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Abstract—Tracking of movements such as that of people,
animals, vehicles, or of phenomena such as fire, can be achieved
by deploying a wireless sensor network. So far only prototype
systems have been deployed and hence the issue of scale has not
become critical. Real-life deployments, however, will be at large
scale and achieving this scale will become prohibitively expensive
if we require every point in the region to be covered (i.e., full
coverage), as has been the case in prototype deployments.

In this paper we therefore propose a new model of coverage,
called Trap Coverage, that scales well with large deployment
regions. A sensor network providing Trap Coverage guarantees
that any moving object or phenomena can move at most a
(known) displacement before it is guaranteed to be detected by
the network, for any trajectory and speed. Applications aside,
trap coverage generalizes the de-facto model of full coverage
by allowing holes of a given maximum diameter (d). From
a probabilistic analysis perspective, the trap coverage model
explains the continuum between percolation (when coverage holes
become finite) and full coverage (when coverage holes cease to
exist).

We take first steps toward establishing a strong foundation
for this new model of coverage. We derive reliable, explicit
estimates for the density needed to achieve trap coverage with a
given diameter when sensors are deployed randomly. We show
by simulation that our analytical predictions of density are
quite accurate even for small networks. Next, we investigate
optimal deterministic patterns for deployment. We show that
for d ≤ 0.5552r, where r is the sensing range, the optimal
deployment pattern is a triangular grid and for large d/r, the
subdivided hexagonal grid is within 10% of optimal. Proving
the exact optimal pattern appears to be an extremely difficult
problem, related to several open problems in optimal plane
packing. Finally, we propose polynomial-time algorithms to
determine the level of trap coverage achieved once sensors are
deployed on the ground.

I. INTRODUCTION

Several promising applications of wireless sensor networks
with a high potential to impact human society involve de-
tection and tracking of movements. Movements may be of
persons, animals, and vehicles, or of phenomena such as
fire. Examples include tracking of thieves fleeing with stolen
objects in a city, tracking of intruders crossing a secure perime-
ter, tracking of enemy movements in a battlefield, tracking
of animals in forests, tracking the spread of forest fire, and
monitoring the spread of crop disease.

So far only prototype systems have been deployed and
hence the issue of scale has not become critical. Real-life
deployments, however, will be at large scale, and achieving
this scale will become prohibitively expensive if we require
every point in the region to be covered (i.e., full coverage

or blanket coverage [19]), as has been the case in prototype
deployments [14], [17], [22]. The requirement of full coverage
will soon become a bottleneck as we begin to see real-life
deployments.

In this paper, we therefore propose a new model of coverage,
called Trap Coverage, that scales well with large deployment
regions. We define a Coverage Hole in a target region of
deployment A to be a connected component1 of the set of
uncovered points of A. A sensor network is said to provide
Trap Coverage with diameter d to A if the diameter of any
Coverage Hole in A is at most d. For every deployment that
provides trap coverage with diameter of d, the sensor network
guarantees that every moving object or phenomena of interest
will surely be detected for every displacement d that it travels
in A. At any instant, we can either pin point the location of
a moving object precisely, or can point to a coverage hole of
diameter at most d in which it is trapped.

With this model, the density of sensors can be adjusted to
meet the desired quality of tracking while economizing on the
number of sensors needed. Large scale sensor deployments
for tracking thus become economically feasible with this new
model of coverage. Figure 1 shows an example deployment
region where the size of the largest uncovered region is d.

Hole diameter = dHole

Hole

Fig. 1. In this deployment, d is the diameter of the largest hole.
Notice that although the diameter line intersects a covered section,
it still represents the largest displacement that a moving object can
travel within the target region without being detected.

Trap Coverage Generalizes Full Coverage: If the value of
d is set to 0, then trap coverage is equivalent to full coverage.
By relaxing the requirement of having every point covered,
trap coverage generalizes the model of full coverage.

Traditionally, the fraction of target region that is covered has
been used as an indicator of the quality of coverage [14], [26].
Notice that even if a large fraction of region is covered, the
diameter of the largest hole may be arbitrarily large. Therefore,

1Here connected refers to the connectivity of a set of points in the real
plane that comprise the target region.
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trap coverage may better indicate the Quality of Full Coverage
as it provides a deterministic guarantee in the worst case.

II. KEY CONTRIBUTIONS AND ROADMAP

In addition to introducing a new model that generalizes the
traditional full coverage model, we make several contributions
in this paper, some of which may be of independent interest.

First, we derive a reliable estimate of the density (similar as
in [3]) needed to achieve trap coverage with a desired diameter
d when sensors are deployed randomly. Roughly speaking, the
critical density condition is of the form

λ(2rd + πr2) ≈ log n, (1)

where λ is the expected density of sensors per unit area, r is
the sensing range, and n = λ|A| is the expected total number
of sensors in the target region A. In other words, we expect
that having, on average, log n sensors in the r neighborhood
of a thin long hole of diameter d will suffice for achieving
trap coverage with a diameter of d. We also show how our
estimate for the density can be adapted to a non-disk model
of sensing region, by using ellipses of random orientation as
an example. (Section IV)

Second, the model of trap coverage explains the gap that
has long existed between the percolation threshold (when
holes become finite and isolated) and the critical density for
achieving full coverage (when holes cease to exist). Looking
at (1), we can observe that if r is constant w.r.t. n, which
is the case for percolation to occur, d is of the order of
log n, matching the known behavior that for fixed λr2 above
the percolation threshold, the maximum hole diameter is on
average of order log n. On the other hand, if d is a constant,
and 0 in particular, then λr2 is of the order of 1

π log n,
matching the known behavior for achieving full coverage [19].
Thus, the trap coverage model not only generalizes the model
of full coverage, it also helps explain the probabilistic behavior
of coverage between the percolation threshold and critical
density for full coverage. (See Figure 14 for an illustration.)

Third, for deterministic deployments, we show that for
d ≤ 0.5552r, the optimal deployment pattern is a triangular
grid. We conjecture that this is in fact optimal for all d /
1.1292r, a square grid is optimal for 1.1292r / d / 2.0798r,
and a hexagonal grid is optimal for larger d, where we may
subdivide the edges of the hexagonal grid a number of times
if d is large (see Figure 6). For all d, we give good bounds
on the optimal deployment density, showing in particular that
the subdivided hexagonal grid is within 10% of optimal for
large d/r. However, proving the exact optimal pattern appears
to be an extremely difficult problem, related to several open
problems in optimal plane packing. (Section V)

Once sensors have been deployed on the ground (either ran-
domly or deterministically), it may be necessary to determine
the level of trap coverage that they provide, since some may
fail at or after the deployment for unforeseen reasons. Our
third contribution, therefore, is polynomial time algorithms to
determine the level of trap coverage that an arbitrary deployed
sensor network provides. Our algorithms not only works for
non-convex models of sensing regions, but also when sensing

regions are uncertain (e.g., probabilistic sensing models).
Further, they take into consideration the complications that
may arise due to the boundary of the deployment region (see
Figure 10 for an example). (Section VI)

III. RELATED WORK

Most work on probabilistic density estimates for coverage
assume the full coverage model [19], [25], [31]. As we show
in Section IV, the naı̈ve approach of increasing the sensing
range by d and then deriving the conditions for full coverage
will lead to overdeployment, no matter how small the value
of d > 0 is. For larger d, overdeployment will be orders of
magnitude more than needed in our estimates.

Work on full coverage that does consider holes focuses on
the fraction of region that is (un)covered, see [25], [31]. They
attempt to asymptotically minimize the area of vacant region
and do not provide any simple expression for the density
needed in a random deployment to achieve a desired fraction
of uncovered region. Even if there existed such an expression,
it could not be used to readily derive an estimate of density
needed for bounding the diameter of coverage holes. This is
because holes of large diameter tend to be long and thin, and
their area is not typically large (even close to zero).

Perhaps, the work closest to trap coverage are [8], [11] that
allow holes for surveillance applications. Here the quality of
surveillance metric is based on the distance that a moving
target, starting at a random location, moving in a random
direction can travel in a straight line before it is detected by
a sensor. In [8], distance to detection by a giant connected
component is also studied. There are several issues with such a
metric. For one, they do not provide any worst case guarantee
on how far a target can move before being detected, unlike
trap coverage. For example, if the density chosen is just large
enough that a giant component exists almost surely, as in [8],
the hole diameters are not bounded by any constant; they
grow as a function of log n where n is the number of sensors
deployed. Further, even though the average distance may be
bounded, even close to zero, the worst case distance could be
arbitrarily large (as show in Figure 2). As shown in a typical
deployment (Figure 4), holes that have larger diameters are
usually thin and long, so the average distance measure is quite
likely to be misleading. Therefore, neither of these metric can
be used to derive a density estimate for trap coverage.

