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ABSTRACT
Recent advances in mobile health have produced several new
models for inferring stress from wearable sensors. But, the
lack of a gold standard is a major hurdle in making clinical
use of continuous stress measurements derived from wear-
able sensors. In this paper, we present a stress model (called
cStress) that has been carefully developed with attention to
every step of computational modeling including data collec-
tion, screening, cleaning, filtering, feature computation, nor-
malization, and model training. More importantly, cStress
was trained using data collected from a rigorous lab study
with 21 participants and validated on two independently col-
lected data sets — in a lab study on 26 participants and in
a week-long field study with 20 participants. In testing, the
model obtains a recall of 89% and a false positive rate of 5%
on lab data. On field data, the model is able to predict each
instantaneous self-report with an accuracy of 72%.
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INTRODUCTION
Thanks to advances in diagnostic and analytical methods of
modern medicine, we are beginning to more clearly see the
large role that excessive and/or lingering psychological stress
plays in the decline of our emotional and physical well-being,
being implicated in such illnesses as diabetes, depression,
heart diseases, and digestive problems [43, 26, 27, 11, 3,
4, 18, 13, 14]. In addition to long term negative effects on
health, stress may also cause flare-ups in those suffering from
migraines or other stress disorders [44]. A timely intervention
to manage daily stress can significantly improve our physical,
physiological, psychological, behavioral, and social health.
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A sensor-based continuous measurement of stress in daily
life has a potential to increase awareness of patterns of stress
occurrence, its antecedents, and its precipitants [47]. Fortu-
nately, wearable sensors have progressed to the point that they
can continuously measure physiology and wirelessly stream
the data to a smartphone for real-time analysis. This, coupled
with computational modeling advances, has led to several re-
cent works on continuous measurement of stress in the mobile
environment [22, 36, 2].

Despite these advances, we still lack a well-validated stress
model that can be used for clinically managing daily stress
in the natural environment. There are several challenges in
developing and validating such a model. First, there is no
universally-accepted definition of stress. Second, there is no
gold standard, either in the lab or in the field. For exam-
ple, cortisol (measured from blood or saliva samples) is often
referred to as stress hormone and self-reporting is the most
commonly used method to assess stress in the field. But,
correlations between cortisol and self-reports have been lim-
ited to 0.26-0.36 [5, 6]. Third, physiological data collected
from the field are subject to numerous sources of noise and
losses [38]. For example, when sensors such as electrocar-
diogram (ECG) are worn throughout the day, their attachment
with the skin can degrade. Physical movements could also in-
troduce noise in the data due to jerks to electrodes. Data could
get lost in wireless transmission.

The fourth major challenge is dealing with confounding vari-
ables. Physiological arousal that should be indicative of a
stress response can be easily obfuscated by movements of
limbs, changes in posture, and physical activity. Separat-
ing out good quality data that can be analyzed to determine
whether it represents a stress-response is therefore a signifi-
cant challenge.

The fifth challenge is identification and computation of dis-
criminative features that can identify and distinguish a stress
response from other similar physiological arousals. Finally,
developing a computational model from these features and
training and validating it for field usage is another signifi-
cant challenge, especially due to lack of a gold standard with
which to train or validate the model.

For a model to be considered a gold standard for continuous
stress assessment, we consider the following two criteria —
1.) reproducibility (i.e., validity) of the model on an indepen-



dently collected dataset in both lab and field studies; 2.) high
accuracy, i.e., a recall rate ≥ 90% with a false positive rate
of under 5% on independently collected lab data (when using
lab protocol as the label) and an accuracy of ≥ 70% in the
field setting (when using self-report as the label). We note
that when comparing self-report items for consistency (using
Cronbachs Alpha measure), 0.7 is the rule-of-thumb thresh-
old for declaring a concordance [33]. This threshold reflects
inherent variabilities and biases in self-report data.

In this paper, we address each of the above six challenges
and present the cStress model, which represents a solid step
towards establishing a gold standard for continuous stress as-
sessment. cStress analyzes a minute’s worth of ECG and res-
piration data1, and, if this minute is not confounded by phys-
ical activity, outputs probability of stress. It is trained us-
ing data collected from 21 participants who were subjected
to three validated stressors — public speaking, mental arith-
metic, and cold-pressor. The ground-truth in the lab is col-
lected for each minute, based on knowledge of starts and
ends of simulated stressors. This enabled us to create a
fine-grained model of physiological stress activation (at one
minute resolution). The model is evaluated also at the same
fine-grained level, i.e. once a minute on the lab data. In the
field, self-reported stress in response to Ecological Momen-
tary Assessment (EMA) prompts are used as ground-truths.
We note that even though cStress produces a stress value for
each minute, participants were prompted for self-report of
stress only 15 times a day [45] (in order to limit participant
fatigue). Field validation of cStress is, therefore, limited to
these self-reports.

The cStress model achieves a recall (true positive) rate of
88.6% and a false positive rate of 4.65% on (1,501 minutes
of) test dataset from the lab. When the output of cStress is
compared with each of the 14 self-reports from each partici-
pant (in the lab session) to obtain an accuracy value for each
participant, we report a median accuracy of 90%. When com-
paring with each (of the 1,060) self-report collected in the
field (consisting of 1,000+ hours of sensor data), we obtain a
median accuracy of 72%. We also rank the features and find
that 80th percentile and mean of interbeat interval (i.e., time
between successive R peaks in ECG) and mean and median
of ratio between inspiration and expiration duration in respi-
ration are the most informative features.

MODELING OVERVIEW
Figure 1 presents an overview of the cStress model, start-
ing from data processing and culminating with the train-
ing and validation process. The entire model is built using
data collected via a robust wearable sensor suite, called Au-
toSense [15], which we describe in further detail in the next
section. AutoSense sensors are used to collect the physiolog-
ical data in both lab and field.

1We also note that the use of ECG and respiration sensors by our
model is well founded on extensive prior research on physiological
responses to changes in stress and emotion [15]. While there are
other physiological manifestations of stress, such as changes in skin
conductivity, skin temperature, and blood-pressure, ECG and respi-
ration are the primary ones [17, 20, 21, 40].

