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Abstract—Although random deployment is widely used in
theoretical analysis of coverage and connectivity, and evaluation
of various algorithms (e.g., sleep-wakeup), it has often been
considered too expensive as compared to optimal deterministic
deployment patterns when deploying sensors in real-life. Roughly
speaking, a factor of log n additional sensors are needed in
random deployment as compared to optimal deterministic de-
ployment if n sensors are needed in a random deployment.
This may be an illusion however, since all real-life large-scale
deployments strategies result in some randomness, two prime
sources being placement errors and sensor failures, either at the
time of deployment or afterwards.

In this paper, we consider the effects of placement errors and
random failures on the density needed to achieve full coverage
when sensors are deployed randomly versus deterministically.
We compare three popular strategies for deployment. In the first
strategy, sensors are deployed in an optimal lattice but enough
sensors are colocated at each lattice point to compensate for
failure and placement errors. In the second, only one sensor is
deployed at each lattice point but lattice spacing is sufficiently
shrunk to achieve a desired quality of coverage in the presence of
failure and placement errors. In the third, a random deployment
is used with appropriate density.

We derive explicit expressions for the density needed for
each of the three strategies to achieve a given quality of
coverage, which are of independent interest. In comparing the
three deployments, we find that if errors in placement are
half the sensing range and failure probability is 50%, random
deployment needs only around 10% higher density to provide
a similar quality of coverage as the other two. We provide
a comprehensive comparison to help a practitioner decide the
lowest cost deployment strategy in real-life.

I. INTRODUCTION

Given the ever increasing number of new applications that
are becoming possible with wireless sensors, the importance
of educated deployments of wireless sensors continues to
increase. Knowing the appropriate number of sensors to deploy
is critical to ensuring that a desired quality of monitoring is
achieved at the lowest possible cost. Although optimal patterns
of deployment to ensure full coverage (i.e., covering every
point in the region) when deploying sensors deterministically,
and critical density needed to achieve full coverage when
deploying randomly, has been studied extensively [2], [7], [9]–
[11], joint effects of placement errors and sensor failures on
the optimal/critical densities has not been addressed before.

It is known that triangular lattice is an optimal pattern of
deployment to achieve full coverage [2]. It is also known that
if sensors are placed accurately and they are 100% reliable,

optimal deterministic deployment will need O(log n) times
fewer sensors versus a random deployment, where n is the
number of sensors needed in a random deployment [7]. Thus it
appears that deterministic deployments are far superior. How-
ever, such a conclusion is illusory. For one, placing sensors
in such a pattern is cumbersome, at best. Second, placement
errors are inherent, and they introduce coverage holes in the
region. Third, failure of sensors, which is also quite likely
(especially in an outdoor unattended deployment [5]), will
cause even larger coverage holes.

One intuitive method to address both of these perturbations
is to place multiple sensors at each point of the triangular
lattice (OPT). Another approach is to place sensors in a lattice
(or grid), but scale down the grid spacing sufficiently so
as to achieve full coverage with this fine lattice (FLAT).
This model was first studied in [8] for unreliable sensors
and subsequently refined in [7], [11]. Placement errors are,
however, not considered in either work.

The third approach, which is widely used in theoretical
studies and simulations, is to deploy sensors randomly ac-
cording to a uniform Poisson process (RAND). In this case,
placement error has no effect, since a Poisson deployment
with placement error is still a Poisson deployment. Similarly,
Poisson deployment with random failures is again a Pois-
son deployment but with lower density. The density needed
to achieve full coverage for random deployment has been
extensively studied [7], [9], [10]. However, these give only
asymptotic results, and it is not clear how large n must be for
the estimates to become sufficiently accurate, limiting their
usefulness in practice.

In this paper, we investigate the three deployment strategies
described in the preceding for their relative efficiency. To make
our results more useful for practitioners, we use the number
of coverage holes as our metric. Traditionally, area of vacant
region has been used to indicate the extent of coverage [9],
[10]. Notice that even if the area of vacant region is small,
there could be many coverage holes. On the other hand, if the
number of coverage holes < 1, it implies full coverage.