In summary, there does not exist any work that can be
used to derive estimates of density (or even critical conditions)
needed in a random deployment to achieve trap coverage of
a given diameter, a mathematically challenging problem that
we address comprehensively in this paper. Similarly, although
there have been numerous work on deterministic deployment
patterns for full coverage and connectivity [2], none of them
are applicable directly to Trap Coverage since this is a new
model of coverage that allows holes of bounded diameter.
We postpone discussing existing work related to algorithmic
determination of the status of trap coverage to Section VI-A.
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Fig. 2. Region R and line L in proof of lower bound on P(hm ≥ d).
L is uncovered and so forms a long thin hole provided R is void of
any sensors.

IV. ESTIMATING THE DENSITY FOR RANDOM
DEPLOYMENTS

In this section, we derive a reliable estimate for density
that will ensure trap coverage of a given diameter. We take
a progressive approach in deriving our estimate for simplicity
of exposition. We first consider a disk model of sensing. For
this model, we first derive a crude but rigorous bound that
may appeal to intuition. We then show that large holes occur
with a Poisson distribution. In Section IV-A, we estimate the
intensity of this Poisson distribution. Once we have an accurate
estimate of the intensity with which large holes occur, we
can accurately determine the density needed to achieve trap
coverage of a given diameter d with any given probability
(such as with probability 0.9999). We show in Section VI-F
that our density estimate is accurate even for small deployment
regions, a significant improvement over asymptotic critical
densities that work only for large deployments. Finally, we
show in Section IV-B, how our derivations can be adapted
to non-disk sensing models. We provide the derivation for
randomly oriented ellipses as an example.

We consider a Poisson deployment with intensity λ in a
deployment region A′ that includes a large target region A
of area |A|. Write n = λ|A| for the expected number of
sensors within the target region, and hm for the maximum
hole diameter.

Before we obtain a bound on the probability that hm ≥ d,
we make some remarks on the effect of the boundary. Gen-
erally speaking, if the deployment region A′ is the same as
the target region A, then coverage is more likely to fail at
the boundary than in the interior (see [3]). Thus a similar
result would be expected to occur for trap coverage, at least
when d/r is small. One simple way of avoiding problems at
the boundary is to enlarge A′ so that it includes all points
within distance r of A. (We shall assume in the following
that the boundary of A is small, i.e., |∂A|(r+d) ¿ |A|. Thus
enlarging the deployment region as above will not increase its
area much, i.e., |A′|/|A| ≈ 1.) This makes coverage of points
on the boundary of A as likely as points in the interior, and
large holes are no more likely to appear at the boundary than
in the interior (in fact less likely since there is less area near
the boundary than the interior, and holes are confined to lie
inside A). In the following analysis we shall assume that the
deployment region has been enlarged in this manner.

We first derive a lower bound on P(hm ≥ d). Let L be a
straight line of length d inside A. If there is no sensor within
distance r of L then L lies in the interior of a hole, which
then must have diameter at least d. Let R be the set of points
within distance r of L. Then R consists of a 2r× d rectangle
with two semicircular caps of radius r attached to each end
(see Figure 2). The probability that R contains no sensor is

δθ

p qp q

γ

Fig. 3. Left: calculation of the area of Rγ(s). Right: Example of
self-overlapping Rγ(s) with s = r. R1 is lightly shaded region, R2

is heavily shaded region. If γ approaches within 2(
√

3− 1)r > r of
itself, then one can shorten γ by cutting across along dashed line pq.

e−λ|R| where |R| = 2rd + πr2. We can place R inside a
2r × (d + 2r) rectangle which has area less than 2|R|. Thus
if A is large enough and of a reasonable shape (in particular,
if it has small boundary as mentioned above), we can pack at
least |A|/(2|R|) = n/(2λ|R|) disjoint copies of R into A. The
event that one copy of R is devoid of sensors is independent of
any of the other copies, so the probability that the maximum
hole diameter is at least d is bounded below by the probability
that at least one of the copies of R is empty. Thus

P(hm ≥ d) ≥ 1− (
1− e−λ|R|)n/(2λ|R|) ≥ 1− e−I|A|,

where I = (2(2rd + πr2))−1e−λ(2rd+πr2). (2)

(Here we have used the fact that 1 − x ≤ e−x. The quantity
I is essentially a bound on the average number of holes of
diameter ≥ d per unit area.) If we write

λ(2rd + πr2) = λ|R| = log n− log log n− t, (3)

then for t = t(n) = o(log n), I|A| = et log n
2(log n−log log n−t) =

(.5 + o(1))et. If t → ∞ as n → ∞ we have I|A| → ∞ and
thus P(hm ≥ d) → 1.

Now, we give an upper bound on P(hm ≥ d), which is
more involved. Suppose a hole H of diameter hm ≥ d exists.
Suppose x, y ∈ H are points with ‖x−y‖ = d and let γ be the
shortest path from x to y inside the hole H . We may assume
that x lies at a crossing point of the boundaries of the sensing
regions of two sensors (see Lemma 5.1 below). Note that γ
consists of straight line segments possibly joined together with
arcs of circles of radius r. In particular, the radius of curvature
of γ at any point is never less than r.

Lemma 4.1: Suppose 0 < s ≤ r. Then the set Rγ(s) of
points that lie within distance s of γ has area at least s(|γ|+
d) + πs2, where |γ| ≥ d is the arc length of the curve γ.

Proof: Suppose first that Rγ(s) does not wrap around
on itself, i.e., no point on ∂Rγ(s) is distance s from more
than one point of γ (see Figure 3). Then the area of Rγ(s)
is exactly 2s|γ|+ πs2. To see this, cut γ into small segments
each of (approximately) constant radius of curvature, and make
corresponding cuts in Rγ(s) orthogonally to γ at the places
where γ is cut. Suppose one segment of γ has radius of
curvature R and subtends an angle δθ. The length of this
segment is Rδθ, while the area of the corresponding slice of
Rγ(s) is 1

2 (R+s)2δθ− 1
2 (R−s)2δθ = 2sRδθ (the difference

between sectors of two disks). Adding up these areas for each
segment of γ gives an area of 2s|γ|, and adding the two half-
disks centered at the endpoints of γ gives the result.
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Now assume Rγ(s) self-intersects. Then the above argument
will overestimate the area. However, distant parts of γ cannot
approach too closely. Indeed, suppose there are two points
p and q on γ such that p 6= q and the distance between p
and q is a local minimum for points on γ. Then there are
sensors at p′, q′ with p, q lying on the segment p′q′ and γ
following the boundaries of the sensor regions of p′ and q′

(see Figure 3). No sensor on the opposite side of γ to p′ and
q′ can have a sensor region intersecting the sensor regions of
p′ or q′, but if ‖p′−q′‖ < 2

√
3r this implies no sensor region

intersects the line segment pq. Thus if ‖p− q‖ < 2(
√

3− 1)r
the line segment from p to q is uncovered by any sensor and γ
can be shortened by joining across from p to q, contradicting
the assumption that γ was the shortest path from x to y. A
similar argument shows that no point can lie in a triple self-
intersection of Rγ(s). Indeed, if w is such a point and p1,
p2, p3 are distinct locally closest points on γ, then there are
sensors at p′i, where pi lies on the segment wp′i and γ follows
the boundary of the sensor region of p′i near pi. If any of the
distances ‖p′i − p′j‖, i 6= j, are less than 2

√
3r, then γ may

be shortened. But if all ‖p′i − p′j‖ ≥ 2
√

3r then their sensor
regions do not intersect, and so w does not exist.

Thus of the area |Rγ(s)|, no part can be more than double
counted by the estimate 2s|γ|+πs2 above. In other words, we
can write Rγ(s) as the union of two regions R1 and R2, with
|R1| + 2|R2| = 2s|γ| + πs2. Now any line L perpendicular
to xy between x and y must intersect R1 in line segments
of total length at least 2s since no point on L before the
first point of γ or after the last point of γ can be in a self-
intersection of Rγ(s). Also R1 contains two half-disks at x
and y. Thus |R1| ≥ 2sd + πs2 and |Rγ(s)| = |R1|+ |R2| =
|R1|/2 + (|R1|+ 2|R2|)/2 ≥ s(|γ|+ d) + πs2 as required.