Figure 1. Overview of the data processing and machine learning steps.

The lab study data are collected at the University of Min-
nesota Medical School, using a carefully designed lab study
protocol. They are used to train and validate the model using
labels (i.e., ground truth or gold standard) constructed from
the lab protocol coding. The minutes of the lab session during
which a participant undergoes a stress protocol are considered
to be in the ‘stressed’ class, and ‘not stressed’ otherwise. This
is similar to the approach followed in [36].

Field data are collected at the University of Memphis, and are
used to validate the model in the participants’ natural environ-
ment. In this case, validation ground-truth is based on self-
reports filled-out at random times throughout the day, which
assess the participants’ stress state at the time of each prompt.

The first step in constructing the cStress model is to assign
correct time-stamps to the data received over the wireless
channel from wearable sensors. For time synchronization
across all measurements collected from wearable sensors and
the phone, data is time-stamped when it is received at the
phone. Data losses and software delays on the phone intro-
duce variability in the time-stamping process. The granularity
of cStress is at the level of a minute while the errors in times-
tamps may be on the order of milliseconds since the data is
transmitted tens of times each second. The main issue of time
synchronization occurs due to data loss. Time-stamp calibra-
tion is, therefore, needed to distinguish packet delays from
packet losses. Once we determine that packets are lost, we
can take corrective actions (e.g., interpolations). To do time-



stamp calibration, we developed a dynamic programming al-
gorithm to infer the correct time-stamp of each received data
sample and identify the lost data samples.

Second, we interpolate any lost data if the loss is minimal so
as not to degrade the overall data quality. The third step is to
identify and screen out poor quality data that can lead to er-
roneous inferences. Rigorous data processing is essential to
obtain usable results from physiological data collected in the
field, due to the expected presence of noise and artifacts. The
major causes of data degradations and losses in sensor mea-
surements (e.g., attachment loosening, physical movements,
etc.) are analyzed in detail in [38], which found that data yield
using AutoSense is better compared to other previously re-
ported field studies using wireless physiological sensors. The
fourth step is to detect physical activity and exclude corre-
sponding data from the application of the cStress model.

Data remaining after the above steps are used to compute
a variety of base features from both ECG and respiration.
The features are subsequently screened to remove any re-
maining outliers (e.g., long beat-to-beat interval in ECG due
to a missed or spurious beat). To reduce participant depen-
dency and make the model generalizable, the training fea-
tures should not exhibit any participant-specific effects, such
as participant-specific mean and standard-deviation. There-
fore, a critical step in pre-processing is the normalization of
each lab-study participant’s features. Further, normalization
is also carried out for any subsequent participant on whom
the model is applied. We introduce two ideas for robust nor-
malization. The first is to use a technique called winsoriza-
tion [50] to limit the impact of any outliers and the second
is to compute the overall mean and standard deviation only
from those data that are not affected by intense physical ac-
tivity, which significantly deviate from baseline.

The normalized features are aggregated into one-minute
blocks/windows, by computing various statistical features
(e.g. average, variance) per block. The one-minute granular-
ity has been the standard in lab and ambulatory physiological
monitoring [16, 17, 20, 21, 22, 36, 2] because this level of
aggregation allows relatively robust and stable feature statis-
tics. Using blocks of less than 1 minute increases variability,
which may lead to degraded model performance.

We next use the aggregated normalized features, representing
each one-minute block, to train a Support Vector Machine
(SVM) [8] model and optimize its hyper-parameters to max-
imize the F1 score. The SVM algorithm has been shown to
have a comparable or better performance (compared to other
machine learning models) for inferring stress on a minute-
by-minute basis [36]. For training the model, we use cross-
subject validation on the training data to optimize the training
algorithm’s hyper-parameters. During all subsequent valida-
tions/applications of the model, we apply the model on each
participant separately. For validation on field data, we de-
velop a Bayesian Network (BN) model that uses cSress to in-
fer the instantaneous self-reports, used as field ground-truth.
The use of a BN helps to address the arbitrary lags between
physiological response to a stressor and its memory in the
mind, which is captured in self-reports.

Code Release: The source code for cSress will be released as
open source software via the MD2K Center of Excellence2.

DATA COLLECTION
To train and test the cStress model, we use sensor and self-
report data collected in three user studies — two lab studies
(with n = 24 and n = 26) and a field study with n = 30.
Data from the first lab study, which we refer to as train, is
used to train and cross-subject-validate cStress. The second
lab study is referred to as test and is used for out-of-sample
testing of cStress. The third dataset is called field. This data
is used to validate cStress in the much noisier real-life con-
ditions against self-reported stress. We now describe the de-
vices, participants, study procedure, and the collected data.

Devices and Sensing Modalities
During the study period, participants wore a sensor suite un-
derneath their clothes with similar functionality as BioHar-
ness [1]. The sensor suite, called AutoSense [15], consists
of several biomedical sensors. These include an unobtrusive,
flexible band worn around the chest, providing respiration
data by measuring the expansion and contraction of the chest
via inductive plethysmography (RIP), a two-lead electrocar-
diograph (ECG) and 3-axis accelerometers.

The measurements collected by the sensors are transmitted
wirelessly, using ANT radio, to an Android smart phone. The
sampling rates for the sensors are 128 Hz for ECG, 21.3 Hz
for respiration, and 16 Hz for each accelerometer axis. These
samples were transmitted at the rate of 28 packets/second,
where each packet contains 5 samples. Each participant also
carried a smart phone that received and stored data transmit-
ted by the sensor suite and collected self-reports. The sensors
last around 10 days between successive battery recharges.

Lab-study Data
We follow the same protocol for the lab study as reported
in [36]. Participants were asked to sit in a comfortable chair
and rest for 30 minutes during the initial baseline. Three
types of validated stressors — socio-evaluative, cognitive,
and physical challenges were used. During the socioevalu-
ative challenge, the participant was given a topic and asked to
prepare (for 4 minutes) and deliver (for 8 minutes) a speech
in front of a research staff. For a cognitive challenge (4 min-
utes), the participant was given a three digit number and asked
to add three digits of that number, and then add the sum to
the three digit number. Participants in the train study re-
peated this while seated and standing (counterbalanced). Par-
ticipants in the test session completed only a single instance
of this task while being seated (because no significant effect
of change in posture on stress response was observed in the
train dataset). Finally, during the physical stressor, the partic-
ipant was asked to leave his/her hand submerged in ice cold
water, for 90 seconds. This was followed by a 30-minute rest
period to allow the participants’ physiology and mental state
to return to baseline.