We make the following contributions in this paper:
1) Comprehensive treatment of one dimension: We give

reliable, explicit estimates of the density needed in
each of the three deployment strategies for given failure
probability and given degree of placement error in the
1-dimensional case. (Section III)
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2) Reliable density estimates in two dimensions: We give
reliable estimate of density needed for RAND, but for
the other two strategies only when the placement error
is zero. For FLAT and OPT with non-zero placement
errors, the analysis becomes highly involved. Our esti-
mates for RAND are much more accurate than known
asymptotic critical conditions, making them useful for
practical deployments. Previously, only asymptotic crit-
ical conditions for the FLAT deployment under failures
were known [7], [11]. For OPT, we are not aware of any
existing work that considers sensor failures. (Section IV)

3) Guidance on when to use which: We compare each
of the three deployments for various values of failure
probabilities and placement errors and point out the
difference in density therein.

II. MODEL AND KEY OBSERVATIONS

Consider a wireless sensor network deployed in a large area.
For simplicity we shall assume all sensors detect events within
a disk, with common sensing range r = 1. (Similar results
will in fact hold for most plausible shapes of sensing region.)
We model the error in sensor placements by a symmetric bi-
variate gaussian distribution with probability density function

1
2πσ2 exp(−‖x−x0‖2/2σ2), where x ∈ R2 is the actual sensor
position, x0 ∈ R2 is the target position, and σ is the standard
deviation in each coordinate of the vector x − x0. We shall
also assume sensors are active with probability p (i.e., fail with
probability 1−p). Finally, we assume the errors in location and
failure events of each sensor are independent, and independent
of all the other sensors. Note that failure independence has
been observed in real-life deployments [5].

If we wish to minimize the number of sensors required,
then triangular grid placement is known to be optimal with
an asymptotic density of 2/

√
27 ≈ 0.3849 [2]. Note the

obvious lower bound of 1/π ≈ 0.3183, since each sensor
can only sense a region of area π. It is also known that for
random uniform deployment, the density of sensors required
is asymptotically about 1

π (1 + o(1)) log |A| where |A| is the
area of the deployment region A. Since this tends to infinity
as |A| → ∞, it seems that deterministic deployment is far
superior to random deployment. This would indeed hold if
there were no failures or placement errors. However, for
any constant value of p < 1 the density of sensors needed
to ensure a reasonable chance of coverage will be roughly
proportional to log |A|. Indeed, if we divide the region A into
about |A|/9 squares of side length 3, and if each of these
squares has at most ε log |A| sensors, then we would expect
that about (1/9)|A|(1 − p)ε log |A| = (1/9)|A|1+ε log(1−p) of
these squares not to contain any active sensor. Hence if ε
is small enough, one would expect many empty squares, and
hence many coverage holes. Similarly, for any constant σ > 0,
the density of sensors needed will tend to infinity as |A| → ∞
(possibly more slowly than log |A|). Thus for full coverage of
a large area we always need a large density in practice.

In addition to the three strategies introduced in Section I,

namely OPT, FLAT, and RAND, we shall also consider strate-
gies that are intermediate between OPT and FLAT, namely
FLAT(k): Deploy k sensors at each lattice point (for some
k ≥ 1), but scale the lattice as in FLAT.

Note that FLAT(1) is the same as FLAT. For simplicity,
and to avoid dependency on the area |A| of the deployment
region, we shall consider deployment in the infinite plane.
Reliability will be assessed by considering the asymptotic
density of coverage holes, i.e., the limit

I = lim
|A|→∞

NA
|A| ,

where NA the expected number of uncovered regions in a
disk A, say, of area |A|. It can be proved (using the Stein-
Chen method, see [1]) that with any of the above strategies the
number of coverage holes is approximately Poisson distributed
with mean I|A|, and this approximation improves for fixed
I|A| as I → 0 and |A| → ∞. Thus the probability of full
coverage is well approximated by e−I|A| for small I .