Now approximate γ with a path γ′ that is made up from a
sequence of arcs of circles, each of radius r/2 and length rε
(so they curve by an angle of 2ε). Each arc curves either to
the left or the right. One can show that γ′ can be chosen so
that it starts at x, the angle that γ′ makes with the horizontal
at x is a multiple of ε, and all points of γ′ are within distance
Crε2 of γ, where C is some absolute constant. Hence there
is no sensor within distance r(1− Cε2) of γ′.

Given x, there are (2π/ε)2k choices for γ′ when γ′ consists
of k segments. Given γ′, one knows γ to within distance Crε2,
so picking any γ consistent with γ′, we know Rγ(r(1−2Cε2))
contains no sensors. Since the length of γ and γ′ agree to
within a factor of 1 + O(ε2), any γ′ gives us a region of
area (r2kε + rd + πr2)(1 − C ′ε2) devoid of sensors, so the
probability of some such γ′ existing starting from x is at most

∑
k≥d/rε(2π/ε)2ke−λ(r2kε+rd+πr2)(1−C′ε2)

≤ 2π
ε(1−2e−λr2ε/2)

e−λ(2rd+πr2)(1−C′ε2)+(d/rε) log 2

Setting ε = (λr2)−2/3 and assuming λr2 À 1, this is at most

C ′′(λr2)2/3e−λ(2rd+πr2)(1−O((λr2)−2/3). (4)

The expected number of intersection points in A we can
choose for x is 4λπr2n, so we obtain

P(hm ≥ d) ≤ C ′′′(λr2)5/3ne−λ(2rd+πr2)(1−O((λr2)−2/3)

(5)

Fig. 4. Example of Poisson deployment. Rectangle denotes target
region. Notice that holes of larger diameters are typically long and
thin, although this need not be true for smaller diameter holes.

for some constant C ′′′. For λr2 = O(log n), this tends to 0
when

λ(2rd + πr2)(1−O((λr2)−2/3)) ≥ log n + O(log log n).

Combining this with the lower bound (3) above, we see that
the maximum hole size hm = d typically occurs when

λ(2rd + πr2)(1−O((λr2)−2/3)) = log n, (6)

(the O((λr2)−2/3) error term swallowing the log log n terms
in both cases). We observe that (from both the lower and
upper bounds above) the holes with the largest diameter
are long and thin, basically being obtained by insisting that
an almost straight path γ of length d is not covered by
any sensing region. We show in Figure 4, a representative
Poisson deployment for which some holes exist. Note that
although the holes are of various shapes, the holes with the
largest diameters are usually “long and thin”, confirming our
analytical conclusion.

Comparison with an obvious extension of the full coverage
model. Note that our estimate is significantly better than the
naı̈ve bound obtained by increasing r by d and then demanding
that this provides full coverage. Indeed, our bound (assuming
λr2 À 1) is of the form

λ(2rd + πr2) ≈ log n, (7)

while if we required full coverage with sensing range r + d
we would need (replacing d by 0 and r by r + d in (7))

λπ(r + d)2 = λ(πd2 + 2πrd + πr2) ≈ log n.

Even for small d we would underestimate d by a factor of π
(2πrd vs. 2rd), and for large d the discrepancy tends to ∞
(d ∼ c

√
log n vs. d ∼ cr−1 log n for fixed λ). Note that

enlarging the sensor range by d/2 is not sufficient in general
to eliminate all holes of diameter d, but even if it were, the
(incorrect) bound obtained on d would still always be worse
than our result. The reason for the discrepancy between our
estimate and the naı̈ve bound however becomes clear when
we observe that a long thin hole can be covered with just a
small increase in r, rather than increasing it by d.

Estimating the Probability Distribution of Large Holes.
Large holes, when they exist, should be well separated, so
one would expect the distribution of the number of holes with
diameter ≥ d to follow an approximately Poisson distribution.
This is indeed true for large λr2. To show this, suppose H is a
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coverage hole. Then H depends on the Poisson process within
a region H ′ consisting of all points at distance ≤ r from H . To
show the number of holes is approximately Poisson, one can
use the Stein-Chen method (see [1]). In our case, it reduces
to showing (a) that the expected number of pairs of holes
H1 and H2 for which H ′

1 and H ′
2 intersect is o(1), and (b)

that this would also be true if the H ′
i were truly independent.

Condition (b) is easy to show since the H ′
i are much smaller

than A. Condition (a) holds since conditioned of the state of
the Poisson process in H ′

1, it is unlikely there is a hole close
by. (Effectively this reduces to showing holes are rarely near
the boundary of a deployment region R2 \ H ′

1, which holds
since the boundary of H ′

1 is typically not large.) We refer the
reader to [4] for more details of these calculations. As a result,
for sufficiently large λπr2

P(hm ≥ d) ≈ 1− e−I|A|, where (8)

I = λe−λ(2rd+πr2)(1−O((λr2)−2/3),

I being the expected number of holes of diameter at least d
per unit area (i.e., the intensity of the Poisson process for the
occurrence of holes of diameter ≥ d). Once again the O()
error term in I swallows the polynomial factors in front of
the exponentials in the upper and lower bounds given above.
We shall refine this estimate in the next section.

A. Refining the Estimate

In this section we shall give a much more accurate estimate
for the probability of occurrence of holes of diameter ≥ d.
We only provide an outline of our derivation here and defer
the detailed proofs to [4]. To obtain an improved estimate,
we compare the trap coverage model with that of barrier
coverage, where sensors are deployed in a long (but 2 di-
mensional) horizontal rectangular strip Sh of height h, and
one asks whether there are coverage holes crossing the strip
(see [3] for details). We shall count the number of holes
that cut across this strip in two different ways, leading to a
comparison between barrier coverage and trap coverage. First
let I trap

d be the number of holes of diameter at least d per unit
area and assume u, v are endpoints of such a hole with u lying
below v. Then since the holes are typically long and thin, this
hole will cut across Sh provided u and v lie on opposite sides
of Sh. Let θ be the angle uv makes with the vertical, and x the
distance of u below the bottom of Sh (see Figure 5). Then we
need ‖u− v‖ ≥ (x + h)/ cos θ. The intensity I of such holes
per unit length along Sh is therefore given approximately by

I ≈ 1
π

∫ π/2

−π/2

∫ ∞

0

I trap
(x+h)/ cos θ dxdθ.

To relate this to I trap
d at a particular value of d, we note that by

our simple estimates in the previous section that I trap
d decays

exponentially with d,

I trap
d+ε ≈ I trap

d e−2λrε.

Sh

x
u

v

h

θ

Fig. 5. Left: hole with diameter uv crossing strip Sh. Right:
additional vacant semicircular areas allow break to form hole.

Using this approximation (and evaluating the x-integral) gives

I ≈ I trap
h

1
2πλr

∫ π/2

−π/2

e−2λrh(1/ cos θ−1) cos θ dθ

≈ I trap
h (4πλ2r2(λrh + 9

8 ))−1/2,

where the last approximation is valid for large λrh.
Now we evaluate I by comparison with barrier coverage. A

hole across Sh results in a break as defined in [3], however
when defining barrier coverage one assumes deployment only
inside the strip Sh. Thus for a break to define a hole crossing
Sh, we also need that sensors outside of Sh do not destroy
the break. From the results in [3] we know that most breaks
are approximately rectangular and thin cutting perpendicularly
across Sh. Using this it follows that for this break to make a
hole, one needs at least one point on the top boundary of Sh

inside the break to be uncovered by sensors outside of Sh,
and similarly at least one point on the bottom boundary of
Sh to be uncovered (see Figure 5). One can show that the
probability of some point on the top boundary of Sh in a
fixed interval of length W to be uncovered by sensors above
Sh is approximately (1 + λrW )e−πλr2/2. One may assume
the top and bottom boundaries are independent for large h (in
fact λh3 À r is enough), so this gives

I ≈ Ibarrier
h (1 + λrE(W ))2e−πλr2

,

where E(W ) is the expected width of the uncovered interval
on the boundary of Sh that occurs at a break, and Ibarrier

h is the
average number of breaks per unit distance along Sh. One can
show using the techniques of [3] that E(W ) ∼ cλ−2/3r−1/3

with c ≈ 0.72. Also [3] gives the following estimate for Ibarrier
h .

Ibarrier
h ≈ λ2/3(2r)1/3e−2λrd(1−α(4λr2)−2/3)+β .

where α ≈ 1.12794 and β ≈ −1.05116. (Note that the value
of r in [3] is twice the sensor radius.) Putting these together
gives the following approximation for I trap

d .