2See the website of the NIH Center of Excellence for Mobile Sensor
Data to Knowledge (MD2K): https://md2k.org.



These tasks have been shown to reliably induce stress-related
physiological changes [5]. Therefore, the lab protocol is used
as a gold standard during the lab study rather than using self-
reports. Time-stamping each distinct rest and stress period al-
lows us to construct ground-truth labels for each minute of the
lab-session, designating a minute as stressed (class 1) if the
participant was undergoing a stress task during that minute,
or not-stressed (class −1) otherwise. These labels are subse-
quently used to train the cStress model.

Field data
For the field study, 23 participants wore the sensors for seven
days in their natural field environment. They were instructed
to wear the sensors during their entire waking hours (lasting
approximately 10-16 hours each day). They reported to the
lab each day to verify the functioning of the sensors. The data
quality was also assessed continuously by the smartphone;
the status of both data quality and wireless connection status
with the sensors was displayed (similar to the status of Wi-Fi
signal strength icon). Participants were prompted to fix the
attachment or wireless connection if good quality data was
not received. They were instructed on how to fix both of these
at the time of their recruitment.

Self-reports
Participants in the lab session were asked to provide self-
reported stress level in the lab 14 times, including before and
after each stress session. During the field study, participants
are prompted an average of 15 times daily, at random times
(and sometimes in response to self-reports of smoking and al-
cohol use) to answer a questionnaire that constitutes an Eco-
logical Momentary Assessment (EMA).

A self-report of stress in both lab and field contains five ques-
tions — “Cheerful?”, “Happy?”, “Angry/Frustrated?”, “Ner-
vous/Stressed?”, and, “Sad?”. These five items represent an
adaptation of the Perceived Stress Score (PSS) for ambulatory
setting, first proposed in [12] and subsequently used in [36].

Each item is scored on a scale of 1 to 6. Taken altogether,
these five scores can be processed, as we show later in the
paper, to represent a subjective measure of participant’s per-
ception/awareness of stress at that moment. Each EMA self-
report is time-stamped, and is used as stress ground-truth, al-
beit noisy, in field validation of cStress.

Net Data Collected
In all three data sets — train, test, and field — the data for
several participants were removed from analysis due to either
missing signals, insufficient good quality data, and/or insuffi-
cient or erroneous self-reports or EMAs.

In the case of train, out of 24 participants, three had miss-
ing RIP data, and were excluded from analysis. For the re-
maining 21 participants, the average/total number of person
minutes was 73/1534. The number of participants used for
self-reports-based validation was further filtered down to 19,
because 2 had missing self-reports. The average/total num-
ber of self-reports in the lab was 13/247. In the case of test,
we use all 26 participants. For these participants, the aver-
age/total number of person minutes was 58/1501.

Finally, in the case of field data, the initial number of par-
ticipants was 23, but 3 had insufficient good data or EMA.
From the remaining 20 participants, the total number of us-
able self-report that had good quality data prior to self-reports
was 1060. For predicting a self-report, all available and us-
able physiological data preceding the self-report were used.

DATA PROCESSING AND MODEL DEVELOPMENT
We now describe the details of data processing and model-
ing, including screening, cleaning, feature computation, and
training of the machine learning model to produce cStress.

Data Processing
The first task in the processing pipeline is to unpack the pack-
ets, received wirelessly from the sensors, and to assign a
time-stamp to each sample. To maintain time synchroniza-
tion among all the data collected, whether they are embedded
on the phone (e.g., GPS, self-report) or coming from wire-
less sensors, each data packet is timestamped as soon as it
is received on the phone. This introduces complications in
maintaining accurate timestamps, especially if some packets
are lost, or time-stamping process gets delayed due to buffer
delays. Such irregular warping of packet inter-arrival times
can degrade quality of features computed in the later steps.

Time-stamp alignment/correction and Data Interpolation
To remedy this, we apply a dynamic-programming approach
to correct the time-stamps. We first obtain the ideal times-
tamps, by noting the time between the first and last packet,
and figuring in the sampling frequency of the sensor signal.
These ideal timestamps act as scaffolding to which we opti-
mally align the actual sample timestamps. The dynamic pro-
gramming approach we use is similar to time-series align-
ment algorithms, e.g. the Dynamic Time Warping algorithm.
It selects the alignment that minimizes the sum of squared
differences between the ideal and actual timestamps.

The time-stamp correction process identifies any losses in the
sensor data stream. If a small amount of data is lost, we in-
terpolate the missing signal samples. We use cubic Hermite
splines to interpolate the gaps, which is known to be appropri-
ate for interpolating physiological measurements [32]. How-
ever, for gaps that are too wide, interpolation would fail to
correctly reproduce the peaks and valleys. For example, if
a gap spans several peaks, simple spline interpolation would
not reproduce the actual peaks, which might lead to wrong
features. If the gap fits inside a peak or valley, interpola-
tion can be a viable way to restore the peak or valley well
enough to be detected by the peak/valley code. In our case,
each packet consists of only 5 samples, and each packet cor-
responds to only 8% of an ECG or respiration cycle, hence
1 packet can easily be interpolated without significant loss in
accuracy of locating peaks and valleys. We impute if 1 packet
is lost in a burst, which reduces the data loss rate from 10%
to less than 1.5% (i.e., most packet losses are 1 packet long).

Detecting and Excluding Physical Activity Confounds
Throughout the data analysis, we require accurate detection
of time intervals with moderate-to-high physical activity, in
order to account for physiological arousal due to physical ac-
tivity rather than stress. We limit the application of the stress



Figure 2. The portion of signal that holds ECG property marked as
acceptable. The triangular shape and saturated at top is labeled unac-
ceptable. Increased R-R interval due to missed R peaks are detected as
invalid by the algorithm and marked with red dot.

monitoring framework to low/no activity intervals, which we
consider as a type of admission control. If majority of ten-
second windows inside the minute are classified as moderate-
to-high activity, we designate the entire minute as moderate-
to-high physical activity and screen it out. To determine
the presence of physical activity inside of each 10-second
window, we use a simple threshold based activity detector
using the 3-axis on-body accelerometer (placed on chest).
The choice of a 10-second activity detection window and
the threshold-based detector is based on the method proposed
in [38].