For illustration, we shall compare the hole densities I of
the different strategies for two dimensions. Figure 1 shows
diagrams giving the hole densities using strategies OPT,
FLAT(1), FLAT(2), and FLAT(3) when the density of
sensors used is sufficient to give strategy RAND a failure rate
of I = 10−2, i.e., one coverage hole on average per 102 units
of area. Contour lines indicate by what factor the density of
sensors needs to be increased when using strategy RAND so as
to match the given strategy. This slightly strange representation
was chosen since it allows simple comparison between the
strategies, while avoiding the problem that the coverage hole
densities of strategies OPT and FLAT(k) can be rather erratic
functions of the parameters when σ is small. (The coverage
hole density function I for strategy RAND is well behaved —
see below.) In each case, we vary the deployment position error
σ and sensor reliability rate p. Figure 1 also gives a diagram
for strategy OPT when I = 10−4, and a diagram indicating
which strategy is best (for I = 10−2). We now make some
key observations from these results.

Observation 1. The density of sensors required to achieve
a given level of reliability does not vary much between the
different strategies unless p ≈ 1 and σ ≈ 0.

The differences between the strategies decreases as p → 0
(unreliable sensors) or σ → ∞ (large errors in deployment)
as one might expect. However, the sensor density for uniform
deployment is only a few 10’s of percent more throughout
much of these diagrams. The differences between strategies
OPT and FLAT(k) are even smaller in general.

Observation 2. The ratio between the sensor densities
required for each strategy is largely independent of I . For
example, there is very little difference in the diagrams for
I = 10−2 and I = 10−4.

Observation 3. The best strategies seem to be OPT (for low
p and low σ, or FLAT for large σ or large p.

There are a few locations with small σ where one of the
other FLAT(k) strategies wins, but mostly the choice is
between OPT and FLAT.
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Fig. 1. Two-dimensional deployment. Ratio of densities needed as a function
of p and σ for a fixed choice of IRAND (=10−4 for bottom right and 10−2 for
the rest). Contours show by what factor density must be increased in RAND
to match reliability of strategy OPT or FLAT(k). Also shown is a diagram
(lower left) giving the best choice of these algorithms for different values of
p and σ.
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Fig. 2. One-dimensional deployment. The setup and legends are same as in
Figure 1.

In the following sections we derive estimates for the cov-
erage hole density which explain Observations 1 and 2, but
also show that Observation 3 does not tell the whole story.
In fact, as I → 0, strategy FLAT always wins, while OPT is
eventually worse than even the RAND strategy for small values
of p.

One dimensional deployment. We also consider the case of
one dimensional deployment where sensors are deployed along
a line. Simulation results for this case are shown in Figure 2,
which uses a similar framework as for the two dimensional
case. There are a number of similarities between the results
for one and two dimensional cases, however, there are also
some very significant differences.

Observation 4. Strategy OPT performs badly in the one-
dimensional case when σ > 0, and there is a discontinuity in

performance at σ = 0, while in the two dimensional case OPT
can often be quite good, and there is no such discontinuity.

As we stated above, strategy OPT is only really good in
the two dimensional case when I is not too small. In the one
dimensional case it is always bad for σ > 0.

Observation 5. Strategy FLAT is usually beaten by some
FLAT(k), k > 1, in the one-dimensional case, whereas this
is seldom true in the two dimensional case.

In the following sections, we provide analytic explanations
for each of these observations.

III. ONE-DIMENSIONAL DEPLOYMENTS

We first present our results for the one dimensional case. We
aim to study the number of sensor gaps in a long line where,
for each i ∈ Z, we place k sensors with a normal distribution
N(ih, σ2), and each sensor has a probability p of being active.
Here, h is the lattice scale, whose value is decided by the
particular deployment strategy. As discussed in Section II, we
compare only the coverage hole densities since it suffices for
comparing the probabilities of full coverage.