I trap
d ≈ C0λ(λr2)2/3(1 + c(λr2)1/3)2(λrd + 9

8 )1/2

× e−2λrd(1−α(4λr2)−2/3)−πλr2
, (9)

where C0 = π1/224/3eβ ≈ 1.5611, α ≈ 1.12794, c ≈ 0.72.
As in [3], this estimate should be valid for λd3 À r, and
λr2 À 1, which in our context means not too close to either
full coverage πλr2 ∼ log n or the percolation threshold λr2 ∼
constant.

Since coverage holes of diameter ≥ d follow Poisson
distribution (using the same Stein-Chen argument as in the
previous section), we have

P(hm ≥ d) ≈ 1− e−|A|I
trap
d (10)
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when I trap
d is small.

B. Extending to Non-disk Sensing Regions

The above analysis assumes that the sensing regions are
disks. However, it is clear from the lower bound argument for
P(hm ≥ d) that we can generalize this to other shapes of
sensing region. To recall, for the lower bound we require that
no sensing region intersects a line L. The probability that this
occurs can be calculated for any required (even probabilistic)
model of the sensing region. The fact that the upper bound for
disks is close to the lower bound suggests that this will also
hold for most reasonably “disk-like” sensing regions. As an
example, we consider the case of randomly oriented ellipses
(to model biased gain along a randomly oriented axis).

Lemma 4.2: Suppose the sensing regions are ellipses, each
with maximum and minimum radii r and αr respectively, and
with orientation that is random and uniform. Then the expected
number of sensor regions meeting a fixed line L of length d
is given exactly by

λ(πr2α + 2rd 2
π E(1− α2)), (11)

where E(m) =
∫ π/2

0
(1−m sin2 θ)1/2 is an elliptic integral.

Proof: Consider the sensors whose smaller radius lies in
some small angle [θ, θ + dθ] from the direction of the line L.
These sensors occur as a Poisson process of intensity λ

2π dθ.
If we scale the plane by stretching by a factor 1/α in the
direction of the smaller radius, the sensor regions become
circular with radius r, while the density of sensors is now
α λ

2π dθ. The line L is now also stretched, and has a new length
d′ = d(α−2 cos2 θ+sin2 θ)1/2. The expected number of these
sensors meeting L is therefore equal to

(πr2 + 2rd′)α λ
2π dθ

= λ
2π (πr2α + 2rd(1− (1− α2) sin2 θ)1/2)dθ.

The result follows by integrating this from θ = 0 to 2π.
Note that since we are assuming Poisson deployment, the

physical location of the sensor within the ellipse is irrelevant
(as long as it is independent of the location and orientation
of the ellipse), so we may for example assume the sensor is
at the center, or at a focal point, or at one end of the ellipse.
The results will be identical in all cases. The lower bound
argument for P(hm ≥ d) follows exactly as before, using (11)
in place of the expression λ|R| = λ(πr2 + 2rd). Similarly,
the upper bound argument also follows, except that the radii
of curvature of the path γ may need to be reduced, leading to
worse constants in the O() term in (5) when α is small.

Similar results can be shown for probabilistic sensing re-
gions. For example, if the radii r varied randomly then one
obtains the same results with λ|R| replaced with Eλ|R| =
λ(πE(r2)+2E(r)d) (for the disk model), provided the random
radii r is is bounded, r1 < r < r2, and with the error terms
depending on r1 and r2.

V. OPTIMAL PATTERNS FOR DETERMINISTIC
DEPLOYMENTS

In this section, we address the problem of finding the
optimal patterns for distributing sensor nodes deterministically

Fig. 6. Conjectural optimal deployments — triangular grid (d /
1.1292r), square grid (1.1292r / d / 2.0798r), and (possibly
subdivided) hexagonal grid (d ' 2.0798r). The triangular and square
grids for r ≤ d / 1.1292r, respectively 2r ≤ d / 2.0798r, are such
that the sensing regions just touch, and in fact have trap coverage
diameter r and 2r.

to achieve d-Trap Coverage for a given diameter d. Throughout
we shall assume all sensors have disk sensing regions of
radius r.

Hunting for optimal deployment patterns has intrigued
mathematician and computer scientists for decades, and many
problems remain unsolved in general. While for the full
coverage model, it is know that triangular lattice is optimal, the
same problem is much harder for the Trap Coverage model,
which reduces to the full coverage model only when d = 0.

Our aim is to determine a deployment pattern which gives a
fixed bound d on the trap coverage diameter, while minimizing
the number of sensors required. We consider the dimensions
of the deployment region to be large, tending to infinity. We
show that for d ≤ 0.5552r, the optimal deployment pattern
(in this limit) is a triangular grid. We conjecture that this is in
fact optimal for all d / 1.1292r, a square grid is optimal for
1.1292r / d / 2.0798r, and a hexagonal grid is optimal for
larger d, where we may subdivide the edges of the hexagonal
grid a number of times if d is large (see Figure 6). For all d we
give good bounds on the optimal deployment density, showing
in particular that the subdivided hexagonal grid is within 10%
of optimal for large d/r. However, proving the exact optimal
pattern appears to be an extremely difficult problem, related to
several open problems in optimal plane packing. Note that for
any practical surveillance or monitoring applications a large
d/r ratio is a realistic assumption.

A. Assumptions and Definitions

Let A denote the target region (as in Section IV) and S the
set of sensors deployed. For simplicity and to avoid boundary
effects we shall assume A is a large (2-dimensional) torus.
All the results in this report can be extended to the case
when A is a finite regions in the plane, with error bounds
depending on the ratio of the boundary length to the area. As
a consequence, our results also apply in the limit of large,
reasonably shaped, planar deployment regions as the area of
the deployment region tends to infinity. A deployment on a
torus is also equivalent to an infinite deployment in the plane
which is periodic in two directions.

We shall assume each sensor x ∈ S has a sensing region
Sx which is an open disk of radius r about s ∈ A. We
shall assume that the dimensions of the torus are such that
the shortest non-contractible curve in A has length large
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compared with r+d so as to avoid sensor regions overlapping
themselves, or sensor coverage holes wrapping round the torus.

Let CS =
⋃

x∈S Sx denote the region covered by S, that
is, the union of the sensing regions of the nodes in S, and US

denote the uncovered region in A, that is, US = A \ CS . A
coverage hole is a connected component of US . The sensor
network is said to provide trap coverage with diameter d if
the diameter of any coverage hole in A is at most d.

A sensing neighbor of a sensor x ∈ S is a sensor y ∈ S
whose sensing region overlaps with the sensing region of s,
i.e., Sy ∩ Sx 6= ∅. Consider the perimeter of the sensing
region of x, which is divided into one or more segments
by the sensing perimeters of its sensing neighbors. Every
such segment is called a sensing segment of x. Note that the
boundary of a coverage hole is made up of a number of sensing
segments.

B. The Delauney graph HS

Suppose we have a deployment of a finite number of
sensors in the torus A. We construct the coverage graph
GS = (S,E) by taking the sensors as the vertices and joining
sensor neighbors, i.e., we join vertices with an edge if and only
if the sensors are within distance 2r of each other so that their
sensing regions intersect. We represent the edges as straight
line segments joining the vertices, so that the edges lie entirely
within the sensing region. By assumption on the dimensions
of A, this line segment is unique. Note that edges of GS may
cross each other. For the analysis of the deployment we shall
consider a certain spanning subgraph HS of GS that has no
crossing edges, so is ‘planar’, and for which each coverage
hole corresponds naturally to certain faces of HS .

The graph HS will be a slightly modified version of the
Delauney graph of the set of sensors. For each sensor x, let
Vx be the set of points covered by the sensing region that are
no further from x than from any other sensor:

Vx = {z ∈ R2 : ‖z−x‖ ≤ r and ∀y ∈ V : ‖z−x‖ ≤ ‖z−y‖}.
Here ‖z − x‖ denotes the shortest distance between z and x
on the torus. Thus Vx is the Voronoi cell of x, except that
we do not include points at distance more than r from x.
Equivalently, it is the intersection of the Voronoi cell of x with
the coverage region. (If z is in the coverage region then clearly
the closed sensor to it is within distance r.) The edges of H are
given by pairs of sensors x, y such that the Voronoi cells of x
and y meet. We shall assume that no point is in more than three
Voronoi cells. If this occurs we break ties arbitrarily, removing
this point from all but three Voronoi cells. (For example, we
can move each sensor in S a small random distance, so that
the existence of a point equidistance from four or more sensors
occurs with probability zero.) Then HS will have no crossing
edges. Indeed, it is a subgraph of the classical planar Delauney
triangulation, where we have just removed edges (where the
full Voronoi cells would have intersected, but did not because
we truncated the Voronoi cells at distance r). Note that this is
not quite the same as the Delauney triangulation with edges of
length > 2r deleted — edges of length < 2r in the Delauney
triangulation may correspond to Voronoi cells that intersect at
distance > r from their respective centers.