Feature Computation
The next steps involve computing the feature representation
of each one-minute window observation, which may be used
as a training or test observation. The entire data stream is
then split into one minute intervals, and for each minute we
compute various time-domain, as well as frequency-domain,
aggregate functions of these base features, e.g. statistical ag-
gregates like mean, variance, standard deviation, etc. These
one-minute aggregates serve as the final features of each one-
minute observation that may be used as a training observation
by the Support Vector Machines algorithm that trains cStress,
or as a test observation to which we apply cStress.

ECG features
ECG signal processing includes three phases. First, we iden-
tify the acceptable portions of an ECG signal. A portion of an
ECG signal is considered acceptable if it retains characteris-
tic morphologies of standard ECG, i.e. contains identifiable P
and T waves and QRS complexes. Otherwise, it is deemed as
unacceptable. Figure 2 illustrates both types of ECG signals.
Improper attachment of electrodes produces triangular shape
signal. Flat signal appears when sensor is detached from the
body completely.

Second, all R-peaks are detected automatically from the
acceptable ECG portions using Pan and Tompkins’s algo-
rithm [34]. Accuracy of R-peak detection in lab (Minnesota
lab) and field (Memphis Field) data is 98.6% and 97.01%
(when compared with manual marking via visual inspection).

Algorithm 1: Algorithm for determining whether current candidate R-R
interval is valid.

1 function isRRintValid (RRn, RRn−1, RRn+1, RRk);
Inputs : RRn: current candidate R-R interval; RRn−1:

previous candidate R-R interval; RRn+1: next
candidate R-R interval; RRk|k < n: last valid R-R
interval before RRn

Output: RRnvalid: is RRn valid?
2 if 300ms ≤ RRn−1 ≤ 2000ms then
3 if |RRn −RRn−1| ≤ CBD then
4 RRnvalid = true;
5 else
6 RRnvalid = false;
7 end
8 else
9 if |RRn −RRk| ≤ CBD then

10 RRnvalid = true;
11 else
12 if |RRn −RRn−1| ≤ CBD and

|RRn −RRn+1| ≤ CBD then
13 RRnvalid = true;
14 else
15 RRnvalid = false;
16 end
17 end
18 end

The difference between two consecutive R peaks is the R-R
interval or inter beat interval (IBI). One missed R peak will
elongate the inter beat interval (IBI) by at least twice the mean
IBI, or more, in case of multiple missed peaks. False detec-
tion of R-peak within two actual peaks will reduce the resul-
tant IBI. Thus, one or more consecutively missed R-peaks or
spuriously detected non-existent R-peaks will result in invalid
R-R intervals.

We propose Algorithm 1 to improve the outliers detection
method of [7] and illustrate it on ECG signal presented in Fig-
ure 2. We refer the reader to [7] for the definition of criterion
beat difference (CBD). Evaluation on real-life data shows that
this new method detects outliers in R-R intervals with an ac-
curacy of 99.04% in lab and 97.8% in field.

In the next step, we normalize the R-R intervals to remove
any subject/session specific components from the distribution
of the R-R intervals. A careful and robust normalization pro-
cess calibrates the model to each person without the need for
constructing a personalized model that would require exten-
sive training before the model can be applied to any person
not in the training set.

We normalize the R-R intervals, i.e. compute the z-score, us-
ing scale deviations winsorized mean and variance estimates,
with the threshold parameter of 3 [50]. Winsorization lim-
its the values of extreme outliers at the boundaries below and
above the median of the data. This is an alternative to simply
trimming the data and removing outliers, and aims to save of
the information present in such extreme outliers. We ensure



HRV variance, quartile deviation, low frequency
energy (0.1–0.2Hz), medium frequency en-
ergy (0.2–0.3Hz), high frequency energy
(0.3–0.4Hz), low:high frequency energy ratio

non-HRV mean, median, 80th percentile, 20th per-
centile, heart-rate

Table 1. All aggregated ECG features, computed using the processed
(filtered and normalized) R-R intervals. The table mentions which of
the ECG features are HRV features.

Figure 3. Illustration of acceptable/unacceptable RIP signals, and com-
putaton of base RIP features. The portion of signal that holds respira-
tion signal property, looks like quasi-sinusoidal is marked as acceptable.
Saturated at top is labeled unacceptable.

that the data used to compute the winsorized mean and vari-
ance only contain samples during low or no physical activity,
so as to eliminate any bias that physical activity may impart to
the mean of variance of a participant’s physiological arousal.

Finally, we use the normalized R-R interval values, derived
in the previous steps, to compute the R-R aggregated features
for every one minute window. These features are listed in
Table 1. Several of these aggregated features belong to the
category of heart rate variability (HRV) features.

Respiration features
Breathing dynamics can be captured using respiratory induc-
tive plethysmograph (RIP) which unobtrusively tracks the
change of ribcage circumference during inhalation and exha-
lation of a breathing cycle. Respiration signals are largely af-
fected by positioning of the chest band, physical movement,
loosening of electrical connectors and slipping of the band
from its expected location. As illustrated in Figure 3, we mark
the signal acceptable as long as the signal follows sinusoidal
pattern. Mere loosening of the chest band sometimes results
in a low amplitude signal, but that is considered acceptable
if it still retains the characteristic morphology of a respira-
tion signal. Signal saturation to a point where variation is no
longer detectable is considered unacceptable, which can be
seen in a case where the sensor is detached from the body.
We adopt a method proposed in [35] for determining accept-
ability of ECG and respiration signals.

