Maximizing the Lifetime of a Barrier of Wireless
Sensors

Santosh Kumar, Member, IEEE, Ten H. Lai, Marc E. Posner, and Prasun Sinha, Member, IEEE

Abstract—To make a network last beyond the lifetime of an
individual sensor node, redundant nodes must be deployed. What
sleep-wakeup schedule can then be used for individual nodes so
that the redundancy is appropriately exploited to maximize the
network lifetime?

We develop optimal solutions to both problems for the case
when wireless sensor nodes are deployed to form an impenetrable
barrier for detecting movements. In addition to being provably
optimal, our algorithms work for non-disk sensing regions and
heterogeneous sensing regions. Further, we provide an optimal
solution for the more difficult case when the lifetimes of individual
nodes are not equal.

Developing optimal algorithms for both homogeneous and
heterogeneous lifetimes allows us to obtain, by simulation, several
interesting results. We show that even when an optimal number
of sensor nodes have been deployed randomly, statistical redun-
dancy can be exploited to extend the network lifetime by up to
seven times. We also use simulation to show that the assumption
of homogeneous lifetime can result in severe loss (two-thirds) of
the network lifetime. Although these results are specifically for
barrier coverage, they provide an indication of behavior for other
coverage models.

Index Terms—Wireless sensor networks, sleep-wakeup, sensor
deployment, barrier coverage, multi-route network flows.

I. INTRODUCTION

Wireless sensors are meant for outdoor deployments where
they may remain unattended for long periods of time. Security
applications such as intrusion detection, fire detection, and
chemical leak detection require sufficient number of sensor
nodes to be active at any time instant. Given that the sensor
nodes operate with small batteries, individual nodes may not
last a long time if continuously active. To make a network last
beyond the lifetime of an individual node, redundant nodes
must be deployed. What sleep-wakeup schedule can then be
used for individual nodes so that redundancy is appropriately
exploited to maximize the network lifetime?"

In this paper, we develop optimal solutions to this problem
for the case when wireless sensor nodes are deployed to
form an impenetrable barrier for detecting movements [1]. In
addition to intrusion detection applications [2], [3], barriers
of sensors can also be deployed around forests to detect the
spread of fire or around chemical factories to detect leakage
of harmful chemicals. As has been argued in [1], deploying
sensor nodes as a barrier leads to an order of magnitude
saving in the number of nodes over the full coverage model

'We consider a sensor node to be in sleep state if all of its components
(e.g., radio, processor, sensors, voltage regulators, etc.) are put in the deep
sleep state, and awake if it has at least one component (say, a sensor) active.
Consequently, the average energy consumption in the sleep state is lower than
that in the awake state.

(where every point in the deployment region is covered), while
guaranteeing that no movement will go undetected.

In addition to being provably optimal, our algorithms work
for non-disk sensing regions and heterogeneous sensing re-
gions. For our algorithms to be applicable, it is sufficient to
determine whether the sensing regions of two sensors intersect.
This can be determined even when a precise model for the
sensing region is not known. For instance, if two sensors
detect a target simultaneously, their sensing regions must
intersect [4]. Our algorithms, therefore, allow for the sensing
regions of various nodes to be different.

Further, we propose an optimal sleep-wakeup algorithm
for the case when all sensors have equal lifetime (the ho-
mogeneous lifetime case) and also for the harder case when
the sensors have distinct lifetimes (the heterogeneous lifetime
case). Solving the heterogeneous case makes the sleep-wakeup
method of extending network lifetime more practical. We list
below some reasons why sensors may have different lifetimes:

o Uneven Load: Even when all sensors start with the same
type of batteries, they are subject to different kinds of
loads (due to routing structure, cluster structure, etc.).

« Different Recharging Rates: If sensors are using recharge-
able batteries, then lifetime depends on the amount of
energy (e.g., solar, wind) a sensor receives.

o Unanticipated Failures: When there are unanticipated
sensor failures, a new schedule may be needed. Then,
the remaining lifetimes of operational sensors may be
distinct.

o Additional Deployment: When new sensors are deployed
in an existing network to compensate for failed ones,
at the time of deployment the remaining lifetimes are
distinct.

Since our algorithm provides an optimal solution for het-
erogeneous lifetime case, when the network experiences an
unanticipated sensor failure, new sleep-wakeup schedule can
be computed that will again maximize the lifetime of the
surviving network.

Given a solution that maximizes network lifetime, a sec-
ondary criteria of interest is the minimization of the number
of times that sensors are turned on/off, called sensor switches.
Each time a sensor is turned on, neighbor discovery, route
computation, time synchronization, and other such activities
have to be performed. Minimizing the number of times such
tasks are executed reduces the energy consumption in the
network. It also makes the network more able to perform the
monitoring task, which is the primary reason for deploying
a sensor network. Our sleep-wakeup algorithm for the homo-
geneous case minimizes the total number of sensor switches.

However, for the heterogeneous lifetime case, we establish that
finding the minimum number of sensor switches is NP-Hard.
It is not possible to design a provably optimal deterministic
local sleep-wakeup algorithm because it can not be checked lo-
cally whether the network provides barrier coverage [1]. Con-
sequently, our algorithms are centralized algorithms. Sleep-
wakeup algorithms need to be executed rarely?, and the
optimal schedule can be distributed in the network using the
same utility as used in network reprogramming [5], [6]).

We use our optimal algorithms to study, by simulation,
two interesting coverage/lifetime issues that have not been
addressed in the literature. First is the issue of statistical
redundancy in a random sensor deployment. In a random
deployment, sensors are deployed to achieve a target prob-
ability of coverage. For instance, if n sensors are needed to
achieve a target probability of barrier coverage of 0.001, then,
on average, in 999 out of 1,000 instances of deployment, the
region will be barrier covered with a random deployment of
n sensors. For those instances where the n sensors do provide
barrier coverage, how much redundancy exists in the network?

Second, lifetimes of individual sensors are rarely equal.
However, for simplicity or tractability, the assumption of
homogeneity is often used. As a result, network lifetime is
lower than what could have been achieved if the lifetime
optimization algorithm considered the heterogeneity of sensor
lifetimes. How much does one lose in expected network
lifetime due to the assumption of homogeneity?

For the first problem, using the density estimate from [7],
we show that even when the minimum necessary number of
sensors are deployed to achieve barrier coverage in a random
deployment, the network may have enough redundancy to
last up to seven times longer than planned. For the second
problem, we show that the assumption of homogeneity in
a heterogeneous network can result in a two-thirds loss of
network lifetime, e.g., a year of expected lifetime may be
reduced to four months.

We also observe in our simulations that if the energy
imbalance in the network is sufficiently random (so that sensor
lifetimes can be modeled as a random uniform distribution),
then network lifetime is approximately the same as when the
energy consumption is perfectly balanced in the network (so
that all sensors have equal lifetime).

The rest of the paper is organized as follows. In Section II,
we present some definitions, background, and related work.
In Sections III and IV, we present our algorithms for the
homogeneous and heterogeneous lifetime cases. In Section V,
we describe how to use our algorithms to maintain fault-
tolerant connectivity. In Section VI, we present the simulation
study. We conclude the paper in Section VII.

II. MODEL, DEFINITIONS, AND BACKGROUND

In this section, we introduce some definitions and provide
some background and related work.

Definition 2.1: Sensor Network, N. A sensor network,
N, is a collection of sensors with the locations of sensor
deployments.

2Once a schedule has been distributed to the sensors, there is no need for
any further communication unless critical sensors fail.

We assume that a sensor network is deployed over a belt
region (see Figure 1). Intrusion is assumed to occur from top
to bottom. As in [1], a path is a crossing path if it crosses
from top to bottom. Further, a crossing path is k-covered if
it intersects the sensing region of at least k distinct sensors.
Finally, a sensor network N provides k-barrier coverage over
a deployment region R if all crossing paths through region R
are k-covered by sensors in N.