Fig. 7. Induced hole (dashed triangle) formed by triangle which is
covered by a sensor disk of a sensor outside of the triangular face.

Suppose we are given any subgraph H of GS in which
edges do not cross. Then H divides the torus A into faces.
As above, a coverage hole is any connected component of the
uncovered region in the torus. We define an induced hole of a
face f of H to be a component of the subset of the face that is
uncovered by the vertices on the boundary of that face. Note
that a face may have several induced holes, or none at all,
and an induced hole may be partially or entirely covered by
sensors that lie outside the boundary of the face (see Figure 7).
However, this will not occur for our graph HS .

Lemma 5.1: Assume that the coverage region CS is con-
nected and S provides trap coverage with diameter d. Then
HS is connected and every face f of HS satisfies the following
properties.

(a) there is at most one induced hole of f ;
(b) if f has no induced hole then f is a triangle;
(c) if f has an induced hole then it is a hole of G;
(d) if there is an induce hole of f then each vertex on the

boundary of f is at distance r from this induced hole (so
the boundary of the induced hole includes a segment on
the boundary of the sensing region of this vertex).

Proof: The coverage region is the union of the Vx, so
this is connected iff HS is connected. Thus is only remains to
prove that every face of HS satisfies (a)–(d).

Note first that each Vx is convex, indeed, it it the intersection
of the Voronoi cell of x with the disk of radius of r about x,
both of which are convex. Suppose f is a face of HS , and
v1, . . . , vn are the vertices (sensors) on the boundary of f in
that order, possibly with repeats. Then the Voronoi cell of vi

intersects with that of vi+1. Thus there is a (topological) closed
curve γ that goes through each vi in turn and stays within the
Voronoi cells of vi and vi+1 as it travels from vi to vi+1. Now
let z be a covered point with in face f . Then z lies in some
Vx. If z lies in the interior of γ then x must be one of the vi

as Vx cannot cross γ and x cannot lie inside the face f . If z
lies outside γ but inside f , then it is trapped between an edge
vivi+1 of f and the corresponding subpath γ′ of γ between vi

and vi+1. However every point of γ′ is either within r of vi or
within r of vi+1, and moving closer to vivi+1 perpendicular
to vivi+1 decreases these distances. Thus every point between
γ′ and the line segment vivi+1 is within r of either vi or vi+1.
Thus every covered point z inside f is covered by some vi.
Thus (c) holds.

Suppose U is a coverage hole. Then due to trap coverage,
connectivity of CS , and the assumptions on A, the boundary γ
of U must be a simple closed curve. This boundary is covered
by Voronoi cells Vv1 , . . . , Vvn (in that order). But then vi is
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joined to vi+1 in HS , so we have a cycle C = (v1, . . . , vn) in
HS . As above, every point lying between γ and the polygon
C must be covered by one of the vi. Thus there are no other
sensors inside C, and any other coverage hole must lie outside
of C. Thus the face containing U is C, and C contains no other
coverage hole. Hence (a) holds.

Now suppose f is a face with boundary C = (v1, . . . , vn)
and suppose Vv2 , say, does not meet any induced hole in f .
As above, let γ be a (topological) closed curve through the
vi, passing through each Vvi

in turn. As one traverses the
boundary of Vv2 from the point where γ meets Vv1 ∩ Vv2 to
the point where γ meets Vv3 ∩ Vv2 (staying in the interior of
γ), one must come to a point P that either lies in Vv2 ∩ Vv3 ,
or lies in neither Vv2 or Vv3 . In the first case v2v3 is an edge
of HS , so C is a triangle. In the second case, either P is n the
boundary of an induced hole, or P ∈ Vvi

for some i 6= 1, 2, 3.
But in this last case viv1 is an edge of C, a contradiction. Thus
either C is a triangle, or C has an induced hole. Thus (b) holds.
Finally, we know from the above argument that either C is a
triangle or Vv2 meets the induced hole. But in this case v2

must be at distance r from the hole. As this applies to any
vertex of C, either (d) holds or C is a triangle. However any
induced hole must have at least three sensor segments on its
boundary, so (d) automatically holds for triangular faces.

Corollary 5.1: If S provides trap coverage with diameter d
then the diameter of any face of HS is at most d + 2r.

Proof: The diameter of a face f is the maximum distance
between corners. If f has an induced hole then every corner is
within distance r of this induced hole, and this induced hole is
a coverage hole. Thus the distance between these two corners
is at most r + d + r = d + 2r. If f does not have an induced
hole then it is a triangle with edge length at most 2r. Thus its
diameter is at most 2r ≤ d + 2r.

Lemma 5.2: Assume S is an optimal deployment, i.e., a
deployment of minimum size |S| which achieves trap coverage
with diameter d. Then CS is connected, and every face of HS

is a proper cycle (without repeated vertices).
Proof: Suppose first that CS is disconnected. As each

coverage hole has diameter at most d, which is much smaller
than the dimensions of the torus A, one cannot have two large
components. Indeed, all but one component must lie inside
a surrounding hole h. Now h is bounded by an outer hole
boundary consisting of sensing segments s1, . . . , sn. Such a
boundary is a simple closed curve and encloses the hole. Note
that the diameter of the hole is the same as the maximum
distance between any two points both of which are endpoints
of the si. This follows from the fact that the convex hull of
the hole boundary has these points as its corners. Removing
any component inside the hole does not change the diameter
of h, and so does not violate trap coverage. Since removing
the component reduces |S| and S was assumed optimal, we
conclude that CS is connected.

Now consider a hole h with boundary s1, . . . , sn as
above. The boundary gives rise to a cycle of sensors Ch =
(x1, . . . , xn), where si is a sensing segment of sensor xi. Note
that Ch is the boundary of the face of HS that contains h.
Suppose that this cycle repeats a sensor, say xi = xj = x,
i < j. Let si be the sensing segment from point p− to p+

Fig. 8. Moving C horizontally minimizes diameter of hole when
AC = BC.

around the sensing disk of x, and let sj be the sensing segment
from q− to q+, where we use a clockwise ordering of the
points around the hole boundary (i.e., the hole boundary en-
counters the points in the order p−, p+, q−, q+ when traversed
in a clockwise orientation). the sensing segments si and sj

do not intersect as they are non-adjacent segments of the hole
boundary. Thus the points occur in the order p−, p+, q−, q+

when traversing the boundary of the sensor region of x
counterclockwise. By removing the segments si and sj from
the sensor hole and adding the straight line segments p−q+

and p+q− one obtains two simple closed curves that do not
intersect. Thus one curve encloses the other, wlog this one
is s1 . . . si−1p−q+sj+1 . . . sn. The diameter of the outermost
curve is still the diameter of the hole, so removing sensors
xi+1, . . . , xj−1 does not increase the maximum hole diameter.
Thus we may assume that all sensors x1, . . . , xn are distinct.

C. Optimal Deployments

Let V = |S| be the number of sensors and denote the area
of A by A.

Theorem 5.1: The average area per sensor A/V in a de-
ployment with maximum hole diameter d is bounded by the
maximum of 3

√
3

2 r2 + 3
2d(r2− d2

4 )1/2−
√

3
4 d2 and 1

2 (d+2r)2.
Proof: Define Af to be the area and nf to be the number

of sides of the face f of HS . Write V , E, and F for the
number of vertices, edges, and faces of H . Then V is the
total number of sensors,

∑
f nf = 2E, and by Euler’s formula

(on a torus), V = E − F . Thus V = 1
2

∑
f (nf − 2) while

A =
∑

f Af . The ratio A/V is at most the maximum of the
individual ratios 2Af/(nf − 2), so a bound on A/V can be
obtained by maximizing the quantity 2Af/(nf − 2) over all
polygons with nf vertices and area Af with induced hole of
diameter at most d.