After removing poor quality signal, we identify each cycle
by locating peaks and valleys of accepted respiration signal.
For that, we adopt the method used in [24]. First, the wave-
form is separated into breath cycles by identifying intercepts
of a moving average curve with the inspiration and expiration
branches of the waveform as shown in Figure 3. Peaks and

Base Features Aggregations
inspiration duration, expiration du-
ration, respiration duration, I:E du-
ration ratio, stretch, respiratory si-
nus arrhythmia (RSA)1

mean, median, 80th
percentile, quartile
deviation

breath-rate2, inspiration minute volume2

Table 2. All of the base and aggregated RIP features, which are com-
puted by our system. 1: RSA is a hybrid feature that uses both RIP
and ECG signals. 2: The aggregated features breath rate and inspira-
tion minute volume are computed without any other base features, but
rather using just the number of respiration cycles in a minute.

valleys are defined, respectively, as the maximum and mini-
mum between pairs of alternating inspiration and expiration
intercepts. Second, if an inspiration or expiration amplitude
is too small, ≤ 20% of the mean peak to valley amplitude,
the associated pair of peak and valley is deleted. Empirically,
we find that respiration duration varies from 0.9 sec (during
heavy exercise, i.e., running) to 12.5 sec (i.e. conversation).
When searching peaks and valleys, only time intervals from
valley to valley that fall within the range of 0.9 sec to 12.5 sec
are accepted. Otherwise, the peaks and valleys are ignored
because they are considered not to be real peaks or valleys but
small bumps or noise. The respiration duration upper limit of
12.5 sec is adopted from [28], and is also supported by our
own data, which include carefully marked episodes of con-
versation, loud reading, and public speaking. The lower limit
of 0.9 sec is calculated using our data which include running,
walking, sitting, standing and lying episodes. Furthermore, it
is close to the value mentioned in [31].

For each cycle, we compute various base features that de-
scribe the characteristics of this respiration cycle. We use the
following respiration features, described above and outlined
in Table 2: inspiration duration, defined as the time between
start and end of inspiration inside the cycle; expiration dura-
tion, defined as the time between the start and the end of the
expiration portion; respiration duration, defined as the total
time of the respiration cycle; ratio of inspiration to expiration
duration; stretch, defined as the difference between the max-
imum (legitimate) amplitude and the minimum (legitimate)
amplitude of the signal within a respiration cycle.

We also compute Respiratory Sinus Arrhythmia (RSA),
which is another feature sometimes used in emotion classi-
fication (e.g. [48]). It is a multimodal feature derived from
both ECG and respiration that describes the variability in RR
intervals due to respiration. Inspiration and expiration are as-
sociated with changes in RR intervals that may be driven by a
central brainstem circuit rather than being causally related to
the expansion and contraction of the chest. RSA is computed
by subtracting the shortest RR interval from the longest RR
interval within each respiratory cycle.

Next, we normalize the features in a similar manner as we
normalized the R-R intervals, using low activity winsorized
mean and variance estimates. The scale deviations winsoriza-
tion threshold parameter was set at 3, as earlier.

Finally, for each one-minute interval, we compute various sta-
tistical aggregates, listed in Table 2, of these normalized base



respiration features. Additionally, we compute two other per-
minute features: breath rate, simply defined as the number
of respiration cycles per minute; and inspiration minute vol-
ume, which is the volume of air inhaled into the lungs in one
minute, estimated by computing the area under the curve of
the inspiration phases of the respiration cycles in the minute.
As with ECG, these statistics are used as the final features of
each one-minute window observation that will be used either
to train or test cStress.

Model Training and Validation
Once the normalized aggregated features are computed, we
proceed to the step of learning the parameters of cStress,
which outputs a probability of stress-driven physiological ac-
tivation for any one-minute window input. One last bit of
processing before running the machine learning algorithm is
scaling each input feature between 0 and 1. This is a standard
step that can significantly improve the learning algorithm per-
formance, particularly in kernel-based learning algorithms,
which is what we are deploying.

The model is trained using the well-known Support Vector
Machines (SVM) algorithm3. It can be described as an L2-
regularized loss minimization algorithm, with the loss func-
tion defined as a classic hinge-loss [42]. It is noted for its
ability to learn high-capacity models, owing to the so-called
Kernel trick, whilst limiting potential overfitting, thanks to
regularization of parameters. Thus, the algorithm is explicitly
formulated to attempt to reduce both the bias and variance of
the resulting model.

The user can control the bias-variance tradeoff with a choice
of the Kernel function and soft-margin hyper-parameter C.
In learning cStress, we used the popular RBF Kernel, which
requires a value for the hyper-parameter γ. According to the
usual interpretation of SVM, the learned model is a hyper-
plane, defined in some high-dimensional function space,
which optimaly separates the space of observations into two
subspaces — one for each class of observations [8]. The
hyper-plane is selected by the SVM algorithm to maximize
the margin of separation.

By default, the model’s output is unscaled, whose absolute
value represents the canonical distance of the input observa-
tion from the separating hyper-plane. The distance is pro-
portional to the confidence in its classification. Applying a
standard technique, called Platt’s scaling [37], transforms the
output into a conditional probability. It works by passing the
output through a specially fitted sigmoid function.

The learned model outputs the probability that the input win-
dow belongs to class ‘stressed’. If we want a binary clas-
sification, we can choose a threshold, related to the classifi-
cation bias, and any minute with probability of stress above
this threshold is classified as stress. This threshold bias can be
considered as another hyper-parameter that needs to be tuned.