To count the expected number of coverage holes, consider
the probability p(x) that an active sensor (assumed to be at
position x) is immediately followed by a gap of length 2
which does not contain another active sensor. When σ > 0
one obtains (see [3] for more details)

p(x) =
∞∏

i=−∞

(
1− pΦ

(
2+x−ih

σ

)
+ pΦ

(
x−ih

σ

))k−δi0

, (1)

where φ(x) = 1√
2π

e−x2/2 is the probability density function,
and Φ(x) =

∫ x

−∞ φ(t) dt the cumulative function, of a N(0, 1)
random variable, and δi0 = 1 when i = 0 and 0 when i 6= 0.
Multiplying by the density of sensors at x and integrating over
x gives the density of coverage holes per unit length as

I(k, h, p, σ) = kp
h

∫ ∞

−∞
p(x)φ( x

σ ) 1
σ dx. (2)

Although no closed form expression for I(k, h, p, σ) seems
likely, it can be evaluated numerically quite easily. For each
of the strategies we fix the density of sensors to be ρ sensors
per unit length. Thus we require that ρ = k/h. For strategy
OPT, we fix h = 2 (so k = 2ρ) since it is clear that the optimal
deployment involves placing sensors at intervals 2 apart. For
strategy FLAT(k), we fix k (so h = k/ρ). For strategy RAND
p(x) = e−2pρ. (The number of active sensors in [x, x + 2] is
Poisson with mean 2pρ for the uniform deployment.) Thus the
intensity of coverage gaps is given explicitly by the formula

IRAND = pρe−2pρ. (3)

As σ → ∞, all the above strategies converge to strategy
RAND since the distribution of sensors becomes more uniform.
To explain the differences between the strategies, it therefore
helps to consider the case when σ is small, in particular we
shall consider the case σ = 0, when there are no errors in
positioning the sensors.

Fix k, h and p as above and σ = 0. To obtain a coverage
hole in the above model, we need at least one of k sensors at
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one point to be active, but all of the next b2/hc groups of k
sensors to fail. This occurs with probability (1−(1−p)k)(1−
p)kb2/hc, and can happen at each sensor location. Hence the
density of holes is

I(k, h, p, 0) = 1
h (1− (1− p)k)(1− p)kb2/hc

≈ (1−(1−p)k)
pk pρ(1− p)2ρ, (4)

where the approximation is exact if 2/h is an integer.
Fixing ρ and letting k vary, we see that the approxima-

tion to I(k, h, p, 0) above decreases with increasing k. In
particular, comparing strategy FLAT with FLAT(k) we have
IFLAT(k)/IFLAT = (1 − (1 − p)k)/(pk) which is always less
than 1. Of course this relies on 2/h being an integer, so in
practice IFLAT(k) will fluctuate somewhat with k. We see in
Figure 2 that the optimal value of k varies erratically with the
parameters. This is due to the rapid variations in the fractional
part of the number 2/h.

Increasing k however usually improves the strategy, and for
the largest possible k (h = 2) we obtain strategy OPT. The
reason is essentially that in all cases we need kb2/hc ≈ 2ρ
sensors to fail for a coverage hole to form, but for large k,
there are fewer choices for these sensors that actually results in
a hole. Now (3) and (4) can be inverted to find the approximate
density pρ of active sensors needed when |A| is large:

OPT pρ ≈ −p
log(1−p) log(2|A|) (σ = 0)

FLAT pρ ≈ −p
log(1−p) (log(2|A|) + log log(2|A|))

RAND pρ ≈ 1 . (log(2|A|) + log log(2|A|))
Note that −p/ log(1−p) = 1− p

2 +O(p2) is close to 1 when p
is small, and there is little difference between FLAT and OPT
for any p.