Definition 2.2: Coverage Graph, G(N) [1] A coverage
graph of a sensor network N is constructed as follows. Let
G(N) = (V,E). The set V consists of a vertex corresponding
to each sensor. In addition, V' has two virtual nodes, s and ¢
that correspond to the left and right boundaries, respectively.
An edge exists between two nodes if their sensing regions
overlap in the deployment region R. An edge exists between
u and s (or t) if the sensing region of u overlaps with the left
boundary (or right boundary) of the region.

The coverage graph for the sensor network deployment in
Figure 1 is shown in Figure 2.

Remark: Although we use a disk model for the sensing
region, our results hold for any model for which a coverage
graph can be constructed. Further, the sensing range can be
different for each sensor; the only requirement is that we can
construct a coverage graph. Finally, the links of the coverage
graph are virtual links and not used for actual communication
between sensor nodes.

Fig. 1. A sensor network deployment that provides 3-barrier coverage.

/

4

Fig. 2. The coverage graph of sensor network deployment of Figure 1.

Theorem 2.1: [1] A network IV provides k-barrier coverage
iff there exist k node-disjoint paths between the two virtual
nodes s and ¢ in G(N).

Definition 2.3: Sensor Switch. A sensor switch occurs
when a sensor is turned off and is later turned on. If a sensor
is turned on once and is allowed to exhaust its lifetime, then
this sensor has no sensor switches.

Definition 2.4: Path Switch. A path switch occurs when a
group of sensors that together provide 1-barrier coverage is
turned off and is later turned on as a group. If this group of
sensors exhausts its lifetime once it is turned on, then this
group of sensors has no path switches.

Minimizing the number of path switches is equivalent to
minimizing the number of sensor switches in terms of reducing

the frequency of initialization operations such as neighbor
discovery, route computation, and time synchronization.

Some Related Work: The problem of sleep-wakeup for
the full coverage model has been studied extensively. NP-
Hardness is established by [8]. Subsequently, several heuristic
algorithms appeared [9]-[12]. However, no guarantee of per-
formance is made by any of these works.

For the barrier coverage model, a randomized sleep-wakeup
algorithm called Randomized Independent Sleeping (RIS) is
proposed in [1]. In this algorithm, time is divided into in-
tervals. In every interval, each sensor independently decides
whether to sleep or stay active using a predetermined probabil-
ity value p. The value of p is chosen such that the network is
guaranteed to provide weak barrier coverage (a weaker version
of barrier coverage) with high probability. An advantage of this
algorithm is that it is local (i.e. requires no central coordination
and no message exchange with any neighbors). However,
there are several shortcomings. First, the approach does not
provide deterministic guarantee of barrier coverage. Second,
if deployment is not determined by a uniform or Poisson
distribution, then there is no guidance on how to choose a
value for p. Third, if the lifetimes of the sensor nodes are not
identical, then again there is no guidance on how to choose a
value of p. Finally, there is no guarantee of performance.

A localized algorithm called Localized Barrier Coverage
Protocol (LBCP) is proposed by [13] to increase the lifetime
of a network deployed for barrier coverage. Although the
localized version does not guarantee barrier coverage, the
locality region size (L in [13]) can be increased to match the
length of the deployment region to deterministically guarantee
barrier coverage. However, then the LBCP algorithm becomes
a global algorithm since each node now needs to communicate
with every other node in the network. Also, although the
performance of LBCP is statistically close to optimal for some
parameter settings, no performance guarantees are provided.
Finally, LBCP does not address the heterogeneous lifetime
case.

Several other works have addressed various aspects of
barrier coverage. For example, in [14], a distributed algorithm
is presented to construct barriers of wireless sensors. In [7], it
is shown that the fact that percolation does not occur in thin
long strips does not prevent one to derive critical conditions for
barrier coverage (called strong barrier coverage in [1] and [14].
In fact, reliable estimates for sensor density, which are stronger
results than critical conditions, are derived in [7] for barrier
coverage in thin long strips. Also, in [15], a heuristic is
proposed to select a subset of directional sensors to achieve
k-barrier coverage. These works, however, do not address the
problem of lifetime maximization.

III. HOMOGENEOUS LIFETIME

In this section, we begin by deriving an upper bound on the
network lifetime when the sensor lifetimes are homogeneous.
Then, we present algorithm Stint that determines an optimal
sleep-wakeup schedule for individual sensors. Finally, we
prove that Stint minimizes the number of path switches in
addition to maximizing the network lifetime.

A. Upper Bound on the Network Lifetime

Consider the sensor network shown in Figure 1. If the
maximum number of node disjoint paths between s and ¢,
m, is less than k, then the sensor network cannot provide k-
barrier coverage even if all sensors are turned on. Therefore,
the maximum lifetime of the network is 0. In the following,
we only consider the case when m > k.

The next lemma provides an upper bound on the maximum
achievable network lifetime.

Lemma 3.1: Consider a sensor network N. Let m > k
be the maximum number of node-disjoint paths between the
virtual nodes s and ¢ in the coverage graph G(IV). Also, let
the lifetime of an individual sensor node be unity. Then, the
maximum time for which the network IV can provide k-barrier
coverage is at most m/k.

Proof: By assumption, there exist m node-disjoint paths
in the coverage graph of N. From Menger’s Theorem [16],
there exists a set of m nodes (corresponding to m sensors),
which when removed disconnects virtual nodes s and ¢ in the
coverage graph. Call these m sensors critical sensors. Every
path from s to ¢ must contain at least one of these critical
Sensors.

To provide k-barrier coverage, Theorem 2.1 states that a
set of sensors must be activated such that they form £ node-
disjoint paths between the two virtual nodes s and ¢ in the
coverage graph. Each of these k£ paths must contain at least
one of the m critical nodes. Further, since these k£ paths are
node-disjoint, they do not share any node. Therefore, each set
of k node-disjoint paths contains at least k£ of the m critical
nodes. Since at any time instant at least k£ of the m critical
nodes need to be active, the maximum time that these m nodes
can remain active is at most m/k. Once these m critical nodes
run out of energy, the network can no longer provide k-barrier
coverage. Hence, the network provides k-barrier coverage for
at most m/k units of time. [|

Applying Lemma 3.1 to the sensor network shown in
Figure 1, whose coverage graph appears in Figure 2, gives
a maximum lifetime of m/k = 3/2.

B. Achieving the Upper Bound

In Section III-A, an upper bound on network lifetime for k-
barrier coverage in the homogeneous lifetime case is derived.
The Stint algorithm achieves this upper bound. While we now
provide an informal description of this algorithm, the details
appear in Figure 4.

The Stint algorithm first computes m, the maximum number
of node disjoint paths between s and ¢. The maximum number
of node disjoint paths can be found using a max flow algorithm
as discussed in [1]. The Stint algorithm then determines
whether m is divisible by k. If it is, then m disjoint paths
are partitioned into £ = m/k groups of k paths each. Then, ¢
groups of k disjoint paths are activated in sequence. The first
group provides k-barrier coverage until it runs out of energy.
Then, the second group is activated. The process continues for
¢ iterations.

Alternatively, if m is not divisible by k, then ¢ = |m/k]—1.
Similar to the prior case, ¢ groups of k disjoint paths exhaust

their lifetimes in sequence. Next, the remaining r = m —
¢ x k disjoint paths are arranged in f = r/ged(r, k) sets of
k disjoint paths each, where each path is in k sets. Each of
these f sets of paths is kept active for ged(r, k)/k of the total
sensor lifetime. In this way, the network provides k-barrier
coverage for £+ r/k = m/k units of time, if each sensor has
a lifetime of one unit. This is the maximum possible lifetime
according to Lemma 3.1.

We use the coverage graph shown in Figure 3 to illustrate
the operation of the Stint algorithm. For the coverage graph
in Figure 3, the value of m is 8. If £k = 2, then £ divides m.
Therefore, ¢ = 4. The eight disjoint paths are partitioned into
four sets of two paths each. These four sets are activated in
sequence to provide a lifetime of four units.