Hyper-parameter tuning
The performance of the SVM algorithm is highly sensitive to
the choice of C and RBF γ. To choose the best values of C
3We deploy the popular LIBSVM library [9]
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Stress&Perception&Model&and&Results&
!
The!need!for!a!perception!model!arises!from!our!need!to!validate!the!previously!developed!
physiological!stress!monitoring!system!on!data!collected!in!the!field!in!the!participant’s!
natural!environment.!!In!absence!of!such!validation,!there!is!only!validation!on!lab!data,!
which!fails!to!capture!the!challenges!of!stress!monitoring!in!a!real<life!situation.!!For!
example,!one!of!such!challenges!is!the!presence!of!other!sources!of!physiological!activation,!
besides!stress.!!Physical!activity!is!one!of!the!main!ones,!and!we!take!steps!to!monitor!
physical!activity,!in!order!to!avoid!false!detection!of!stress.!!!Another!challenge!is!the!
degradation!in!quality!of!sensing,!arising!from!the!free<flowing!nature!of!sensing!in!the!field.!!!!
!
Coming!back!to!the!reason!for!developing!a!perception!model!<<!in!the!field,!the!only!
ground<truth!available!for!the!validation!experiments!are!the!EMA<style!reports!the!
participant!fills!out!periodically!throughout!the!day.!!!Each!report!occurs!at!a!specific!time!in!
the!day.!!In!these!reports,!the!participant!records,!among!many!things,!his/her!feelings!of!
stress,!anger/frustration,!happiness,!cheerfulness,!and!sadness,!using!a!6<level!scoring!
system.!!!We!can!use!the!reports!of!perceived!stress!to!validate!our!physiological!stress!
monitoring!system,!by!showing!a!high!degree!of!congruence!between!this!system’s!output!
and!the!perceived!stress!score.!!To!do!so,!we’ve!developed!a!model!of!perceived!stress,!
which!is!a!type!of!Dynamic!Bayesian!Network,!using!as!input!the!output!of!the!physiological!
stress!monitoring!system.!!!Due!to!small!number!of!observations,!we!tried!to!keep!the!
number!of!parameters!to!a!minimum.!!!

Model&overview&
!
Below!is!the!diagram!of!the!perceived!stress!DBN.!!!There!are!three!variables:!Si,!Si<1,!and!Zi<1.!!
All!three!variables!are!binary,!with!“stressed”/1!and!“notstressed”/0!as!the!two!possible!
values.!!!!Si!and!Si<1!are!the!self<reported!perceived!stress!at!current!and!previous!time!point,!
respectively,!and!Zi<1!is!based!on!the!output!of!our!physiological!stress!monitoring!system!in!
the!previous!time!point.!!!The!network’s!connections!are!based!on!the!notion!that!
perception!of!stress!now,!Si!,depends!on!whether!there!was!physiological!stress!in!the!
previous!time!point,!Zi<1,!and!on!perception!of!stress!in!the!previous!time!point,!Si<1.!
!

!
!
!
!

!
!
!
!
!
The!probability!distributions!used!in!the!model!are!the!following:!
p(Si|Si<1,Zi<1),!p(Si<1),!and!p(Zi<1),!where!p(Si|Si<1,Zi<1)!is!given!by!the!following!conditional!
probability!table!(CPT):!
!
!

Si<1! Zi<1!

Si!

1 0

1 1 1 0

1 0

0 1

0 0 0 1

� β

�Si

�α

1-� β

�Si−1

1-�α

�Zi−1

Figure 4. On the left, the Bayesian Network that explains the causal
relationship between the self-reported stress for minute i− 1, the phys-
iological stress arousal for minute i − 1 and the self-reported stress for
minute i. On the right, the conditional probability table for Si.

and γ, we perform a basic grid-search. The performance is
evaluated using cross-subject validation, whereby we test the
minutes of each subject with a model trained using all other
subjects’ minutes. We chose the F1 score as the performance
metric, due to its popularity in those classification applica-
tions, where one class is the primary class of interest, and
where the function can be thought of as a retrieval or detec-
tion system. The F1 score can be defined as a harmonic av-
erage between recall and precision of inferring stress arousal.
The threshold bias is also chosen on the basis of maximizing
the F1 score in cross-subject validation.

Self-reported Stress Inference Model
cStress captures the instantaneous physiological response
from stressors. Its validation in the lab setting demonstrates
its efficacy in identifying these patterns of arousal. But, there
is no analog of a lab protocol in the field setting, against
which cStress can be validated. The gold standard for the
field setting has traditionally been the self-reports the partici-
pant fills out periodically throughout the day. Each self-report
occurs at a random time in the day. In these self-reports,
the participant records, among many things, his/her feelings
of stress, anger/frustration, happiness, cheerfulness, and sad-
ness, using a 6-level scoring system. The reliability and va-
lidity of self-reports have been questioned, because they are
subject to biases, fabrication, falsification, and lack of care
in reporting. In addition, they rely on memory. Physiology
often responds to stressors instantaneously, subsiding when
the stressor has faded. However, the memory of stress may
persist in the mind of the participant, which is what the self-
report captures. Hence, there may be an arbitrary lag between
the occurrence of a stressor and its capture on the self-report.
For such reasons, self-reports have produced only a marginal
correlation with biofluid assessments, such as stress hormone
(cortisol), of 0.26-0.36 [5, 6]. Nevertheless, it is the most
widely used measure for validation in the field setting.

To allow for arbitrary lag between the physiological response
captured by cStress and the memory of a stress event captured
in self-report, we’ve developed a Bayesian Network model of
self-reported stress that is similar to that proposed in [36].

Figure 4 illustrates the Bayesian Network model, which de-
scribes how self-reported stress values change in the course
of the day at one-minute intervals. The model formal-
izes the recursive relationship between the (estimated) self-



Accuracy Optimal hyper-parameters
Feature Set F1 AUC Hit-rate TPR FPR C. Kappa C γ bias

All 0.81 0.96 0.93 0.84 0.05 0.77 90.5097 0.000345267 0.339329
ECG 0.78 0.95 0.92 0.72 0.05 0.73 2 0.00552427 0.340407
HRV 0.56 0.78 0.84 0.55 0.1 0.46 724.077 0.0220971 0.250926
RIP 0.75 0.93 0.90 0.83 0.09 0.69 1448.15 0.000488281 0.308312

Table 3. Cross-subject validation performance metrics for dataset train

reported stress at any one minute of the day and the previ-
ous minute’s (estimated) self-reported-stress, as well as the
previous minute’s physiological stress arousal (obtained from
cStress). There are three variables in the model: Si, Si−1, and
Zi−1. All three variables are binary, valued as 1 (‘stressed’)
or 0 (‘not stressed’). Si and Si−1 represent the self-reported
stress for minute i (current minute) and minute i − 1, re-
spectively, and Zi−1 can be defined as physiological stress
arousal at minute i− 1. The network’s connections are based
on the notion that perception of stress for minute i, Si, de-
pends on perception of stress in the previous minute, Si−1,
and on whether there was physiological stress arousal in the
previous minute, Zi−1.