Suppose ABC is a triangle with an induced hole abc where
|aB| = |aC| = r, etc. (see Figure 8). Fix one side AB
of the triangle, and assume AB is horizontal. Then if we
move the third vertex C horizontally, the area of ABC is
unchanged. However, it is not hard to see that each of |ab|,
|bc|, and |ca| are convex functions of the horizontal position
of C. Since the diameter of the hole is the maximum of
these, it is also convex, and by symmetry is minimized when
|AC| = |BC|. Applying this argument to AC varying B
instead shows that the diameter of the hole is minimized
for an equilateral triangle. By scaling the triangle, this is
equivalent to maximizing the area for a given diameter of
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hole, so the optimum occurs for an equilateral triangle. The
formula 3

√
3

2 r2 + 3
2d(r2 − d2

4 )1/2 −
√

3
4 d2 for 2Af/(nf − 2)

is an elementary calculation.
For faces with nf > 3 we note that the diameter df of

the face f is the maximum distance between any two of its
vertices. However, each vertex is at distance r from the hole,
so df ≤ d + 2r. The problem of finding the largest area of
a polygon with a given diameter (the biggest little polygon
problem) is unsolved in general, but K. Reinhardt proved in
1922 that regular polygons are optimal for all odd nf , and also
for nf = 4. The area of a square of diameter df is 1

2d2
f and that

of a regular pentagon is about 0.66d2
f . For larger nf we use the

fact (from the isodiametric inequality in two dimensions) that
the shape with the largest area and given diameter is a circle
(although not all shapes with a given diameter can fit into
such a circle, which is addressed in the Lebesgue’s minimal
problem). This gives a bound of Af ≤ π

4 d2
f . Thus in general

for nf > 3, 2Af/(nf − 2) ≤ 1
2d2

f ≤ 1
2 (d + 2r)2.

The above theorem is not good for large d/r. In this case
we can use the following.

Theorem 5.2: The average area per sensor A/V in a de-
ployment with maximum hole diameter d is bounded as
A/V ≤ r(d + 2r)2/d.

Proof: We use the fact that the circle is the shape with the
largest area for a given perimeter. Thus the perimeter pf of f
must be at least 2(πAf )1/2. Since each edge of H is of length
at most 2r, pf ≤ 2rnf , and so nf ≥ (πAf/r2)1/2, and hence
2Af/nf ≤ (4r2Af/π)1/2. But we also know that Af ≤ π

4 d2
f

where df is the diameter of f . Thus 2Af/nf ≤ rdf . Since
2rnf ≥ pf ≥ 2df , 2Af/(nf − 2) ≤ rdf (df/(df − 2r)) =
rd2

f/(df − 2r). For df ≥ 4r this is maximized by taking df

as large as possible, namely d + 2r, and the result follows.
For df < 4r we may assume nf > 3 (since the bound for
triangles above is always lower than r(d + 2r)2/d). But then
2Af/(nf − 2) ≤ rdfnf/(nf − 2) ≤ 8r2 is always less than
r(d + 2r)2/d. The second bound thus follows.

Corollary 5.2: For d/r ≤ 0.5552, the optimal deployment
pattern in the plane is a triangular lattice.

Proof: For d/r ≤ 0.5552, the value of 2Af/(nf − 2) for
an equilateral triangle is larger than the bound for polygons
given in Theorem 5.1 for nf > 3. Since triangles tile the plane,
we can make every face of H a triangle, so the maximum value
A/V = 2Af/(nf − 2) can be achieved.

As d/r grows, the optimal value of 2Af/(nf−2) occurs for
polygons with more sides, however these do not necessarily
tile the plane, so the corresponding value of A/V may not be
attained. We conjecture that the optimal deployment patterns
are all either triangular, square, or (possibly subdivided) hexag-
onal grids. Figure 9 shows the conjectured optimal patterns for
various values of d/r.

Theorem 5.3: For large d/r, the subdivided hexagonal lat-
tice is within 10% of the density of the optimal deployment.
More precisely, A/V ≤ ( 4

√
π2/12 + O(

√
r/d))rd.

Proof: Take an optimal configuration, construct the graph
HS as above. Then each face of HS has maximum diameter
at most d + 2r. Note that an face with at most 2k − 1 sides
must have diameter at most 2r(k−1) as the diameter must be
the distance between two vertices and the maximum distance
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Fig. 9. Bound on ratio A/V for optimal deployment with r = 1
(upper curve), together will conjectured values (lower curve). The
conjectured optimal deployment is either a triangular lattice, a square
lattice, or a subdivided hexagonal lattice. Note that as the number
of subdivisions of the hexagonal lattice increases, the exact shape
of the hexagons changes, only being regular when the number of
subdivisions on each side is equal. Also the subdivisions are not
necessarily equally spaced along each edge.

between two vertices is at most 2r(k − 1). Remove edges
between faces if both faces have < 2k sides. Then if 4r(k −
1) < d + 2r, the diameter of any resulting face will still be
at most d + 2r. Now amalgamate any remaining faces with
< 2k sides with some adjacent face (which must have ≥ 2k
sides). As any point is within distance 2r(k − 1) of a face
with ≥ 2k we see that the maximum diameter of any face is
now at most d + 2r + 4r(k − 1) = d + 2r(2k − 1), and all
faces have ≥ 2k sides. the disk is the shape with the largest
area for a given diameter, so the area of each face f satisfies
Af ≤ A0 := π

4 (d + 2r(2k − 1))2. We now use the the result
(Theorem 3 of [13]) that the sum p of the edge lengths of the
resulting graph is at least 4

√
12A/

√
A0, where A is the sum of

the area of the faces. (We need to scale all lengths by a factor√
A0, as this theorem assumes all areas are bounded by 1.)

Thus ∑

f

2rnf ≥
∑

pf ≥ 2p ≥ 2 4
√

12A/
√

A0,

where pf is the perimeter of the face f . Note that each edge
contributing to p is counted in the perimeters of two faces.
Now nf ≥ 2k, so

∑
2r(nf − 2) ≥ k − 1

k
2 4
√

12A/
√

A0.

Thus

A/V = 2A/
∑

(nf−2) ≤ k

k − 1
2
√

A0
4
√

12r
= 4

√
π2

12
k

k − 1
(d+2r(2k−1))

whenever 4rk < d. Taking k ≈
√

d/r gives

A/V ≤ 4

√
π2

12
(1 + O(

√
r/d))rd.

Finally, the hexagonal grid achieves A/V =
√

3/4(1 +

O(r/d))rd which is within a factor of 4

√
π2

12 /
√

3/4 ≈ 1.0996
of optimal.
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VI. COMPUTING THE TRAP COVERAGE DIAMETER

Even though we provide an accurate probabilistic estimate
of the density needed to achieve trap coverage of a given
diameter when deploying sensors randomly, it may be useful
to ascertain deterministically whether a target hole diameter
has been achieved after deployment, especially in the face of
unanticipated and unknown deployment failures [5]. In order
to determine whether a deployed network continues to provide
trap coverage over time, efficient algorithms are needed to
determine the largest hole diameter. In this section, we propose
such algorithms.

Figure 10 shows a target region with several sensing cov-
erage holes. Although the sensors are plotted as disks in the
figure, we are not assuming a disk sensing model. Further, the
sensing regions of different sensors may be different. Except
in Section VI-E, where sensing regions are assumed to be star
convex, the only assumptions we make are: 1) Two sensor
nodes are within the transmission range of each other if their
sensing regions overlap; 2) The accurate positions of nodes
can be determined; 3) The boundary ∂A of the target region
A is a simple polygon and is known.

To determine the largest diameter of coverage holes, the
following two steps are applied. First, the boundary of each
hole is found. Second, the diameters of these holes are com-
puted based on their boundaries to obtain the largest diameter.
The good news is that several ideas from existing work on
discovering exact hole boundaries [6], [15], [23], [26], [29]
can be applied here. However, the following challenges, which
are critical to the trap coverage model, are not addressed there.

1) The boundary of a coverage hole may involve part of
∂A, such as hole H7 in Figure 10, so that it is hard to
discover the entire boundary.

2) In a realistic sensing model, the boundary of a coverage
hole may have an arbitrary shape, which makes the
computation of the accurate diameter non-trivial.

3) When the shapes of sensing regions are unknown
or uncertain (as in probabilistic sensing models), the
boundaries of individual holes may not be accurately
determined.

H1

H2

H3

H4 H5

H6

H7

H8

Fig. 10. An instance of deployment with eight coverage holes, H1

to H8. The rectangle shows the boundary of the target region. Note
that only the holes within the target region are counted. The small
disks are sensing regions.

We describe in Sections VI-B and VI-C a modification
to existing algorithms that computes an accurate diameter
for convex sensing regions and approximate diameter for
non-convex but known sensing regions. In Section VI-E, we
describe an outline of a simpler algorithm that computes an
approximate diameter for both known and unknown (uncer-

tain) sensing regions. We first review existing work in this
area before describing our algorithms.

A. Related Work

Tools from both algebraic topology and computational ge-
ometry have been used for detecting coverage holes. Most
focus on coverage verification and boundary node detection
without computing the exact hole boundaries [6], [10], [15],
[24], [26], [29], and several of them assume a disk sensing
model and an open target region [6], [10], [24], [26], [29].