When k = 3, then m is not divisible by k. Now, ¢ is set to
|8/3] —1 = 1. Let this one group be the set of paths (1, 2, 3).
These three paths are kept active for their entire lifetime.

Next, the remaining » = 8 — 1 % 3 = 5 disjoint paths are
arranged in f = 5/ ged(5,3) = 5 sets of 3 disjoint paths each,
where each path is in 3 sets. Five possible sets are {(4, 5, 6),
(5,6,7), (6,7,8), (7,8,4), (8,4,5)}. Each of these five sets
of paths is kept active for ged(5,3)/3 = (1/3) of the total
lifetime of a sensor. In this way, the network provides 3-barrier
coverage for 1 + 5/3 = 8/3 units of time, if each sensor has
a lifetime of one unit.

Fig. 3. The coverage graph of a sensor network used to illustrate the operation
of the Stint algorithm.

We now prove that the Stint algorithm maximizes the
network lifetime for k-barrier coverage. We first consider the
case when k < m < 2k.

Lemma 3.2: Consider a sensor network N. Let m be the
maximum number of node-disjoint paths between the virtual
nodes s and ¢ in the coverage graph G(N). Also, let the
lifetime of an individual sensor node be unity. If £k < m < 2k,
then the Stint algorithm provides k-barrier coverage for m/k
units of time.

Proof: We first prove that no sensor in the sequences
Sm—r41 through S,, completely exhausts its energy before
the end of the for loop in Line 18 through Line 21. Then, we
show that this loop provides k-barrier coverage for r/k units
of time.

To prove the first part, observe that the sets S;,0 > i >
f — 1 are disjoint. Whenever one of these sets .S; is active, all
sensors in this set are active. Since each sensor has a lifetime of
unity, the lifetime of each set is unity. In the for loop (Line 18
through Line 21), which runs f = r/x times, each set is
inactive in (r — k)/x iterations. Therefore, the set is active in

Input: A sensor network N deployed over an open belt
region and the desired degree of coverage k. Each sensor
has the same lifetime, which is one unit of time.

Output: An optimal sleep-wakeup schedule for k-barrier
coverage.

The Stint Algorithm

1: Compute the Coverage Graph G(IV).

2: Compute the maximum number of node-disjoint paths
between the two virtual nodes s and ¢ in G(IV). Denote
the number of paths by m.

3: if m > k then

. Let S;,1 <4 < m be the sequence of sensors forming

the ith node-disjoint path.

5: if m mod k = 0 then
6: {—m/k
7. else
8: {— |m/k] -1
9: end if
10: for j«—0tol—1do
11: Activate all the sensors in sequence
Skxj+1,- -+, Sk«(j+1) for one unit of time.
12: end for
13: r—m-—~{xk
14: if r # 0 then
15: x — ged(r, k)
16: f—r/z
17: From the sequence of sensors Sy,—r+1, ..., Sm form
f sets of sequences, Xo, X1,...,X(s_1), such that
set X; consists of sequences Sy—rti+z+i through
Sm—r+1*(i+1)~
18: for j«—0to f—1do
19: g%(j—i—f—l) mod f
20: Activate all the sensors in sets X, ..., X, for z/k

units of time. Put all other sensors to sleep.
21: end for
22: end if
23: else
24: No schedule can achieve k-barrier coverage.
25: end if

Fig. 4. The Stint sleep-wakeup schedule assignment algorithm

exactly f — (r — k)/x = k/x iterations. Since each iteration
lasts for x/k units of time, no set completely exhausts its
energy before the end of the loop.

To prove the second part, observe that k/x sets are active
in each iteration of the loop. Each of these node-disjoint sets
provides x-barrier coverage. Hence, each iteration provides k-
barrier coverage. Also, since each iteration lasts for x/k units
of time and there are a total of f = r/x iterations, the for
loop (Line 18 through Line 21) provides k-barrier coverage
for m/k units of time. [|
We now prove the optimality of the Stint algorithm for all
values of m.

Theorem 3.1: The Stint algorithm is an optimal sleep-
wakeup algorithm for k-barrier coverage.

Proof: Consider a sensor network N. Let m be the maxi-
mum number of node-disjoint paths between the virtual nodes
s and t in the coverage graph G(NN). Also, let the lifetime
of an individual sensor node be unity. From Lemma 3.1, any

sleep-wakeup algorithm for k-barrier coverage can achieve a
lifetime of at most m/k. To prove the theorem, we only need
to prove that the Stint algorithm achieves a network lifetime
of m/k.

Lines 10 through 12 in the Stint algorithm provide k-barrier
coverage for ¢ units of time. If m mod k = 0, the proof is
complete. Consequently, assume m mod k # 0. This implies
that £ < r < 2k (see Line 13 in Figure 4). Apply Lemma 3.2
to conclude that Line 14 through 22 in Figure 4 provide k-
barrier coverage for r/k units of time. Since r = m — £ x k,
¢+r/k =m/k. Hence, the Stint algorithm provides k-barrier
coverage for m/k units of time.]

Complexity: The complexity of the Stint algorithm is
dominated by the computation of maximum number of disjoint
paths. The maximum disjoint paths can be computed with
the max flow algorithm using the standard transformation
of replacing each vertex with a set of in and out vertices,
connecting all incoming arcs to the in vertex, connecting
all outgoing arcs to the out vertex and connecting the in
and out vertices with a directed arc of same capacity as the
node’s lifetime. The Edmonds-Karp algorithm can determine
a max flow with complexity O(V E?) [17]. Some optimization
procedures can reduce the complexity to O(V3/log(V)).

C. Minimizing Path Switches

In this section, we consider a lexicographic two objective
optimization problem where the first objective is to maximize
the network lifetime, and the second objective is to minimize
the number of path switches. We first illustrate why minimiz-
ing the number of path switches is non-trivial. We then derive
a lower bound on the total number of path switches that are
required if network lifetime is to be maximized for k-barrier
coverage. Finally, we prove that the Stint algorithm achieves
this lower bound.

Consider again the network whose coverage graph appears
in Figure 3. Let £ = 3. Form 8 groups of 3 disjoint paths each,
eg. {(1,2.3), (4,5,6), (7.8,1), (2,3,4), (5,6,7), (8,1,2),
(3,4,5), (6,7,8)}. Let each set of 3 disjoint paths be active
for 1/3 units of time. Then, we achieve a network lifetime of
8/3, while providing 3-barrier coverage. Notice that the total
number of path switches in this case is 16 since each path is
turned off twice before it exhausts its full energy.

The total number of path switches in the schedule computed
by the Stint algorithm is only 2. This is because only paths 4
and 5 are turned off once each before they run out of energy.
All other paths run out of energy once they are turned on.
Notice that achieving zero path switches is not possible in this
case since § is not divisible by 3. In general, zero path switches
are needed up to Line 13 in Figure 4, which is the minimum
possible. Path switches are required only when k < r < 2k.
The following lemma derives a lower bound on the total
number of path switches for this case. We show that number
of path switches is equivalent to the number of preemptions
in the domain of machine (or processor) scheduling.

Lemma 3.3: Consider a sensor network N. Let m be the
maximum number of node-disjoint paths between the virtual
nodes s and t in the coverage graph G(N). Also, let the

lifetime of an individual sensor node be unity. If & < m < 2k,
then the total number of path switches needed by any optimal
sleep-wakeup algorithm to provide k-barrier coverage is at
least k — ged(m, k).