The probability distributions used in the model are the fol-
lowing: p (Si|Si−1, Zi−1), p(Si−1), and p(Zi−1), where
p (Si|Si−1, Zi−1) is given by the conditional probability ta-
ble (CPT) in Figure 4. Note that we simplified the parameter-
ization of p (Si|Si−1, Zi−1) by setting the probability of self-
reported stress for minute i to 1 if there was also self-reported
stress for minute i− 1 and physiological stress activation for
minute i − 1, as measured by cStress. Conversely, if there
was no detection of physiological stress activation for minute
i − 1, nor self-reporting of stress for minute i − 1, then the
probability of self-reported stress for minute i is 0. This sim-
plification is both logical, and leads to a model of just two
parameters, α and β.

The prior probability p(Zi−1) is produced directly by cStress,
whereas the marginal p(Si−1), or in general p(Si) for any i,
can be computed by marginalizing it from the joint distribu-
tion p(Si, Si−1, Zi−1):

p(Si = 1) =

p(Si = 1|Si−1 = 0, Zi−1 = 0)p(Si−1 = 0)p(Zi−1 = 0)+

p(Si = 1|Si−1 = 1, Zi−1 = 0)p(Si−1 = 1)p(Zi−1 = 0)+

p(Si = 1|Si−1 = 0, Zi−1 = 1)p(Si−1 = 0)p(Zi−1 = 1)+

p(Si = 1|Si−1 = 1, Zi−1 = 1)p(Si−1 = 1)p(Zi−1 = 1)

The above equation can be simplified, using the CPT in Fig-
ure 4. Referring to p(Si = 1) simply as yi and p(Zi = 1) as
xi, we have the following:

p(Si = 1) = yi =αyi−1(1− xi−1)+
β(1− yi−1)xi−1 + yi−1xi−1

(1)

We initialize this recurrence chain with the first self-report of
the day, S0.

p(S1 = 1) = y1 =

{
α(1− x0) + x0, if S0 = 1

βx0, otherwise.
(2)

Equations (1) and (2) can be used to compute all the
marginal probabilities of self-reported stress. Based on these
marginals, we can classify each hypothetical self-report for
every minute of the day as ‘stressed’ or ‘not stressed’. The
learning of α and β is performed using the available self-
reports for each participant. Thus, each participant has his/her
own uniqueα and β, learned using only that participant’s field
data and self-reports. Furthermore, for each participant there
is just one α and β spanning all of his/her field study days.

To learn the model, we use a grid-search for α and β that
maximize the F1 score of classifying all actual self-reports
into either class ‘stressed’ or ‘not stressed’. To compute the
F1 score, we need the probabilities p(Si = 1), computed us-
ing equations (1) and (2), and the ground truth labels for Si,
which can be computed from the EMA self-report scores, by
quantizing them into binary ‘stressed’/‘not stressed’ labels.

To binarize self-report scores, we first average across all
5 stress items, reverse coding the two positive items (i.e.,
“happy” and “cheerful”). Next, we compute the mean of this
quantity (i.e., score), for each participant, and use this mean
as a threshold. For every score above the mean, we classify
the self-report as ”stressed”, and ”not stressed”, otherwise.

EXPERIMENTAL RESULTS
In this section, we present the results of validation experi-
ments on all three data sets. For the two datasets that have lab
ground-truth labels — train and test — we perform standard
classification experiments and report standard classification
performance measures. However, the experimental designs
for the two cohorts differ somewhat. For train, we performed
cross-subject validation, allowing us to fine tune the hyperpa-
rameters, and learn the final cStress model. This model was
then used to perform out-of-sample validation on test.

To evaluate the performance, we use standard performance
measures: F1 score, which is also the measure based on
which we tune the hyper-parameters C and γ; area under
ROC curve (AUC); Accuracy, comprised of the Percent Cor-
rect, True Positive Rate, and False Positive Rate; and Cohen’s
Kappa. To understand and compare the predictive powers of
different types of features, we repeated the experiments for
the following categories/sets of features: entire set of 37 ECG
and RIP features, just the ECG features, just the HRV fea-
tures, and just the RIP features. Table 3 lists the values of all
these performance measures for cross-subject validation on
train, for all four categories of features. The table also lists
the optimal hyper-parameters: C, γ, and bias. For additional
reference, Table 4 contains the confusion matrix of the cross-
subject validation tests using the optimal hyper-parameters
and all features.



Classified by Model
Stressed Not stressed Total

A
ct

ua
l Stressed 236 (84%) 46 (16%) 282

Not stressed 61 (5%) 1191 (95%) 1252
Total 291 1237 1534

Table 4. Cross-subject validation confusion matrix for for dataset train
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Figure 5. Box plots of AUC, Accuracy, Cohen’s Kappa, Matthew’s Cor-
relation Coeffiecient (MCC), F1 score for all 26 lab-study participants in
the test cohort. Median values are displayed inside each box.

Classified By Model
Stressed Not stressed Total

A
ct

ua
l Stressed 351 (89%) 45 (11%) 396

Not stressed 56 (5%) 1149 (95%) 1205
Total 407 1194 1501

Table 5. Test confusion matrix for dataset test, made by combining the
confusion matrices for all test participants.

In the case of test, we classified the minutes of each partic-
ipant separately, producing the list of performance measures
for each participant. We used cStress trained on all features
using the corresponding C and γ. We obtain a median accu-
racy of 95.3%, AUC of 0.98, Kappa of 0.87, MCC of 0.88,
and F1 score of 0.9. The sets of performance measures are
plotted in box plots in Figure 5. Additionally, we compiled a
confusion matrix, seen in Table 5, made up of the combina-
tion of confusion matrices of all participants.

For the final set of experiments, we fit the Bayesian Net-
work model of self-reports to self-reported stress scores in
the lab and in the field. The model is fitted for each par-
ticipant separately. The objective of these experiments is to
validate cStress with instantaneous self-reports. This experi-
ment is performed on train and field, both of which contain
self-reported stress scores. Table 6 contains the median val-
ues of performance measures, F1, Accuracy, and AUC, across
all participants, for both data sets. As the table shows, using
a simple two-parameter model, we are able to relatively ac-
curately infer self-reports, especially given the limitations of
self-reports, as discussed earlier. Additionally, in Figures 6
and 7, we present the accuracy values for each participant
separately, for both data sets train and field, respectively.