In topology based approaches, certain criteria to detect
holes or verify coverage [10], [24] are derived from the
topology of the covered region without using the positions of
nodes. However, these criteria are computed in a centralized
way and the complexity is not well studied yet. In contrast,
geometry based approaches assume the positions of nodes
are known [15], [26], [29] or at least the accurate distances
among neighboring nodes are known [6] and use certain
locally computable geometric objects to detect nodes on a
coverage boundary. The first localized approach is proposed
in [15] where every node can locally determine whether it is
on the boundary of a k-coverage hole by counting the coverage
levels of its sensing perimeter, which is simplified in the case
of 1-coverage in [30]. The location free version of [15] is
proposed in [6]. Another geometric approach uses Voronoi
diagrams [9], [26], [29], which is not applicable to non-convex
or heterogeneous sensing regions.

Based on [15], [23] proposes an algorithm to determine
exact boundaries of coverage holes. However, it can only find
those boundaries with at most one piece from ∂A, such as H5

and H6 in Figure 10, and it assumes a disk sensing model. An
algorithm to find the boundaries of routing holes is proposed
in [9], and [28] proposes a method to determine the boundaries
of communication holes using only the connectivity graph and
a general sensing model. However, ∂A is not considered in
either approach.

B. Discovering Hole Boundary

In this and the next section, we assume that each node
knows the shape of its sensing region (not necessarily con-
vex). The impact of sensing uncertainty is discussed in Sec-
tion VI-E.

Our algorithm first applies the perimeter coverage based
approach [15] to detect nodes on the boundary of coverage
holes. The idea is that the sensing perimeter of one node is
divided into one or more pieces by the sensing perimeters of
the neighboring nodes. Every such piece is called a sensing
segment, see Figure 11. According to [15], a node is on the
boundary of a coverage hole iff it has a 1-covered sensing
segment – a sensing segment where each point on it (except
the two ends of the segment) is within the sensing region of
a single node, the node where the segment belongs to.

Let S denote the set of senor nodes deployed. Let CS denote
the region covered by S, that is, the union of the sensing
regions of the nodes in S, and US denote the uncovered region
in A, that is, US = A\CS . Recall that a coverage hole is a
connected components of US . A connected component of CS
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Fig. 11. s2 and s3 are the sensing neighbors of s1. The four sensing
segments ab, bc, cd, and da of s1 are highlighted, where da is a
1-covered sensing segment.

is called a coverage component. The key idea of our solution
is that all the coverage components are first discovered, which
are then used along with ∂A to find all coverage holes.

A coverage component may or may not contain hole(s).
For instance, in Figure 10, D1 has two holes while D2 has no
hole. The boundary of a coverage component is composed of
its outermost boundary curve and the boundary of each hole
in it.

Definition 6.1: Coverage cycle: A negative coverage cycle
or negative cycle is the outermost boundary cycle of a coverage
component. A positive coverage cycle or positive cycle is the
boundary cycle of a hole in a coverage component. A coverage
cycle is either a negative cycle or a positive cycle.

In Figure 10, C1, C3, C5, C6, C7, C11 are negative cycles,
and the remaining ones are positive cycles. According to the
observation made in [15], each coverage cycle is composed
of contiguous 1-covered sensing segments.

To derive coverage holes from coverage components, we
first notice that there is a partial order on the set of coverage
cycles.

Definition 6.2: Coverage cycle group: For two coverage
cycles Ci and Cj , Ci ¹ Cj if the region bounded by Ci

is included in the region bounded by Cj . Ci is said to be
directly enclosed in Cj if Ci ¹ Cj and there is no k 6= j
such that Ci ¹ Ck ¹ Cj . A coverage cycle group is a set
of coverage cycles, where each group is either composed of
one positive cycle and zero or more negative coverage cycles
directly enclosed in the positive cycle (type 1), or composed
of all the negative cycles not enclosed in any coverage cycles
(type 2).
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Fig. 12. The partial order among all coverage cycles in Figure 10. The
cycles at the same level are either all negative(-) or all positive(+).
Each box represents a coverage cycle group. {C1, C7} is type 2, and
rest are type 1.

Notice that there is only one group of type 2 in any
deployment. Figure 12 shows the partial order defined on
the coverage cycles in Figure 10. By enumerating all the
possibilities, we have the following proposition.

Proposition 6.1: Every coverage hole can be derived from
a coverage cycle group and ∂A.

Actually, there are only four possibilities as shown in
Figure 10. That is, a coverage hole can be derived from (i)
a positive cycle, e.g. hole H5 and H8; (ii) a positive cycle
and ∂A, e.g. hole H6; (iii) one or more negative cycles and
∂A, e.g. hole H4; (iv) a positive cycle, one or more negative
cycles, and ∂A, e.g. hole H1-H3, and H7.

It follows that once all the coverage cycles are discovered
and their types are determined, all the coverage holes can be
derived. The boundary of coverage holes needed for diameter
computation is then derived based on the following observa-
tions, which can be verified in Figure 10. First, the boundary
of a coverage hole is composed of one or more cycles, but
its diameter is only determined by the outermost cycle, called
hole loop. For instance, the boundary of H3 in Figure 10 has
two cycles, but the inner cycle – the perimeter of the two
overlapped sensing regions – can be safely ignored. Second,
if a hole is completely contained in another hole, it can be
ignored, such as H8 in Figure 10. Third, each hole cycle is
composed of sensing segments and (possibly) parts of ∂A. If
it is composed of only sensing segments, the entire cycle can
be found by traversing the nodes on it. Otherwise, each piece
that is composed of only sensing segments on the cycle can
be found. Once all the pieces of hole boundaries are known,
a polygon clipper algorithm [21] can be extended to find the
hole loops by also taking ∂A into account.

C. Diameter Computation

Let H denote a hole loop, and XH denote the set of cross-
ings on that loop, where a crossing is defined as an intersection
point of either two sensing perimeters, or a sensing perimeter
with ∂A, or a vertex of the simple polygon ∂A. The following
lemma states that XH is indeed a good approximation of H in
terms of the diameters, even if sensing region is not convex.

Lemma 6.1: diam XH ≤ diam H ≤ diam XH+2D, where
D is the maximum diameter of all sensing regions. Moreover,
if the sensing regions are convex, then diam XH = diam H .

Proof: diam XH ≤ diam H follows since XH ⊆ H . Let
x and y be two points on H with ‖x− y‖ = diam H , where
‖ · ‖ denotes the Euclidean distance. Let x′ be the crossing
on H closest to x, and y′ the crossing closest to y. Then
‖x−y‖ ≤ ‖x′−y′‖+‖x′−x‖+‖y′−y‖ ≤ ‖x′−y′‖+2D. As
‖x′−y′‖ ≤ diam XH , diam H = ‖x−y‖ ≤ diam XH +2D.

If the sensing regions are convex, then H is contained within
the convex hull of XH . Since a point set and its convex hull
have the same diameter, the result follows.

According to Lemma 6.1, when the sensing regions are all
convex, it suffices to maintain the set of crossings on each
hole loop instead of their accurate shapes in order to find
the largest diameter D. For arbitrary sensing regions, this also
gives a good approximation when DÀ 2D.

D. The Impact of Localization Errors

Due to localization errors, the computed maximum hole
diameter using measured node positions may be far away from
the real diameter. In this section, we discuss the impact of such
errors. We assume that the localization error of each node is
independent and there is a maximum localization error ∆ in
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terms of the Euclidean distance between the real and measured
positions of a node.

Given a deployment of set of nodes S in a target region
A, let D and D′ denote the real and computed largest hole
diameters, respectively. Let rs denote the radius of node s,
that is, the maximum distance from s to its sensing perimeter.
Consider the following two scenarios derived from a given
deployment. In the both cases, the positions of nodes are fixed.
In the first case, the sensing region of each s ∈ S is enlarged
to a similar shape with radius rs + ∆; in the second case, the
sensing region of each s ∈ S is shrunk to a similar shape with
radius max(rs −∆, 0). Let Dr+∆ and Dr−∆ denote the real
hole diameters in the above two scenarios, respectively. Then,
clearly Dr+∆ ≤ D′ ≤ Dr−∆. However, there is no nontrivial
bound on ‖D − D′‖ for an arbitrary deployment because no
matter how small ∆ is, one can always construct a scenario
where D = 0 and D′ = diam A, or vice versa.