Proof: From Theorem 2.1, there must be k node-disjoint
paths active for m /k time units. Further, no path can be active
for more than 1 < m/k unit of time. Convert this problem to
a machine scheduling problem [18]. The k disjoint paths that
are required for k-barrier coverage correspond to k& machines
that process m jobs. Each job has a processing time of 1 unit
on any machine. Let the £ machines be numbered 1,2,... k.
The objective of maximizing k-barrier coverage lifetime is
equivalent to minimizing the makespan on k& machines. The
minimum value of the makespan is m/k, which is achieved
only when all machines are busy for m/k units of time.
Moreover, the number of path switches is equivalent to the
number of job preemptions. Hence, the claim to be proved is
that the minimum number of preemptions needed to achieve
a makespan of m/k is at least k — ged(m, k).

For any given optimal schedule, let a; be an arbitrary
machine. Because 1 < m/k < 2, at least one job is not
finished on a;. Let the set of unfinished jobs be J. Since
J # ¢, pick an arbitrary unfinished job j; € J. Let as
be the machine on which j; is resumed. We thus have one
preemption (for job j;). Add all the unfinished jobs from
machine ap into set J. Again pick an unfinished job from
J and let ag be the machine on which it is resumed. We have
another preemption. We continue in this fashion until the set
J of unfinished jobs becomes empty. This way we construct a
sequence of machines ay, as, ..., a4, such that each machine
a;,7 # 1 has at least one preemption. Also, these ¢; machines
together finish some number of jobs completely within m/k
time units with at least (¢; — 1) preemptions. This implies that
g1 * m/k is an integer, which is possible only when ¢; is a
multiple of ¥ = k/ ged(m, k).

If g1 # k, we select a new machine and construct a new
sequence of g2 machines, which together finish some number
of jobs with at least (g2 — 1) preemptions, where ¢ is a
multiple of £’. Let there be o such ¢;’s such that Y7, ¢; = k,
where o < ged(m, k). The total number of preemptions is at
least >0, (¢; — 1) = k—o > k—ged(m, k). Since this holds
for any optimal schedule, the claim is proved. |

The next theorem establishes that the Stint algorithm
achieves the lower bound of Lemma 3.3.

Theorem 3.2: Of all the optimal sleep-wakeup schedules for
achieving k-barrier coverage, the Stint algorithm constructs a
schedule that has the minimum number of path switches.

Proof: Observe that no path switches are needed up to
Line 13 in Figure 4, which is the minimum possible. Path
switches are required only when k£ < r < 2k. Lemma 3.3
establishes that any schedule which achieves k-barrier cov-
erage requires at least k — ged(m, k) path switches, where
k < m < 2k. To establish the theorem, we show that the
Stint algorithm constructs a maximum of k& — ged(m, k) path
switches.

Notice that a path switch is performed only in the for loop
in Line 18 through Line 21. Consequently, we focus on these
lines only. Each time a sensor is turned off, every sensor in its

group is turned off. Since a group consists of a sequence of
x sensors, each of which provides 1-barrier coverage, every
on/off involves x path switches.

A set S;,0 > i > f — 1 of sensors is turned off before
it exhausts its lifetime only when the index of the loop 7 <
k/x — 1. This is because every group .S; runs out of energy if
it is active continuously for k/x iterations. Except for the first
k/x—1sets S;,0 <i < k/x— 1, each of which is turned off
once it is continuously active for ¢ + 1 iterations, every other
set of sensors S;, k/x —1 > ¢ > f — 1 is active continuously
for k/x iterations. Further, the first k/x — 1 sets which are
turned off before running out of energy, are not turned off
again when they are turned on later. Since each of these sets
involves x path switches and they are turned off and on exactly
once, the Stint algorithm needs exactly x x (k/z —1) =k —=x
path switches, where x = ged(m, k). [|

IV. HETEROGENEOUS LIFETIME

In this section, we derive an upper bound on the network
lifetime when the sensor lifetimes are heterogeneous. Next, we
present the Prahari® algorithm to determine an optimal sleep-
wakeup schedule for individual sensors. Finally, we consider
the problem of minimizing the number of path switches.

A. Upper Bound on Network Lifetime

The maximum lifetime can be determined using Lemma 3.1
when the sensor lifetimes are identical. When the sensor
lifetimes are not identical, the problem of determining the
maximum achievable lifetime becomes significantly more
challenging. For example, consider the network in Figure 5.
This is the same network as Figure 1, except that sensors
have distinct lifetimes. What is the maximum time for which
this network can provide 2-barrier coverage? We provide a
provably optimal solution to this problem by making use of
multiroute network flows [19].

Fig. 5. The sensor network deployment of Figure 1, where the integer is the
lifetime of the sensor located in the filled square.

We begin with some assumptions and definitions. We as-
sume that it is possible to estimate the remaining lifetime
of a sensor node. With new mote hardware, it is possible to
measure the remaining battery level [20] and based on the
load observed so far, the remaining lifetime can be estimated.
Also, a profile of expected energy consumption of every node
may be built using analytical models or using simulators such
as PowerTOSSIM [21]. Sensor lifetimes can have any real
positive value.

3The word “Prahari” is a Sanskrit word for securityman who guards a
region for a fixed time interval.

Definition 4.1: Coverage Graph with Lifetime, G, (N).

A coverage graph with lifetime of a sensor network N, where
each node u € V —{s,t} is assigned a capacity, c(u), equal to
the remaining lifetime. Each edge is assigned infinite capacity.
The vertex s is the source and ¢ the sink.
The G, (), corresponding to the network shown in Figure 5
appears in Figure 6. To convert G1,(N) = (V, E) to a directed
graph, replace each edge {u,v} with a pair of directed edges
(u,v) and (v, u). For the remainder of Section IV, we assume
that G, (N) is a directed graph.

),
1 t
S<1 1 1 1 1

Fig. 6. The coverage graph with lifetime Gy, (V) of the sensor network N
shown in Figure 5.

Definition 4.2: s-t Flow. An s-t flow in G (N) is a map-
ping f : E — R™ such that
DvVueV - {Svt}7 Z u,v)EE f(u7U> = Z(v,u)e}_«j f(w,u),
2 Y (en J60) = S o S (0.1, and
HVueV —{st} > uver [(u,v) <c(u).

Definition 4.3: s-t Path Flow. A s-t path flow in G (N) is
a s-t flow with the property that the flow network is a single
path from s to t.
Three path flows from the coverage graph shown in Figure 6
are shown in Figure 7.

Path Flow 1) 2

1 1 1 1
i Path Flow 2 1 1>
1 1 Path Flow 3 1/t
1 1 1 1
1
{_ 1 1

Fig. 7. A composite 2-flow of total value 4 for the sensor network N shown
in Figure 5.

Definition 4.4: Basic k-Flow of Value a. A set of k£ node-
disjoint s-t path flows in G, (IV), each of which has value
a.

The total value of the flow is k * a. In Figure 7, Path Flow
2 and Path Flow 3 comprise a basic 2-flow of value 1. The
total value of this basic 2-flow is 2.

Definition 4.5: Composite k-Flow. A set of flows in
Gr(N) that can be expressed as a sum of basic k-flows.

The total value of a composite k-flow is Z:’;l i % k* a;, for
appropriate weights \; € Z*, if m basic k-flows each with a
value of a; make up the composite k-flow.

A composite 2-flow of total value 4 from the coverage graph
shown in Figure 6 appears in Figure 7.

We now state the key result of this section, which enables
us to find in polynomial time an upper bound on the network
lifetime when the sensor lifetimes are heterogeneous. The
basic idea of the Prahari algorithm comes from the proof of
the theorem.

Theorem 4.1: Given a sensor network NV, there exists a
sleep-wakeup schedule that achieves a lifetime of 7" time units
for k-barrier coverage iff there is a composite k-flow of value
kT in G (N).

Proof: =. Given a composite k-flow of T units in
Gr(N)denoted as F, we construct a sleep-wakeup schedule
to achieve a lifetime of " time units. By definition, F' can be
decomposed into a set of m basic k-flows (for some m > 0)
such that >, \; x kxa; = kT for \; € Z", where q; is
the value of i basic k-flow. In every basic k-flow 4, there
are k£ node-disjoint flows each with value a;. Consider the m
basic k-flows in order. Turn on the nodes in the basic k-flow ¢
at Z;;ll A;j * k * a; time units from the start of sleep-wakeup
schedule and keep them continuously active for a duration of
i *a; time units. With this schedule, the network N provides
k-barrier coverage for ' time units since each basic k-flow
i provides k-barrier coverage for \; % a; units of time and
S Nixa; =T.