Finally, we present a ranking of features in terms of contribu-
tion to the model performance. We employ a variant of Mul-
tiple Kernel Learning (MKL), called simpleMKL [41], with
a separate Kernel for each feature, to rank features based on
their associated Kernel weight coefficients in the final sim-

train field
Median F1 0.75 0.71

Median AUC 0.85 0.60
Median Accuracy 0.9 0.72

Table 6. Median self-reported stress inference results, across all partici-
pants, for train and field cohorts.

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

Participants

Ac
cu
ra
cy

Figure 6. Self-reported stress inference performance measures for each
participant in the train cohort.
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Figure 7. Self-reported stress inference performance measures for each
participant in the field cohort.
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Figure 8. Plot of MKL Kernel weight coefficients, sorted from biggest to
smallest. Each weight corresponds to a separate feature, based on which
the corresponding Kernel was computed. For the sake of space, we cut
out all features below the weight coefficient of 0.01.

pleMKL model. As we did in the previous experiments, we
use grid-search to fine-tune the hyper-parameters of the sim-
pleMKL algorithm to maximize the cross-subject validation
F1 score. The best result we obtain has F1=0.81, AUC=0.96,
and Accuracy=0.93, which is similar to what was achieved
with the SVM model using all features, reported earlier in
Table 3. After this, the best hyper-parameter values are used
to learn the final simpleMKL model, using the entire training



data, from which we can extract the learned Kernel weight
coefficients. Figure 8 shows a bar plot of these weight coef-
ficients for all features, sorted from biggest to smallest. The
high level of sparsity is due to the `1-norm regularization of
Kernel coefficients performed by simpleMKL.

RELATED WORKS
There is a rich body of related works on stress assessment.
Most of these have been done in a controlled lab setting or su-
pervised real-life setting. In the first case, the research efforts
are focused on discovery and analysis of effective indicators
of stress [49, 46, 19, 10, 51, 39]. These works contain highly
useful findings and analyses, in particular, effective features.
One example of this is the widespread adoption of heart rate
variability (HRV) features [25, 29, 49]. We evaluated the util-
ity of HRV features in measuring stress and find that on the
lab training data, using HRV features alone produces an F1
score of 0.56 as compared with 0.81 when all the features of
cStress model are used (see Table 3).

Several works [23, 25, 29] report on experiments in a real-
world scenario. The number of situations and activities, how-
ever, are usually limited. For instance, in [25], stress was
inferred only while the participants were on the computer.
Similarly, in [29], the participants participated in only one
type of stressful situation – verbal examination – and the non-
stressful period took place in a controlled rest setting. Two of
these papers used heart rate variability features as a measure
of stress arousal [25, 29].

The last category of papers are the papers that discuss stress
monitoring in the wild [22, 36, 2]; our work also belongs to
this class. In [22], the authors present a review of other papers
on stress inference in the wild, as well as discuss their own
efforts in this direction. They propose a feature called addi-
tional heart rate (AHR), which has been found to be predictive
of stress [30]. However, the paper mentions that the authors
did not analyze the accuracy, and seemingly performed only
limited validation on field data.

The closest to our work is [36] that used a similar lab setup
for data collection and for training their model. They ex-
perienced data quality issues and excluded majority of data
used for training and testing. They used only 28 minutes
(= 600/21) of data per participant in comparison to 73 min-
utes per participant for our case, for the same protocol where
each participant spent 103 minutes in the lab (see Figure 3
in [36]). Despite careful data exclusion, [36] reported a recall
rate of 88% and a false positive rate of 8% on training data
set. The field data had similar issues — 66% of the field data
was excluded, leaving only 16 hours of data per participant.
In contrast, we use 50+ hours of good quality data per partic-
ipant, which are all independent from the training set [38].

Most importantly, when validating against self-report, they
only compared against an overall average stress level (aggre-
gated over 2 days) for each participant. As a result, they only
had one data point (pair of model output and self-report) for
each participant. This does not indicate whether the model
can predict the instantaneous self-reports and hence limits the
utility of the model for producing a continuous measure of

stress. In contrast, we use 53 self-reported data per partici-
pant and show that cStress is capable of inferring each self-
reported stress. To the best of our knowledge, ours is the first
work to propose a stress model that has been validated on in-
dependent data sets in both lab and the field and is able to
predict each instantaneous self-report collected in the field.

DISCUSSION, CONCLUSIONS AND FUTURE WORK
Our proposed cStress model obtains good accuracy on inde-
pendent data sets in both lab and field and constitutes a sig-
nificant step towards a gold standard for continuous stress as-
sessment from wearable wireless sensors.

This work, however, has several limitations and significant
potential for future works. First, for cStress to truly be-
come a gold standard, it needs further improvements in accu-
racy and reproduction on other independent data sets. Sev-
eral approaches could be adopted to improve the accuracy
such as more convenient data collection methods (e.g., ob-
taining inter-beat intervals from smartwatches instead of ECG
electrodes), better handling of physical activity confounds so
fewer data segments are filtered out, personalization of the
model to the context, among several others.

Second, to become societally useful, its clinical utility in the
management of stress needs to be established. For example,
sensor-triggered just-in-time mobile interventions for stress
management could be developed and evaluated among those
suffering from migraine, stress disorders, or those abstaining
from addictive behaviors (e.g., smoking). Third, effective vi-
sualizations could be developed that permit users to visualize
their stress patterns on mobile devices and gain insights into
contexts that may increase or decrease their daily stress.

Fourth, when stress assessment is combined with other data
such as geoexposures (from GPS), visual exposures (from
smart eyeglasses), social interactions (from microphones),
light and sound exposures (from smartwatch sensors), and
digital trails (from social media, emails, calendars, etc.),
stress predictors could be discovered for better management
of daily stress. Finally, stress may be a socially private infor-
mation for some. Hence, it raises new privacy management
issues for mobile sensor data.
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