fore, g(y) attains its maximum at y = min(rc/2rs,

√
3/2).

Hence, we obtain if rc/2rs ≤
√

3/2, At is maximized when
y = rc/2rs, and if rc/2rs ≥

√
3/2, At is maximized when

y =
√

3/2.
[Case 2:] When rs ≥ rc/2y, only (5.1) needs to be consid-

ered, i.e. d ≤ rc/2y. Then the maximum value of At occurs
at a value of y that maximizes h(y) = r2

cy
p

1− y2.
The function h(y) is concave when 0 < y < 1 attaining

its maximum when y =
√

2/2. Further, h(y) increases in
the interval 0 < y <

√
2/2, and decreases in the interval√

2/2 < y < 1. From the constraint, rs ≥ rc/2y, we get
that y ≥ rc/2rs. Therefore, At attains its maximum when
y = max(rc/2rs,

√
2/2).

Hence, in this case, we obtain that if rc/2rs ≤
√

2/2, At

is maximized when y =
√

2/2, and if rc/2rs ≥
√

2/2, At is
maximized when y = rc/2rs.

By combining the two cases, we obtain that if rc/rs ≤
√

2,
γR

max occurs when y =
√

2/2, if
√

2 ≤ rc/rs ≤
√

3, γR
max

occurs when y = rc/2rs, and if rc/rs ≥ √
3, γR

max occurs
when y =

√
3/2. The theorem now follows by noting that

y = sin θ1/2, which can be rewritten as θ1 = 2 arcsin(y), and
recalling that θ1 = π − θ. The later relation can be rewritten
in terms of y as θ = π − 2 arcsin(y).

Now we state a theorem that summarizes which regular
pattern is better than the other three for different ranges of
rc/rs.

THEOREM 5.2. Consider a network of homogeneous sensors
with sensing radius rs and communication radius rc deployed
over a unit square region that is required to provide both full-
coverage and connectivity. Let γmax be the maximum APN of the
four regular deployment patterns — hexagon, square, rhombus,
and triangular lattice. Then,

γmax =

8>>><>>>:
γH

max, when 0 < rc
rs
≤ 1

2
3

3
4 ,

γS
max, when 1

2
3

3
4 ≤ rc

rs
≤ √

2,

γR
max, when

√
2 ≤ rc

rs
≤ √

3,

γT
max, when

√
3 ≤ rc

rs
,

(31)

where γH
max, γS

max, γR
max, and γT

max are defined in (23), (24), (26),
and (25), respectively.

PROOF. We prove the theorem by comparing the values of
γH

max, γS
max, γR

max, and γT
max for different values of rc/rs.

We rewrite the APNs as follows:

γH
max =

3

4

√
3r2

s

�
min

�
1,

rc

rs

��2

(32)

γS
max = r2

s

�
min

�√
2,

rc

rs

��2

(33)

γT
max =

√
3

2
r2

s

�
min

�√
3,

rc

rs

��2

(34)

When rc/rs ≤
√

2 the rhombus pattern reduces to a square
and so that γR

max = γS
max. When

√
3 ≤ rc/rs, the rhombus

pattern reduces to the triangular lattice so that γR
max = γT

max.
So, we only need to determine γR

max when
√

2 ≤ rc/rs ≤
√

3.
In this case γR

max occurs at θ = (π − 2 arcsin(rc/2rs)) so that
2 cos(θ/2) = rc/rs. Now, γR

max can be rewritten as

γR
max = r2

c sin(θ), (35)

where π/3 ≤ θ ≤ π/2 and
√

2 ≤ rc/rs ≤
√

3.
Now, if rc/rs ≤ 1, clearly, γR

max does not apply and γH
max

is greater than the other two. Also, notice that from the
condition of Theorem 5.1, rhombus reduces to a square, if
rc/rs ≤

√
2. Therefore, in this case, the hexagonal deploy-

ment is the best deployment pattern. We will now explore
for what further values of rc/rs hexagonal pattern contin-
ues to beat other patterns. When rc/rs ∈ [1,

√
2], notice

that γS
max > γT

max. So, we only need to compare γH
max with

γS
max. Notice that when rc/rs ∈ [1,

√
2], γH

max = 3
√

3r2
s/4 and

γS
max = r2

s(rc/rs)
2, which implies that γH

max ≥ γS
max, when

rc/rs ≤
q

3
√

3/4 = 1
2
3

3
4 .

Similar calculation yields the other three conditions.