<. Given a sleep-wakeup schedule that allows N to provide
k-barrier coverage for T units of time, we construct a k-flow
of value k«T in G, (N). Let ¢; be the first time instant when
some sensor changes its state from off to on or vice versa. The
set of sensors that are on in the interval [0, ¢;] form a basic k-
flow of value ¢; in G1,(N) since by Theorem 2.1 there exist k
node-disjoint paths between s and ¢ with these sensors active.
Denote this basic k-flow by Fj. Similarly, the total value of
F;is kxty for ¢ = 2,3,...,m, where m is the number of
time instants when the sensors change state. Since N provides
k-barrier coverage for 7" units of time, Y ;- kxt; = kxT.
Hence, the set of basic k-flows together define a composite
k-flow of value k T |

Corollary 4.1: The maximum time for which the sensor
network N can provide k-barrier coverage is f /k, where f
is the maximum value of composite k-flow in Gy, (N).

Proof: The proof follows from Theorem 4.1. |

If we can devise a method to determine the maximum value
of a composite k-flow in a G (N), then we can derive an
upper bound on the network lifetime achievable by N. For
this purpose, we make use of the MEM algorithm [19].

As an example, applying this algorithm to the coverage
graph shown in Figure 6, we determine that the maximum
value of a composite 2-flow, f /k, is 4. Hence, the maximum
time for which this network can provide 2-barrier coverage is
4/2=2 (from Corollary 4.1).

B. Achieving the Upper Bound

We present the Prahari algorithm that achieves the upper
bound derived in Section IV-A on the network Lifetime that
any sleep-wakeup algorithm can achieve for k-barrier coverage
in the heterogeneous lifetime case. The detailed Prahari
algorithm appears in Figure 9. We now provide an informal
description of this algorithm.

The Prahari algorithm first invokes the MEM algorithm [19]
to determine f , the maximum value of composite k-flow in
Gr(N). Let Farpar(IN) be the flow network resulting from
this step.

If the flow network Frs gas (V) is such that the indegree and
outdegree of every node other than s and ¢ is 1, then the flow

network can be decomposed into m > k node-disjoint path
flows. Then, the Prahari algorithm uses a machine scheduling
algorithm proposed by [22] to schedule the m paths to achieve
a lifetime of f /k time units, or equivalently to schedule m
jobs on k machines to achieve a makespan of f /k. Thus, we
achieve the maximum lifetime in this case.

Alternatively, if the flow network Figp (V) is such that
some node in V' — {s,t} has an indegree or outdegree of more
than 2, then the Prahari algorithm invokes the SEM algorithm
from [19] to decompose the flow network into o’ > k basic
k-flows. SEM then merges identical basic k-flows into a single
aggregate basic k-flow. Let o be the number of distinct basic k-
flows resulting from the preceding step. Since the set of nodes
in each basic k flow provides k-barrier coverage, the Prahari
algorithm schedules these « basic k-flows one by one. Since
the sum of total flow values of all basic k-flows is precisely
f , the maximum network lifetime of f /k is achieved.

We use the coverage graph shown in Figure 6 to illustrate
the operation of the Prahari algorithm. Let k = 2. Figure 6
shows Fargar(N) for the network N shown in Figure 5. As
can be seen from this figure, f = 4. Because the indegree
and outdegree of every node other than s and ¢ is 1 in the
flow network Fisga(N), the flow network is decomposed in
m = 3 node-disjoint path flows. Since k = 2, two machines
are used for scheduling. Also, the minimum makespan, which
is equivalent to the maximum network lifetime, is 4/2 = 2.
As shown in Figure 8, Path Flow 1 is scheduled on Machine 1
for 2 time units, Path Flow 2 and 3 are scheduled on Machine
2 for 1 time unit each. This generates a schedule for the three
paths. Path Flow 1 is active for 2 time units continuously.
Path Flow 2 is active for 1 time unit starting at time ¢ = 0.
At t = 1, Path Flow 2 runs out of energy and Path Flow 3 is
activated. Thus, we achieve a lifetime of 2 time units, which
is the maximum possible.

Machine 1 Path Flow 1 (2)

Machine 2 | Path Flow 2 (1) Path Flow 3 (1)

t=0 1 2

Fig. 8. The machine scheduling approach followed by the Prahari algorithm
for the flow network shown in Figure 7. The numbers in the parentheses denote
the lifetime of the individual paths.

We now formally establish the optimality of the Prahari
algorithm.

Theorem 4.2: The Prahari algorithm determines a sleep-
wakeup schedule that provides k-barrier coverage for the
maximum network lifetime.

Proof: Consider a sensor network N and the coverage
graph G (N) = (V,E). Let fi(N) denote the maximum
value of the composite k-flow. Corollary 4.1 establishes that
an upper bound on the lifetime to provide k-barrier coverage
for N is fr(N)/k. Therefore, to establish that the Prahari
Algorithm finds the maximum network lifetime, we only need
to prove that the algorithm finds a schedule where the network
N provides k-barrier coverage for fx(N)/k units of time.

The MEM algorithm computes the value of fi (V) ([19]).
If the flows in the network that result from applying the MEM
algorithm are node-disjoint (besides s and t), then Lines 3

Input: A coverage graph Gp(N) = (V,E) for a sensor
network N, and k € Z*. The capacity of a node u is c(u).
Output: A sequence (tﬁj) (v), £ (v)), the wakeup and sleep
time for each node v € V.

The Prahari Algorithm

1: Invoke the MEM algorithm for Gz (N). Let f be the value
of the maximum composite k-flow. Each vertex v € V —
{s,t} is assigned a flow, f(v).

2: Delete all vertices and associated edges from G (N) with

f(v) =0.
3. if Vo € V — {s,t}, the indegree and outdegree of v is 1
then

4: Decompose G (N) into m disjoint path flows.

5: Sort these path flows in descending order of flow value.
Let the sequence of flows be F', Fy, ..., F, with flow
values fi, f2,..., fm.-

6: t<—0.

7. for i« 1tom do

8: if t + fi < f/k then

9: Vv € Fj, set tgﬂl)(v) «—t and tgl)(v) —t+ fi.

10: else R

1 Yo € Fy, set t) (v) — 0, t$7 (v) — t+ fi — f/k.
t2(v) — ¢, and £ (v) — f/k.

12: end if

13: t — ().

14: end for

15: else

16: Invoke the SEM algorithm to decompose the k-flow into
o’ basic k-flows, N1, No, ..., Ny.

17: Merge all the basic k-flows that have the same set of
vertices with positive flow into a single basic k-flow.
Let the distinct number of basic k-flows be a.

18: t 0.
19: for i+« 1to « do]
20: Vo € V—{s,t} such that f(v) > 0in Ny, 3 (v) — ¢
and t{” (v) — F(N;)/k.
21: t— f(N;)/k.
22: end for
23: end if
Fig. 9. The Prahari algorithm to determine sleep-wakeup schedule for

maximizing network lifetime.

through 14 are executed. We establish that this schedule
achieves a lifetime of fi(N)/k.

Since 1", f; = f1(N), at every time instant in the interval
[0, fx(N)/k], k node-disjoint paths are active. Each of these
paths provides 1-barrier coverage. Further, since the value of
any individual flow is at most fi(N)/k, there is no schedule
conflict for any node, i.e. no node is assigned to provide more
than 1-barrier coverage at any time instant.