For σ > 0 but small, strategies FLAT(k) are not usually
significantly affected. However, strategy OPT is. The reason
for this is that it is possible for each group of k sensors to
contain an active sensor, yet a small coverage hole forms due
to the fact that the gap between the two groups is slightly
more than 2. Suppose σ is positive, but very small, so that
to estimate the probability of a coverage hole between, say,
x = 0 and x = 2, we can ignore the sensors which were
targeted at points other than x = 0 and x = 2. Then one can
show (see [3] and below) that for σ > 0

OPT pρ ≈ −p/2
log(1−p/2) (log(2|A|) + 1

2 log log(2|A|))
which lies between strategies RAND and FLAT. Note that this
is almost independent of σ > 0, unless σ is large enough that
the sensor location error has a reasonable chance of being
more than 2 units. We can see this on Figure 2, where the
contour lines jump from σ = 0 to σ > 0, but then stay almost
vertical until σ is large. As discussed in Section II, Figure 2
shows how many additional sensors are needed in RAND to
match the reliability of strategy FLAT(k) and OPT.

For small σ the best strategy is likely to be a slight
modification of strategy OPT, where we scale the deployment
pattern so that adjacent groups of sensors are just slightly less
than 2 units apart. Effectively this is strategy FLAT(k) with a

large, but carefully chosen k. For larger σ, differences between
the different strategies become negligible.

IV. TWO DIMENSIONAL DEPLOYMENTS

For the 1-dimensional case, (2) (or (3) or (4)) allow ad-
equate determination of the coverage hole intensity. For the
2-dimensional case, no such simple expression seems likely,
so in general we will need to resort to numerical simulations.
However, we have obtained the following result for the number
of coverage holes in the case of uniform deployment.

Theorem 4.1: The coverage hole density for the uniform
random deployment case in 2 dimensions is given by

IRAND = pρ(πpρ− 1)e−πpρ + pρ(1 + o(1))e−4πpρ.
¥

Due to space limitations, we defer the proof of Theorem 4.1
to [3]. Although there are estimates in the literature for the
probability of full coverage, and for the number of coverage
holes, the above estimate is far more accurate and the error
terms can be explicitly bounded (see [3]), so that they can be
applied in situations far from the “n → ∞” limit in which
previous estimates have been derived. For situations in which
one has a reasonable chance of full coverage, the second
term above is in practice extremely small. As discussed in
Section II, once hole intensity is known, probability of full
coverage is given approximately by e−I|A| (once again, the
errors can be explicitly bounded), and hence a reliable estimate
for density can be derived for any set of parameters.

Looking at Figure 1 we once again see that the strategies
converge when σ is large. To understand the difference in
strategies for small σ we again look first at the σ = 0 case.
First, let us consider strategy OPT with sensor density ρ.

Theorem 4.2: The coverage hole density for strategy OPT
when σ = 0 is given by

IOPT = (2/
√

27)(1− p)k + O((1− p)2k)

where k = ρ
√

27/2 is the number of sensors at each lattice
point.

Proof: For a coverage hole to exist, an entire group of
k sensors must be inactive. For a fixed group this occurs
with probability (1 − p)k. The number of coverage holes is
at most the number inactive groups. On the other hand, if an
inactive group is surrounded by six active groups then a hole
is definitely formed. Thus the number of holes per lattice point
is at least (1− p)k(1− (1− p)k)6 = (1− p)k +O((1− p)2k).
The result follows as the area per lattice point is

√
27/2.

For small σ > 0 there does not seem to be a jump in
reliability as there was in the one dimensional case. The
derivation of IOPT in the σ > 0 case is much more involved
than in the one dimensional case, but a simple heuristic
offers some explanation. In the one dimensional case, a small
coverage hole appears between lattice points with probability
about (1 − p/2)2k

√
πk (see [3]) which is more than the

probability (1−p)k that an entire group of sensors are inactive.
Ignoring the

√
πk factor, (1 − p/2)2k is just the probability

that the mid-point between two sensor groups is uncovered.
Indeed, there are 2k sensors that could cover it, and each
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sensor covers it with probability p/2 (p to be active, and 1/2
due to positioning error). In the case of two dimensions, the
mid-point of a lattice triangle is at distance r from three lattice
points, but is still covered by active sensors with probability
1/2. Thus we have a probability of (1 − p/2)3k that this
mid-point is uncovered. It turns out that the probability of
a small coverage hole near the center of a lattice triangle is
about (1− p/2)3k times some small order term (power of k).
However, for p < .7639, (1 − p/2)3k is less than (1 − p)k,
which is the probability that a hole appears due to an entire
group of sensors being inactive. Thus there is generally not so
much difference between the small σ > 0 and σ = 0 cases in
two dimensions.