6. NUMERICAL COMPUTATION
In this section, we compare the number of nodes needed

to provide both coverage and connectivity over a deployment
region of size 1, 000m × 1, 000m with rs = 30m, and 24m ≤
rc ≤ 75m, when different patterns are used4. To determine
the number of nodes needed in each of the four regular pat-
terns of deployment (hexagon, square, rhombus, and equilat-
eral triangle), we divide the area of the deployment region by
4For simplicity, we do not consider the number of nodes
needed to cover the boundary of the deployment region.



the maximum APN (see Definition 2.3 and (22)) of the cor-
responding patterns. For the optimal strip-based deployment
patterns, we use the construction provided in Section 3.1 and
in the first paragraph of Section 4 to compute the number
of nodes needed by them. Figure 8 shows the results of our
computation.
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Figure 8: Number of nodes needed in the different pat-
terns of deployment (hexagon, square, rhombus, trian-
gle, and the optimal strip-based deployment patterns)to
achieve both coverage and connectivity for various values
of rc/rs, when sensors each with rs = 30m are deployed
over a 1, 000m× 1, 000m deployment region. The commu-
nication range rc is varied from 24 m to 75 m.

We make the following observations. First, the number of
nodes needed by the two strip based deployments (shown in
Figure 1 and Figure 2) are close. In our example, and for
rc/rs = 0.8, they differ by approximately 3%. In general,
the optimal deployment pattern to achieve coverage and 2-
connectivity requires κ additional nodes in a square deploy-
ment region of length L, as compared to the optimal de-
ployment pattern for coverage and 1-connectivity, where κ =
(L/β) (dδ/rce − 1) , using the definitions from Section 3.1.
Second, regular deployment patterns, while using some extra
nodes over the optimal, can provide a higher degree of con-
nectivity than the optimal strip-based patterns when rc/rs <√

3. Finally, out of the four regular patterns of deployment we
consider, no pattern is the best for all values of rc/rs. More
concretely, the following holds:

1. When rc/rs ≥
√

3, the triangle based pattern is optimal
to achieve both coverage and connectivity. In fact, it
provides 6-connectivity for this range of rc/rs.

2. When
√

2 ≤ rc/rs ≤
√

3, the rhombus-based pattern
provides coverage and 4-connectivity, while requiring
at most 21% more nodes than the optimal. This implies
that for this range of rc/rs, coverage and 4-connectivity
can be achieved by deploying less than 21% extra nodes,
provided they are deployed in a rhombus-based pattern.

3. When 1.1398 ≤ rc/rs ≤
√

2, the square grid pattern
provides coverage and 4-connectivity, but the number
of sensors it needs over the optimal start to increase

sharply with a decrease in the value of rc/rs. It sug-
gests that using the square grid pattern may be expen-
sive (requiring upto 60% more than the optimal) when
rc/rs < 1.14.

4. For rc/rs < 1.14, hexagon pattern provides coverage
and 3-connectivity. The number of nodes needed by the
hexagon pattern remains constant for 1 ≤ rc/rs ≤ 1.14,
implying that the number of sensors it needs over opti-
mal decreases in this range. At rc = rs, it needs 44%
more nodes than the optimal. When rc/rs < 1, how-
ever, the number of sensors it needs over the optimal,
starts to increase exponentially. The number of sensors
needed by other regular patterns in this range of rc/rs,
is only worse. The implication is that when rc/rs < 1,
using the strip-based pattern over other regular patterns
of deployment can result in significant saving in the
number of sensors needed.

7. CONCLUSION
In this paper, we addressed the problem of determining

an optimal deployment pattern that achieves both coverage
and k-connectivity. We proposed a strip-based deployment
pattern to achieve coverage and 2-connectivity, and proved
its optimality. We also proved the optimality of a previously
proposed strip-based deployment pattern to achieve coverage
and 1-connectivity. Finally, we established the efficiency of
popular regular patterns of deployment, thus enabling a de-
ployer make a more informed decision.

Several problems still remain open in this space, though.
The problem of determining an optimal deployment pattern
that achieves `-coverage and k-connectivity for general values
of ` and k is still open. Also, the problem of determining opti-
mal deployment patterns that use statistical models of sensing
and communication ranges to make probabilistic guarantees
on coverage and connectivity, is yet to be addressed. We plan
to address these open problems in our future work.
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10. APPENDIX A
In this appendix, we make extensive use of Definitions 2.8

and 2.9. We first develop a series of lemmas (Lemma 10.1
through Lemma 10.5). For these lemmas, the following fact
on |Ψk,n|, which follows from the definition of Ψ (see Defini-
tion 2.9), is extensively used in the proofs that are omitted in
this paper.

|Ψk,n| = 1

2
r2

s

�
n sin ϕ + (k − n) sin

2π − nϕ

k − n

�
.