If the flows are not node-disjoint, then the SEM algorithm
decomposes the k-flow computed by the MEM algorithm in
component basic k-flows. For a proof of the correctness of the
SEM algorithm, we refer the reader to [23]. Since each basic
flow N; provides k-barrier coverage for f(N;)/k time units
and Y | f(N;) = fr(N), the network N provides k-barrier
coverage for f(N)/k time units. [|

Complexity: The complexity of the Prahari algorithm is

dominated by the SEM algorithm [19], whose complexity is
O(kV3/log(V)).

C. Minimizing Path/Sensor Switches

In this section, we consider a lexicographic two objective
optimization problem where the first objective is to maximize
the network lifetime, and the second objective is to minimize
the number of sensor switches. We show that this two-
objective optimization problem is NP-Hard. We prove that the
decision version of this problem is strongly NP-Complete. This
problem remains NP-Hard even if all paths between s and ¢
in the associated coverage graph are node-disjoint. Then, we
can minimize the number of path switches instead of sensor
switches.

We now prove NP-Hardness for the decision version of the
problem of minimizing the number of sensor switches when
the threshold is zero. Barrier Coverage Lifetime With Zero
Sensor switches:

INSTANCE: Integers L,k € Z*, location of n sensors each
with a sensing radius of r, and ¢; € Z*, the lifetime of sensor
1=1,2,...,n.

QUESTION: Can the network provide k-barrier coverage for
L units of time with 0 sensor switches?

We use a reduction from the 3-partition problem ([24]).
3-Partition
INSTANCE: Set A with 3m elements, a bound B € Z1, and a
size s(a) € ZT for each a € A such that B/4 < s(a) < B/2
and) 4 s(a) = mB.

QUESTION: Can A be partitioned into m disjoint sets
Ay, As, ..., A, such that ZaeAi s(a) = B for 1 <i<m?

Theorem 4.3: The Barrier Coverage Lifetime With Zero
Sensor Switches problem is NP-Complete.

Proof: We first show that the Barrier Coverage Lifetime
With Zero Sensor Switches is in NP. Assume we are provided
with a schedule, i.e. a sequence of intervals I; and the set
of sensors that are active in that interval. It can be checked
in polynomial time whether the active time for any sensor
exceeds its available lifetime. Next, we invoke the algorithm
in [1] to verify for each interval I; whether the sensors active
in this interval provide k-barrier coverage. Notice that it is
sufficient to check n intervals, since at least one sensor must
be exhausted to cause a schedule switch and there are at most
n sensors that are used to provide k-barrier coverage. Finally,
we can check for each sensor if it involves an on/off.

To prove that the Barrier Coverage Lifetime With Zero
Sensor Switches problem is strongly NP-Complete, we Provide
a reduction from 3-Partition. Given an instance of the 3-
Partition problem, we construct a coverage graph as follows:
Set L = B and k = m. Create two disjoint sets of k£ nodes
each, called S and T, such that n = 3m + 2k = 5k. Let
¢i=B=Lforie SUT, and ¢; = s(i) for i € A. Connect
the k& nodes in set S to the virtual node s in the coverage
graph and to the 3k nodes in set A. Similarly, connect the k
nodes in set 1" to the virtual node ¢ and to the 3k nodes in
set A. (See Figure 10 for an example.) Now, we show that
the network provides k-barrier coverage for L units of time
with zero sensor switches iff set A can be partitioned into m

disjoint sets Aj, Ao, ...
1<1<m.

, Ay, such that >, 4 s(a) = B for

<

Fig. 10. The coverage graph constructed from an instance of 3-partition
when A= {al, a2,a3,a4,as, a(,'}.

=-. Assume set A can be partitioned in m disjoint sets such
that ., s(a) = B for 1 <i < m. Since B/4 < s(a) <
B/2 for a € A, each set A; consists of exactly three elements.
Label the k nodes in set S as s1,S2,...,s; and label the &
nodes in 1" as t1, %o, ..., t;. Now, form sets of three paths P;,
1 < 4 < k, that consist of nodes s;, t;, and nodes in the set
Aj;. Since) A, {, = L, each path set P; provides 1-barrier
coverage for B = L units of time. Since the set of paths P;
are node-disjoint, the network provides k-barrier coverage for
L units of time.

<. Assume that the network provides k-barrier coverage
for L units of time with zero sensor switches. Since every
path between the virtual nodes s and ¢ includes one or more
nodes from the set A,), s(a) = kL. Because the network
provides k barrier coverage for L units of time, every node in
set A fully exhausts its lifetime in L time units.

Suppose node a € A is shared by two nodes s1,s2 € S.
Also, assume that a is first used by s; and then by ss.
Further assume that this is the first time instant that a node is
transferred between two nodes of S and that the node in A
that was in use by sy prior to this instant was fully exhausted.
Then, switch all the nodes that were used by s; and so prior to
this instant. This switch has no effect on the system lifetime.
Now, there is no node sharing up to this time instant. Other
node sharing can be eliminated in a similar fashion. Hence,
we assume that no node in set A is shared by two nodes in
set S or by two nodes in set 7.

Since the network provides k-barrier coverage for L units of
time, it must be the case that there are m disjoint sets of nodes
insetAsuchthatEaeAiﬁa =L=Bforl <i<m==k%.Let
A; be the set of nodes in A that are used by node i € S. This
generates a 3-partition of set A, which completes the proof.

|

We now show that minimizing the number of path switches
is NP-Complete even if all paths between the virtual nodes
s and t in the underlying coverage graph are node-disjoint.
The following is the decision version of this problem when
the threshold is zero.

Node Disjoint Barrier Coverage Lifetime With Zero Path
Switches:

INSTANCE: Integers L,k € Z™, location of n sensors each
such that all the paths between the virtual nodes s and ¢ in
the associated coverage graph are node-disjoint, and ¢; € Z™T,
the lifetime of sensor i = 1,2,...,n.

QUESTION: Can the network provide k-barrier coverage for

L units of time with 0 path switches?

We provide a reduction from the Partition problem. Parti-
tion
INSTANCE: Set A of integers ¢y, co, - .., Cy.

QUESTION: Does there exist a set S C {1,2,...,n} such
that 3-.cq¢j =2 0567

Theorem 4.4: The Node-Disjoint Barrier Coverage Life-

time With Zero Path Switches problem is NP-Complete.

Proof: It can be verified that the Node-Disjoint Barrier
Coverage Lifetime With Zero Path Switches problem is in NP
in a way that is similar to the Barrier Coverage Lifetime With
Zero Sensor Switches in Theorem 4.3.

We reduce the Partition problem to the Node-Disjoint Bar-
rier Coverage Lifetime With Zero Path Switches problem.
Given an instance of the partition problem we construct a
sensor network as follows: Let the deployment region be
rectangular with the left bottom corner at the origin, i.e.
with coordinate (0,0). Let the right bottom corner be at the
coordinate (2r,0). Let € > 0. For every integer c; € A, we
place a sensor at coordinate (r, (5 — 1) * (2r +€)). Set k = 2
and L = 2?21 ¢;/2. Notice that in the coverage graph of this
sensor network, all n paths between the two virtual nodes s
and ¢ are node-disjoint.

If the answer to the partition problem is “yes,” then 35 C
{1,2,...,n} such that 3, g c; = > ,4q c;. Now, the sensor
network can achieve k barrier coverage for L units of time
since the set of sensors can be partitioned into two sets
corresponding to S and {1,2,...,n} — S, where each set
provides 1-barrier coverage for L units of time.

Alternatively, if the sensor network provides 2-barrier cov-
erage for L units of time, then the sensors can be partitioned
into two disjoint sets such that each set provides 1-barrier
coverage for L units of time. This follows because any sensors
that is turned on remains on until it exhausts its lifetime (c;
for some j). Also, every sensor completely exhaust its lifetime
if the network provides 2-barrier coverage for L units of time.

|

V. MAINTAINING COVERAGE AND CONNECTIVITY

In this section, we briefly discuss how our algorithms
can be used to maximize the network lifetime not only for
maintaining k-barrier coverage but also for maintaining &
node-disjoint paths.