E. Coping with Sensing Region Uncertainty

Sensing regions show irregularity due to hardware cali-
bration and obstacles and therefore are hard to characterize
deterministically [16]. A more realistic way to characterize
sensing regions is to use a sampling based approach, where the
sensing region of a node is approximated by the discrete points
corresponding to the events detected by this node [16]. In this
section, we consider how to compute the largest diameter of
coverage holes if only a limited number of samples are known.
To this end, we first construct a planar graph based on the
samples observed. This graph is used to approximate the real
covered region, that is, the union of all the sensing regions. We
then show that under certain assumptions, the largest diameter
of coverage holes can by estimated by the largest diameter of
the faces of this graph.

Let Bs denote the sensing region of node s. We also use s
to denote its position and e to denote the position where event
e happened. We make the following assumptions.

1) The positions of nodes and events observed are known.
2) Each Bs is a star convex subset of R2 with respect to

s, that is, any line segment joining s to a point t in Bs,
denoted as st, lies in Bs. Figure 13 shows an example
of two overlapped star-convex sensing regions.

3) For every connected component Ci of Bs1 ∩Bs2 , s1 6=
s2, there is at least one event detected in each Ci,
i.e., there is a point ei ∈ Ci known such that s1ei

lies in Bs1 and s2ei lies in Bs2 . For instance, the two
sensing regions in Figure 13 intersect at two connected
subregions, with one common event detected in each
subregion.

4) For each node s, it is known whether Bs is completely
in ∂A, or completely outside of ∂A, or intersects ∂A.
In the last case, the set of edges of ∂A that intersect Bs

is known.
Let S denote the set of nodes whose sensing regions are

within or intersect ∂A, and E denote the set of events observed
by nodes in S . Let A denote the set of vertices of ∂A. For
each node s ∈ S and each edge of ∂A that intersects Bs,
pick an arbitrary point on that edge that is within Bs, such
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Fig. 13. The approximation of covered region by a planar graph.
The dashed lines show part of ∂A. The dashed curves show the real
sensing regions (unknown) of node s1 and s2. e1 and e2 are two
events detected by both of them. a, c, and d are points on the edges
of ∂A intersecting the two sensing regions, and b is a vertex of ∂A.
Three faces, as1cba, s1e1s2e2s1, and s1e2s2dcs1 are shown.

as points a, c, and d in Figure 13. Name the set of such
points I . We construct a geometric graph G(V,E), where V =
S ∪ E ∪ A ∪ I , and each edge in E corresponds to either a
line segment joining a node s and an event e detected by s,
or a line segment on ∂A joining points in A and I , or a line
segment joining a node s and a point a on an edge of ∂A
intersecting Bs. See Figure 13 for reference. Notice that, the
edges of G may intersect at points other than vertices. We
make G planar by treating these intersections as vertices as
well. We then observe that G is a planar graph without open
faces. Let D and D′ denote the largest diameter of coverage
holes and that of the faces of G, respectively. Then under the
assumptions made above, we have the following lemma.

Lemma 6.2: D ≤ D′ ≤ D+ 2D, where D is the maximum
sensing diameter.

Proof: D ≤ D′ follows directly from the fact that G is
completely contained in the real covered region according to
the second assumption made above. Consider a face of G, say
f . f either contains a coverage hole or is fully covered. First
suppose there is a hole H within f and let T denote the set
of boundary nodes on the hole loop of H. Let x and y be two
points on the face with ‖x−y‖ = diam f . Then x and y must
be vertices of f . We argue that if x is not on the hole loop,
then it is covered by a node in T . Suppose this is not true.
Then there is a subgraph of G induced from the nodes in T
and a set of common events detected by them together with
part of ∂A that forms a polygon enclosing H with x outside of
the polygon. However, this contradicts the fact that x is vertex
of a face that contains the hole. Similar argument applies to y
as well. It follows that there exist points x′ and y′ on the hole
loop such that ‖x − x′‖ ≤ D and ‖y − y′‖ ≤ D. Therefore,
‖x − y‖ ≤ 2D + ‖x′ − y′‖ ≤ 2D+ diam H. That is, diam
f ≤ 2D+ diam H. The case where f is fully covered can be
viewed as the degenerate case with diam H = 0.

Notice that, the above approximation can also be applied to
the case where all the sensing regions are known. It is not as
accurate as the approach discussed in Section VI-B, but more
efficient since the faces of G and their diameters can be easily
computed. If d À 2D, the approximation may be desirable. In
addition, if more events than required are detected, they can
be used to improve the accuracy of the approximation.
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Fig. 14. Mean size of largest hole (µ, left hand scale) together with
estimate based on (9) and (10) (dotted line). Probability (right hand
scale) that hole size becomes finite (p0), i.e., percolation occurs, and
probability that holes cease to exist (p1), i.e., full coverage occurs.

F. Simulation to Validate Our Density Estimates

In this section, we present some simulation results to sup-
port our analytical results. We consider a deployment region
A of size 256r × 256r, where we place points according to
Poisson process of intensity N . We vary N from 0 to 500, 000
and track the maximum coverage hole diameter. We repeat our
experiment 10, 000 times for each value of N for statistical
accuracy. We also ran simulations with smaller A, obtaining
very similar results even down to a 8r × 8r region. We have
two distinct goals in our simulation.
1.) Validating the accuracy of our analytical estimates.

We show results of our simulation in Figures 14 and 15. We
first explain our rationale for picking the various axis before
explaining the results. For x-axis in Figure 14, we use λr2, a
dimensionless parameter which indicates the level of coverage.
(Each point is covered by an average of πλr2 sensing regions.)
We have two parameters for the y-axis. On the left scale,
we use λrd, a dimensionless quantity to measure the hole
diameter, which also happens to be the x-axis in Figure 15.
Since d decreases with an increase in λ or r, using this unit
allows us to present the entire spectrum of variation in the hole
diameter in one graph. The right scale of y-axis in Figures 14
and the left scale in Figure 15 are probabilities. Note that the
only quantity fixed in Figure 14 is the size of A relative to r.

We observe that the mean value of the maximum hole
diameter observed in simulation (solid line) is mostly indis-
tinguishable from our analytical estimates (dotted line) for
256r×256r region and quite close even for the 8r×8r region,
which is smaller than many real-life deployments.

In Figure 15, we show the entire probability distribution for
hole diameters for some densities, which provides significantly
more information than the mean values of diameter. This con-
firms that our estimate of the probability distribution of hole
diameters (to Poisson) and our estimation of the parameter of
this distribution are highly accurate, making it quite useful in
real-life deployments.
2.) Graphically demonstrating the new continuum from
percolation to full coverage.

Figure 14 illustrates how the model of trap coverage fills
the continuum between percolation and full coverage. The
curve labeled p0 depicts the probability of percolation, i.e.,
largest hole diameters becoming smaller than the deployment
region. As the density increases, hole diameter decreases. The
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Fig. 15. Cumulative probability distribution, P(hm ≥ d), of largest
hole size for λr2 = 1, . . . , 6, together with estimate based on
equation (9) and (10) (dotted line). For example, if λ = 1, and r = 2
(so λr2 = 4), then from Figure 14, left side, we have λrd ≈ 2 on
average (so d ≈ 1), however it can range between about 1 and 6
(d = 0.5 to 3) with a probability distribution as shown here.

curve labeled p1 depicts the probability of full coverage. As
this curve approaches 1, the expected largest hole diameter
approaches zero. Note that the value of λr2 corresponding to
p0 represents percolation threshold, while that corresponding
to p1 represents critical conditions for full coverage. Until this
result of ours, the behavior in between these two important
values of λr2 was unknown. The introduction of the trap
coverage model in this paper now explains the continuum
between these two important curves comprehensively, with the
curve for the trap coverage diameter.

VII. CONCLUSION

This paper generalizes the traditional model of full coverage
by allowing systematic holes of bounded diameter. With this
new model, deterministic guarantees on detection, particularly
tracking can be maintained even if not all points in the region
are covered, whether due to failure of deployed sensors or due
to the expense of deploying sensors to cover every point in
a large region. Trap coverage thus makes sensor deployment
scalable. Of independent interest is also the fact that the trap
coverage model bridges the long-standing gap between the
thresholds for percolation and for full coverage.

Since Trap Coverage is a new model, several problems
remain open. For example, the problem of coverage restoration
upon sensor failures [18] remains open. Similarly, the problem
of sleep-wakeup [7], [14], [19], [30] which has traditionally as-
sumed full coverage model or the barrier coverage model [20],
also needs to be reinvestigated for this new model. Even the
problems of deployment addressed in this work needs to be
reinvestigated for different sensor models (e.g., directional,
mobile, etc.).
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