Finally, consider strategy FLAT (or FLAT(k)) in the case
when σ is small (or zero). Assuming the sensor density ρ
is large, the sensors are deployed on a very fine grid with
spacing much less than r. One can follow the arguments used
to prove Theorem 4.1 to derive an estimate for the coverage
hole density.

Theorem 4.3: The coverage hole density for strategy FLAT
(or FLAT(k) for fixed k) is given for σ ¿ 1, ρ À 1, by

IFLAT = pρ(πpρ− 1)(1− p)πρ+O(ρ1/2).
¥

The main difference is that the probability of a given point
being uncovered (i.e., no active sensors within distance r) is
e−πpρ in the case of RAND, but (1− p)πρ+O(ρ1/2) in the case
of FLAT. (The error term due both to the discreteness of the
lattice, and also due to the placement error.) Also, the error in
the exponent dominates the second term that one would expect
by comparison with Theorem 4.1. Also, the only difference
between FLAT and FLAT(k) is that the constant implicit
in the error term increases with increasing k due to larger
boundary effects when the grid is coarser. Similarly the error
term increases with σ.

As in the one dimensional case we can invert the formulae
above to find the density of active sensors needed to obtain
|A|I ∼ 1 when |A| is large:

OPT pρ = −p
log(1−p)

2√
27

log |A|+ o(log |A|)
FLAT pρ = −p

log(1−p)
1
π log |A|+ o(log |A|)

RAND pρ = 1
π log |A|+ o(log |A|)

Unlike the one dimensional case, the dominant term in the OPT
and FLAT cases is different. The reason is that strategy FLAT
needs about πρ sensors to fail in a small region because the
minimum number of sensor failures for a hole occurs when all
the sensors in a roughly circular region of radius 1. However
strategy OPT only needs about (

√
27/2)ρ sensors to fail. The

ratio (2π/
√

27) ≈ 1.209 is just the density factor we lose in
OPT as a result of the fact that disks do not tile the plane.

Strategy FLAT also has a better dominant term than strategy
RAND, so at first sight it seems strategy FLAT should always
win. In the limit as I → 0 (|A| → ∞) this is indeed the case,
but the simulation results in Figure 2 appear to show strategy
OPT as better for a nontrivial range of values of p and σ.
To explain this discrepancy, we consider more carefully the

expressions for IOPT and IFLAT above. Roughly speaking

IOPT ≈ (2/
√

27)(1− p)(
√

27/2)ρ, while

IFLAT ≈ (pρ)2(1− p)πρ.

The ratio is

IFLAT/IOPT ≈ 2.6(pρ)2(1− p).5435ρ ≈ 2.6(pρ)2e−.5435pρ.

Thus we see a significant polynomial factor and a small
negative exponential factor. For modest target hole densities,
strategy OPT can indeed beat strategy FLAT for small values
of p and σ. However for larger values (e.g., pρ ≥ 11 is
enough), strategy FLAT is better.

V. FUTURE WORK

Although we provide a comprehensive comparison of var-
ious deployments here, several problems still remain open.
First, derivation of density estimate for deterministic deploy-
ments in the presence of both failures and placement errors
remains open. Our estimate for deterministic deployments is
reliable only for zero placement error cases. Second, we only
consider 1-full coverage here. Extension to the case of k-full
coverage remains open. Third, we considered only the full
coverage model here. A comparison of similar deployment
strategies for other coverage models such as barrier cover-
age [6] and Trap Coverage [4] remain open.
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