We first observe that when sensors are deployed for barrier
coverage, the sensor network does not need to have every
sensor connected to each other. It is sufficient if all sensors
that participate in providing barrier coverage can communicate
with base station(s) via multi-hop routes. Without loss of
generality, we assume that the base stations are located at the
two ends of the network and can directly reach all sensors
located on the respective ends. Therefore, if the sensors
providing barrier coverage form a path in the Communication
Gmph4 between the two ends of the network, then all detection
events are communicated to the base stations.

4Two sensors are neighbors in the Communication Graph if they can
communicate with each other directly.

Now, if the communication range is twice the sensing
range, then k-barrier coverage implies that all sensors that
form k-disjoint paths between the two virtual nodes s and
t in the coverage graph, also form k-node disjoint paths in
the communication graph between the two extreme ends of
the network. If, on the other hand, the communication range
is less than twice the sensing range, then our algorithms
can be applied to the communication graph (instead of the
coverage graph) to find k-node disjoint paths across the two
ends of the network. Each of these disjoint paths provide 1-
barrier coverage, implying that the network provides k-barrier
coverage. In both cases, our algorithms can be used to provide
both barrier coverage and fault-tolerant connectivity with base
station(s) while maximizing the network lifetime.

VI. SIMULATIONS

In this section, we use our optimal algorithms to study
three interesting issues that may have implication in real-
life deployments highlighted in Section I: 1.) On average,
how much statistical redundancy exists in optimal random
deployments?, 2.) On average, how much loss in potential
network lifetime is incurred if homogeneous sensor lifetime
is assumed when they are not?, and 3.) What is the impact of
imbalance in the lifetimes of individual sensors?

We use the following parameters in the simulations. Sensors
are deployed in a rectangular region of dimension 1km x200m,
and each sensor has a sensing range of 50m. These parameters
are in same ratio as in Figure 9 in [7]. As a result, the density
needed in a random deployment can be readily determined
from this figure.

A. Statistical Redundancy in Random Deployments

Random deployment is often used in simulations. In real-
life deployments also, random deployment can provide a
reliable estimate of the density of sensors needed to achieve a
desired quality of monitoring. This is true even if sensors are
deployed deterministically, because randomness is introduced
due to unanticipated failures after deployment and due to
errors in placement [25]. To compensate for these sources of
randomness, several additional sensors need to be deployed
as compared to an optimal deterministic deployment. The
sensor density in such deterministic deployments is close to
that needed in a pure random deployment model (see [25]
for details). Randomness, whether due to the randomness
in deployment or due to unanticipated failures and errors
in placement, can be compensated by increasing the sensor
density.

The appropriate density that is needed to guarantee a desired
probability of coverage is known [7], [25], [26]. As can be seen
in Figure 9 of [7] where density estimates for barrier coverage
are presented, these estimates are reliable; they closely match
the behavior observed in experiments. The density needed to
achieve barrier coverage with probability 0.9 is 4.1, which
translates to 82 sensors. With these many sensors there is 1
out of 10 chance of not having barrier coverage. To achieve
barrier coverage with probability 0.99, the density is 5.6, and
112 sensors are needed. For barrier coverage with probability

0.999, 140 sensors are sufficient (with a density of 7). With
these many sensors there is only 1 out of 1000 chance of not
having barrier coverage. Each of these densities are optimal in
the sense that they provide the desired probability of coverage
with a minimal number of sensors.

Figure 11 shows the lifetime enhancement achieved. With
82 sensors, it may be possible to achieve 3 units of lifetime
when only a unit of lifetime is planned. On average, the
network has a lifetime of 1.21 units (an enhancement by 21%).
For 112 sensors, up to 5 units of lifetime can be achieved,
with an average of 2.68 (an enhancement by 168%). For 140
sensors, up to 7 units of lifetime can be achieved, with an
average of 4.19 (an enhancement by 319%). Thus, in instances
where barrier coverage is provided, there exist sufficient
redundancies to get several hundred percentage enhancements
in lifetime. These numbers could not be obtained previously
because optimal algorithms for lifetime enhancement were not
available.

~
T

(2]
T

&

5

@

Network Lifetime Enhancement

-0

rt

0.9 0.99 0.999
Probability of Barrier Coverage

Fig. 11. Sensors are deployed randomly but non-redundantly to provide 1-
barrier coverage with probabilities of 0.9, 0.99, and 0.999. The network is
planned to last for 1 unit time. For each case, lifetime increase by using the
Stint algorithm is shown for 100 instances of deployment.

B. The Cost of Homogeneous Assumption

As stated in Section I, the lifetime of individual sensors
are rarely equal. Even if they start with the same lifetime,
the remaining lifetime of sensors cease to be homogeneous
due to load imbalance, unanticipated failures, etc. However,
for simplicity and/or tractability, sensor lifetimes are often
assumed homogeneous. We now study the potential loss in
network lifetime due to the assumption of homogeneity. We
consider individual sensor lifetimes distributed between 5 — @
and 5+ for i = 0,1,2,3,4,5. For each of these six cases,
we use Stint algorithm to maximize the network lifetime,
assuming the lifetimes to be homogeneous. In this case, a
path of sensors provides barrier coverage only as long as
all the sensors have positive energy remaining. We then use
Prahari algorithm to again maximize the network lifetime, but
this time taking into account actual heterogeneous lifetimes of
individual nodes. The results appear in Figure 12. We notice
that lifetime obtained with the assumption of homogeneous
lifetime decreases as the degree of heterogeneity in sensor
lifetimes increases. When the lifetimes are distributed between

0 and 10, the lifetime reduces by 65%. As a result, the net-
work lasts three times longer if the sleep-wakeup scheduling
algorithm takes heterogeneity of sensor lifetimes into account.

o 606—0
[} .,
> ,
@
S
g 488 L
y .
g M L
= 33.16 0,
o
2 25.16 R
Z 198 . R
4 Stint
= Prahari
5-5 4-6 3-7 2-8 1-9 0-10

Range of Individual Lifetimes ———>

Fig. 12. Network lifetimes obtained using the Stint (that assumes homoge-
neous lifetimes) and Prahari algorithms.

C. Effect of Energy Imbalance

Load on individual sensors are rarely identical. Conse-
quently, the lifetime of individual sensors, even if they have
the same battery pack to begin with, is unlikely to be the same.
One method pursued in the literature to optimize the network
lifetime is to balance the load in the network. However, we
observe that imbalance in individual sensor lifetimes does not
necessarily translate into loss in network lifetime. In fact, as
we see from the network lifetime achieved for the Prahari
algorithm in Figure 12, the overall network lifetimes remain
approximately the same even when the degree of imbalance is
high (when sensor lifetimes are uniformly distributed between
0 and 10). This leads us to conclude that if the load imbalance
is sufficiently random, it does not cause significant loss in
network lifetime. Hence, balancing the load to maximize
network lifetime may not be necessary.

VII. CONCLUSIONS

In this paper, we propose optimal solutions to the sleep-
wakeup problems for the model of barrier coverage for both
the homogeneous and heterogeneous lifetime cases. We show
that these algorithms generate solutions where the network
lasts up to seven times longer even if a minimal number
of sensors have been deployed in a random deployment. We
also show that the loss in potential network lifetime is severe
(reduced by two-thirds) if sensor lifetimes are assumed to
be homogeneous when they are not. Finally, we show that
imbalance in load in a network does not cause loss in network
lifetime, as previously assumed, provided the imbalance is
sufficiently random.

Prior to this work, the problem of sleep-wakeup was con-
sidered to be NP-Hard. Now that the sleep-wakeup problem
has been solved in polynomial time for the barrier coverage
model, new research is likely to investigate the tractability of
this problem for other coverage models.