LEMMA 10.1. Let ei, 1 ≤ i ≤ k, be the edges of a Φk,n such
that ∀i : 1 ≤ i ≤ n : |ei| ≥ `, where ` is as defined in Defi-
nition 2.5. Also, let Φ′k,n be a k-sided polygon inscribed in Drs

such that it has n sides, each with length (e1 + · · ·+en)/n, with
remaining sides having equal length (potentially different from
(e1 + . . . + en)/n). Finally, let |Φ′k,n| be the area of polygon
Φ′k,n. Then, |Φk,n| ≤ |Φ′k,n|.

LEMMA 10.2. If k ≥ 6, then |Φk,n| ≤ |Ψk,n|.

LEMMA 10.3. If k ≥ 6 and n1 ≥ n2, then |Ψk,n1 | ≤ |Ψk,n2 |.

LEMMA 10.4. If k1 ≤ k2, then |Ψk1,n| ≤ |Ψk2,n|.

LEMMA 10.5. If n1 ≥ 1 and k1 − n1 ≥ 5, then |Ψk1,n1 | −
|Ψk1−1,n1 | ≤ |Ψ6,1| − |Ψ5,1|.

We now prove Lemma 4.2.

PROOF. In our proof, The basic idea we use in proving
Lemma 4.2 is a series of allowed transformations that change
Φki,ni (1 ≤ i ≤ m) into Ψ6,2. We consider a transformation
allowed if and only if it changes some Φki,ni , and its result
still satisfies the three conditions, but doesn’t reduce the value
of
Pm

i=1 |Φki,ni |.
By Lemma 10.1, we may assume that for a Φk,n, n edges of

length at least ` are equal to each other in length, as are the
other (k− n) edges. By Lemma 10.2, we may further assume
that a Φk,n is a Ψk,n for k ≥ 6. Lemma 10.3 through 10.5
show the relationship between areas of the chord polygons
used in transformation.

When π/3 < ϕ < π, we have rs < ` < 2rs, which we can
divide into three subintervals rs < ` ≤ √

2rs,
√

2rs < l ≤√
3rs, and

√
3rs < l < 2rs.

We first prove the lemma in the subinterval rs < ` ≤ √
2rs

so that π/3 < ϕ ≤ π/2. For k ≤ 3, no Φk,n exists for this
range of ϕ. Therefore, we only consider k ≥ 4. For k = 4, n
has to be 4 so that we only have Φ4,4, i.e., Ψ4,4.

We divide our proof in six steps.
Step 1. If @i : 1 ≤ i ≤ m such that ki > 6, then we may

transform each Φki,ni for ni > 1 into Ψ6,ni and then trans-
form Ψ6,ni into Ψ6,2. By Lemma 10.3 and Lemma 10.4, it
can be verified that this transformation is allowed. For Φ5,1,
notice 2π/5 < ϕ ≤ π/2, transform it to Ψ6,2. This transfor-
mation is allowed and then Lemma 4.2 is proved. Hence, we
may assume that ∃i such that ki > 6.

Step 2. In this subinterval rs < ` ≤ √
2rs, no Ψki,1 ex-

ists when ki < 5. If ∃j such that kj > 6 and kj − nj > 4,
then we may transform Φ5,1 into Ψ6,1, and at the same time
transform Ψkj ,nj into Ψkj−1,nj . By Lemma 10.5, this trans-
form is allowed. If such a j does not exist, we only have
Ψ7,3, Ψ7,4, Ψ7,5, Ψ8,4, Ψ8,5 and Ψ9,5 for ki > 6. It can be ver-
ified that, among all the decreases in area that result from
transforming these six Ψki,ni into Ψki−1,ni , the biggest oc-
curs when transforming Ψ7,3 into Ψ6,3. So we only need to
prove that the transformation which transforms Φ5,1 into Ψ6,1

and at the same time transforms Ψ7,3 into Ψ6,3 is allowed. In
fact, the transformation which transforms Φ5,1 into Ψ6,1 will
increase the area of the polygon by at least

1

2
r2

s

�
5 sin

3π

10
− 4 sin

3π

8

�
= 0.1748 · · · r2

s ,

and the transformation that transforms Ψ7,3 into Ψ6,3 will
decrease the area by at most

1

2
r2

s

�
4 sin

π

4
− 3 sin

π

3

�
= 0.1152 · · · r2

s .