ACKNOWLEDGMENT

This work was partly sponsored by National Science Foun-
dation Grants CCF-0728928, CNS-0721983, CNS-0721817,
CNS-CNS-0721434, and National Institutes of Health (NIH)
Grant U0O1DA023812 from National Institute for Drug Abuse
(NIDA). The content is solely the responsibility of the authors
and does not necessarily represent the official views of the
Sponsors.

REFERENCES

[1] S. Kumar, T. H. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” in International Conference on Mobile Computing and
Networking (ACM MobiCom), Cologne, Germany, 2005, pp. 284-298.

[2] A. Arora and et. al., “Line in the sand: A wireless sensor network for
target detection, classification, and tracking,” Computer Networks, vol.
46, no. 5, pp. 605-634, 2004.

[3] A. Arora and et.al., “Exscal: Elements of an extreme scale wireless

sensor network,” in Eleventh IEEE International Conference on Real-

Time Computing Systems and Applications (IEEE RTCSA), Hong Kong,

2005.

Joengmin Hwang, Tian He, and Yongdae Kim, “Exploring in-situ sens-

ing irregularity in wireless sensor networks,” in Fifth ACM Conference

on Embedded Networked Sensor Systems (SenSys), New York, NY, 2007.

Gilman Tolle and D. E. Culler, “Design of an application-cooperative

management system for wireless sensor networks,” in EWSN, Istanbul,

Turkey, 2005.

Jonathan W. Hui and David Culler, “The dynamic behavior of a data

dissemination protocol for network programming at scale,” in ACM

Conference on Ebmedded Networked Sensor Systems (Sensys), 2004.

Paul Balister, Béla Bollobds, Amites Sarkar, and Santosh Kumar, “Re-

liable density estimates for coverage and connectivity in thin strips of

finite length,” in /3th Annual ACM international conference on Mobile
computing and networking (MobiCom), Montreal, Canada, 2007, pp.

75-86.

S. Slijepcevic and M. Potkonjak, ‘“Power efficient organization of

wireless sensor networks,” in IEEE International Conference on Com-

munications, Helsinki, Finland, 2001, vol. 2, pp. 472-476.

[9] M. Cardei, M. Thai, and W. Wu, “Energy-efficient target coverage in

wireless sensor networks,” in JEEE INFOCOM, Miami, FL, 2005.

T. He and et al, “Energy-efficient surveillance system using wireless

sensor networks,” in International Conference on Mobile Systems,

Applications, and Services (ACM Mobisys), Boston, MA, 2004, pp. 270-

283.

S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a mostly sleeping

sensor network,” in International Conference on Mobile Computing and

Networking (ACM MobiCom), Philadelphia, PA, 2004, pp. 144-158.

H. Zhang and J. Hou, “Maintaining sensing coverage and connectivity in

large sensor networks,” in NSF International Workshop on Theoretical

and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer

Networks, 2004.

Ai Chen, Santosh Kumar, and Ten H. Lai, “Designing localized

algorithms for barrier coverage,” in [13th annual ACM international

conference on Mobile computing and networking (MobiCom), Montreal,

Canada, 2007, pp. 63-74.

B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong barrier coverage of

wireless sensor networks,” in Proceedings of the 9th ACM international

symposium on Mobile ad hoc networking and computing. ACM, 2008,

pp- 411-420.

K.-F. Ssu, W.-T. Wang, F.-K. Wu, and T.-T. Wu, “k-barrier coverage with

a directional sensing model,” International Journal on Smart Sensing

and Intelligent Systems, vol. 2, no. 1, 2009.

Douglas B. West, Introduction to Graph Theory, Prentice Hall, 2001.

Alexander Schrijver, Combinatorial Optimization, Springer, 2003.

M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall,

1995.

[19] Wataru Kishimoto, “A method for obtaining the maxmimum multiroute

flows in a network,” Networks, vol. 27, no. 4, pp. 279-291, 1996.

Ben Kuris and Terry Dishongh, “Shimmer mote:hardware guide,”

Online at http://www.eecs.harvard.edu/™ konrad/projects/shimmer/ refer-

ences/SHIMMER_HWGuide_REV1P3.pdf, 2006.

[4

=

[5

=

[6

=

[7

—

[8

[t}

[10]

(11]

[12]

(13

[14]

[15]

[16]
[17
[18]

[20]

[21] V. Shnayder, M. Hempstead, B. Chen, B. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network ap-
plications,” in Second ACM Conference on Embedded Networked Sensor
Systems (SenSys), Baltimore, MD, 2004.

[22] R. McNaughton, “Scheduling with deadlines and loss functions,”
Management Science, vol. 6, pp. 1-12, 1959.

[23] Wataru Kishimoto and M. Takeuchi, “On m route flows in a network,”
IEICE Transactions (in Japanese), vol. J-76-A(8), pp. 1185-1200, 1993.

[24] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, New
York, 1979.

[25] Paul Balister and Santosh Kumar, “Random vs. Deterministic Deploy-
ment of Sensors in the Presence of Failures and Placement Errors,” in
IEEE INFOCOM Miniconference, Rio De Janeiro, Brazil, 2009.

[26] Paul Balister, Zizhan Zheng, Santosh Kumar, and Prasun Sinha, “Trap
Coverage: Allowing Coverage Holed of Bounded Diameter in Wireless
Sensor Networks,” in IEEE INFOCOM, Rio De Janeiro, Brazil, 2009.

Santosh Kumar is an Assistant Professor of Com-
puter Science at the University of Memphis, where
he received an Early Career Research Award from
the College of Arts and Sciences in 2008. He re-
ceived his Ph.D. in Computer Science and Engineer-
ing from the Ohio State University in 2006, where
his dissertation work won him SBC Presidential
Fellowship. He is leading several multidisciplinary
research projects in wireless sensor networks in-
volving more than twenty faculty members spread
across eight universities, whose expertise span nine
disciplines. More information about his current and past projects is available
at his homepage.

Ten H. Lai is a Professor of Computer Science and
Engineering at the Ohio State University. He is inter-
ested in applying Zen to teaching and research. He
served as program chair of ICPP’98, general chair
of ICPP’00, program co-chair of ICDCS’04, general
chair of ICDCS’05, and recently, general co-chair of
ICPP’07. He is/was an editor of IEEE Transactions
on Parallel and Distributed Systems, ACM/Springer
Wireless Networks, Academia Sinica’s Journal of
Information Science and Engineering, International
Journal of Sensor Networks, and International Jour-
nal of Ad Hoc and Ubiquitous Computing.

Marc E Posner is a Professor of Operations Re-
search in the Integrated Systems Engineering De-
partment at The Ohio State University. He received
a B.A. in Mathematics from Brandeis University,
an M.S. and Ph.D. in Operations Research from
the University of Pennsylvania. He has published in
most of the major industrial engineering and opera-
tions research journals on a variety of topics ranging
from the construction of statistical decision rules to
decomposing nonlinear programming problems. His
research is primarily in the field of deterministic
optimization with an emphasis on integer programming. He is interested
both in heuristic and exact methods. An area of focus is on scheduling
and production problems. Currently, he is the Area Editor in Scheduling and
Logistics for IIE Transactions and is an Associate Editor for Naval Research
Logistics.

Prasun Sinha received his PhD from University
of Illinois, Urbana-Champaign in 2001, MS from
Michigan State University in 1997, and B. Tech.
from IIT Delhi in 1995. Currently he is an Associate
Professor in the Department of Computer Science
and Engineering at Ohio State University. From 2001
to 2003, he was a Member of Technical Staff at Bell
Labs, in Holmdel, New Jersey. His research focuses
on ubiquitous networking. He has served as the TPC
chair for ICST QShine 2009 and is the TPC co-chair
for BROADNETS 2010. He has won several awards

including Lumley Research Award (OSU, 2009), CAREER award (NSF, 2006)
Ray Ozzie Fellowship (UIUC, 2000), Mavis Memorial Scholarship (UIUC,
1999), and Distinguished Academic Achievement Award (MSU, 1997).