Hence, the above transformation is allowed. Therefore, we
may assume that ni 6= 1 for ki < 6. We may further assume
that there must exist Ψki,1 or Ψki,2 for ki > 5. Otherwise,
we can transform Ψki,ni into Ψki,2 for each ki > 5, and by
Lemma 10.3, this transformation is allowed.

Step 3. Let Ψ = {Ψki,ni : ki > 6} and Ψ′ = {Φki,ni : ki <
6}. By Step 2 above, we only need to consider Φ4,4 and Φ5,n

for 1 < n ≤ 5 in Ψ′.
We define a relation (or multivalued mapping) R from Ψ to

Ψ′ as follows such that for any pair Ψki,ni , Ψkj ,nj ∈ Ψ (i 6=
j), either R(Ψki,ni) = R(Ψkj ,nj ) or R(Ψki,ni)∩R(Ψkj ,nj ) =
∅.

Let Ψki1 ,ni1
∈ Ψ. We consider the odd and even values of

ki1 separately.
Case 1. ki1 is odd.



(1) If ∃Φ5,n ∈ Ψ′, then one Φ5,n and
ki1−7

2
Φ4,4 are taken

from Ψ′ as the value of R(Ψki1 ,ni1
). When there are not

enough Φ4,4, two Φ5,n can be used instead.
(2) If @Φ5,n ∈ Ψ′ and @Ψki2 ,ni2

∈ Ψ with i2 6= i1 for odd

ki2 , then
ki1−6+1

2
Φ4,4 are taken from Ψ′ as the value for

R(Ψki1 ,ni1
).

(3) If @Φ5,n ∈ Ψ′ and @Ψki2 ,ni2
∈ Ψ with i2 6= i1 for odd

ki2 , then
ki1+ki2−6

2
Φ4,4 are taken from Ψ′ as the value for

both R(Ψki1 ,ni1
) and R(Ψki2 ,ni2

).
Case 2. ki1 is even.
Then, the value for R(Ψki1 ,ni1

) is
ki1−6

2
Φ4,4 in Ψ′ . When

there are not enough Φ4,4, two Φ5,n can be used instead.
For a given Ψk,n ∈ Ψ, if ∃R(Ψk,n), then we define

R−1R(Ψk,n) = {Ψki,ni ∈ Ψ : R(Ψk,n) = R(Ψki,ni)}.
Let Ψ be Ψ \ R−1R(Ψki1 ,ni1

). Then we take a Ψki,ni ∈
Ψ, and then repeat above procedure to define R(Ψki,ni) ⊆
Ψ′ \ R(Ψki1 ,ni1

). After finite steps, the relation R will be
completely specified.

For a Φki,ni ∈ Ψ′, we define

R−1(Φki,ni) = {Ψkj ,nj ∈ Ψ : Φki,ni ∈ R(Ψkj ,nj )}.
From condition (1) in the lemma, there may exist some Φki,ni ∈
Ψ′ such that R−1(Φki,ni) = ∅. For all Φki,ni ∈ Ψ′ with
R−1(Φki,ni) = ∅, we transform it to Ψ6,2. It can be verified
that this transformation is allowed. Hence, we may assume
that for any Φki,ni ∈ Ψ′, R−1(Φki,ni) 6= ∅.

Step 4. Without loss of generality, we may assume that
R−1(Φ4,4) = Ψ8,1 or that R−1(Φ4,4) consists of two Ψ7,1.
(For, otherwise, there must be some Φki,ni ∈ Ψ′ such that
R−1(Φki,ni) = R−1(Φ4,4), and we can transform all the other
Φki,ni into Ψ6,2, and at the same time transform R−1(Φ4,4)
into Ψ8,1 or two Ψ7,1. It can be also verified that the above
transformation is allowed.)

If R−1(Φ4,4) = Ψ8,1, then we transform Φ4,4 and Ψ8,1 into
two Ψ6,2. Since changing a Φ4,4 into a Ψ6,2 will increase the
area of the polygon by

1

2
r2

s

�
4 sin

π

4
− 2 sin

π

2

�
= 0.4142 · · · r2

s ,

while transforming Ψ8,1 into Ψ6,2 will decrease the area of
the polygon by at most

1

2
r2

s

�
7 sin

3π

14
− 4 sin

4π

4
− sin

π

2

�
= 0.2282 · · · r2

s .

Hence, this transformation is allowed.
If R−1(Φ4,4) consists of two Ψ7,1, we transform the Φ4,4

and the two Ψ7,1 into three Ψ6,2. Since changing two Ψ7,1

into two Ψ6,2 will decrease the area of the polygon by at most

r2
s

�
2sin

π

4
− sin

π

2

�
= 0.4142 · · · r2

s .

Hence, this transformation is also allowed.
Step 5. For Φ5,j ∈ Ψ′(j = 2, 3, 4), using a similar argu-

ment as in step 4, we may assume that R−1(Φ5,j) = Ψ7,1. We
transform Φ5,j and Ψ7,1 into two Ψ6,2. Since changing a Φ5,j

(j = 2, 3, 4) into a Ψ6,2 will increase the area of the polygon
by at least

1

2
r2

s

�
4 sin

3π

10
− 3 sin

2π

5

�
= 0.1914 · · · r2

s ,

for j = 2, 3, 4, while changing Ψ7,1 into Ψ6,2 will decrease the
area by at most

1

2
r2

s

�
6 sin

5π

18
− 5 sin

π

6

�
= 0.1330 · · · r2

s .

Hence, this transformation is also allowed.
Step 6. We may assume that R−1(Φ5,5) = Ψ7,1. We trans-

form Φ5,5 and Ψ7,1 into two Ψ6,2. When transforming a Φ5,5

into a Ψ6,2 will increase the area of the polygon by

1

2
r2

s

�
2 sin

2π

5
+ 4 sin

3π

10
− 5 sin

2π

5

�
= 0.1914 · · · r2

s ,

while transforming Ψ7,1 into Ψ6,2 will decrease the area by at
most
1

2
r2

s

�
sin

2π

5
+ 6 sin

4π

15
− 2 sin

2π

5
− 4 sin

3π

10

�
= 0.1358 · · · r2

s .

Hence, this transformation is allowed.
After these 6 steps, we are left with only Ψ6,2, and thus the

lemma is proved for rs < ` ≤ √
2rs.

When
√

2rs < l ≤ √
3rs, Φ3,3, Φ4,1, Φ4,2, Φ4,3 become pos-

sible. When
√

3rs < l < 2rs, Φ3,1, Φ3,2 also become possible.
The proof for these two subintervals can be carried out along
the similar lines as done for the first subinterval.

11. APPENDIX B
THEOREM 11.1. (Theorem in [6]) Let M denote a bounded

plane point set and let N(ε) be the minimum number of circles
of radius ε which can cover M. Then

lim
ε→0

πε2N(ε) = (2
√

3/9) meas M̄, (36)

where M̄ denotes the closure of M .

LEMMA 11.1. (Lemma 1 in [6]) Let Γ denote a bounded
plane network consisting of a finite number of finite polygons.
Suppose that each vertex of Γ is on at least three edges. Then
the average number of sides of the polygons of Γ is < 6.

LEMMA 11.2. (Lemma 2 in [6]) Let σ be a fixed circle and
let Ak denote the area of a regular polygon of k sides inscribed
in σ. Then for k ≥ 3,

0 < Ak+1 −Ak < Ak −Ak−1. (37)

LEMMA 11.3. (Lemma 3 in [6]) With the notations of above
lemma, and k > j ≥ 3,

(k− j)(Ak −Ak−1) ≤ Ak −Aj ≤ (k− j)(Aj+1 −Aj). (38)

LEMMA 11.4. (Lemma 4 in [6]) Let Γ denote a bounded
plan network consisting of F finite polygons. Suppose that each
vertex of Γ is on at least three edges. Suppose, finally, that each
polygon of Γ can be covered by a circle σ of fixed radius r. Then
the total area of Γ is < FA6, where A6 = (3

√
3/2)r2 is the

area of a regular hexagon inscribed in σ.

LEMMA 11.5. (Lemma 5 in [6]) Let ρ denote a rectangle in
the plane with area R. Let N(ε) denote the minimum number
of circles of radius ε which can cover ρ. Then

πε2N(ε) > (2π
√

3/9)(R− 2πε2). (39)

LEMMA 11.6. (Lemma 6 in [6]) Let ρ denote a rectangle in
the plane with area R and perimeter p. Let N(ε) denote the
minimum number of circles of radius ε which cover ρ. Then

πε2N(ε) < (2π
√

3/9)(R + 2πε + 16ε2). (40)


