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ABSTRACT
Body area sensor networks measure biomedical signals from
subjects continuously, as they go about their daily lives. Sig-
nals measured in these conditions are affected by anomalies,
such as artifacts and noise. Some anomalies can be cor-
rected, if detected in real-time, for example, ECG electrode
detachment. We present energy and computationally effi-
cient algorithms for the detection of sensor detachment, de-
veloped for the AutoSense system.
1

1. INTRODUCTION
Wearable, unobtrusive sensors are revolutionizing the con-
duct and outcomes of health science studies by enabling
capture of physiological data from people in natural envi-
ronments. Unfortunately, the quality of the signal that can
be captured from natural environments does not meet the
scientific community’s stringest data quality requirements.
Sensor noise, motion artifacts, and sensor failure are com-
mon occurrences that reduce the quality of the signal. In a
laboratory setting, such problems can be corrected with sen-
sor calibration, correct application of the sensor, and careful
monitoring of the signals [1]. These tasks are traditionally
handled by laboratory staff. However, in natural environ-
ments, it is impractical for lab staff to continuously monitor
subjects as they go about their normal daily life. To meet
the stringent data quality requirements of scientific stud-
ies, the data quality controls of laboratory environments are
needed in the natural environment.
In this work, we propose automated, continuous monitoring
of sensor data that occur in natural environments. When a
data quality problem is detected, the system can guide the
wearer of the sensors through the process of correcting the
problem and restoring the quality of sensory measurements.
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We implement a data quality monitoring and correction
module on an Android mobile smartphone using the Au-
toSense body-area sensor network and the mStress mobile
inferencing framework [2]. AutoSense [3] is a body area
sensor network comprised of a chest band suited with five
sensors: Electrocardiogram, Respiration Inductive Plethys-
mograph, Body Temperature, Ambient Temperature, and
3 Axis Accelerometer. The mStress framework is a rich
context-inferencing framework for the Android platform. It
collects physiological data from wireless wearable sensors
(such as AutoSense), computes features from the data, and
inputs the features to machine learning algorithms to pro-
duce inferences about the user. This system is primarily
used for collecting physiological, behavioral, and affective
markers of stress and addictive behaviour.
The data quality module monitors physiological signals trans-
mitted to the smartphone from the AutoSense wearable sen-
sor suite. It detects detachment or loosening of three types
of sensors from a person’s body, electrocardiogram/galvanic
skin response (ECG/GSR), respiratory inductive plethys-
mograph (RIP), and body temperature (TEMP). We will
demonstrate the detection of these events, as well as a series
of instructions displayed on the smartphone to help the user
correct the problem.

2. SENSOR DETACHMENT ALGORITHMS
Each algorithm is a classifier that outputs a decision, based
on features computed from the data. To address design con-
straints of algorithms for low power devices, such as energy
and computational efficiency, and also to simplify the algo-
rithm development, we explore the use of a divide and con-

quer strategy, and build the complex classifiers as a combina-
tion of simpler ones. Each such simple classifier constitutes
a module, and the final decision is obtained by combining
the outputs of the individual modules. This simplifies the
algorithm development. Each module can be executed only
if needed, improving the overall energy and computational
efficiency. This approach is inspired by techniques such as
boosting in machine learning and hierarchical activation in
sensor networks, but we do not prove a formal relationship
here. Our goal is to continue this work towards a framework
to simplify the development of complex classifiers.

2.0.1 ECG signal
Many algorithms for detection of artifacts and noise in ECG
signals can be found in the literature, e.g., [4, 5]. Here, we
focus mainly on anomalies that can be corrected, if detected
in real-time, such as electrode detachment, loose electrical
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Figure 1: Typical ECG (top) and RIP (bottom) sig-
nals, with envelope.

connectors, bad electrode contact, and excessive noise. The
output of the algorithm is either signal okay, electrodes de-

tached, or signal degraded. We build the classifier by combin-
ing the output of the following simpler decisions: (1) Signal
is saturated at a low or high level, (2) signal has a large

number of discontinuities, (3) signal has low amplitude, (4)
signal has a large number of spikes. Signal saturation in-
dicates electrode detachment, large discontinuities indicate
loose contacts, while large spikes indicate excessive noise.
Noise can be produced by physical movement or problems
with the electrodes. Only in the latter case, the signal is
flagged as degraded. To rule out movement as cause of noise,
we use accelerometer measurements. If the signal has low
amplitude, but not excessive noise, it is not clear if there is
a problem with the electrodes. In that case we check if the
morphology of the signals corresponds to an ECG waveform.
This operation is computationally expensive and thus, it is
performed only when low signal quality is suspected. To
measure the signal amplitude, we developed a simple yet ro-
bust and efficient envelope detector. Figure 1(top) shows a
typical ECG signal and the estimated envelope.

2.0.2 Respiration signal
RIP signal is obtained from a respiration band, worn around
the chest. As opposed to ECG signal, there is little work
in the literature on detection of anomalies in RIP signals.
The algorithm we present is similar to the one developed for
ECG. The output of the algorithm is either, band off, signal
degraded, or signal okay.
We have observed that RIP signal is less affected by noise
than ECG, but it is affected by strong physical movement
and misplacement or incorrect adjustment of the respiration
band. Similarly to ECG signal, band detachment can be de-
tected by signal saturation, loose contacts by large disconti-
nuities in the signal, and loose band by low signal amplitude.
Signal amplitude can be estimated using an envelope detec-
tor. Figure 1(bottom) shows a RIP signal and its envelope.
If low amplitude is detected, we first check the morphol-
ogy of the signal to determine if it corresponds to a normal
respiration signal, and if not, we inform the user.

2.0.3 Body temperature signal

Body temperature is obtained from a probe attached to the
body. If the probe is detached from the body, the signal is
zero. When the probe is attached to the body, the signal in-
creases until it reflects the body temperature [6]. Except for
small variations, such as those produced by ambient temper-
ature changes or physical movement, if the probe is correctly
attached, the measured temperature must be above a given
threshold. The output of the algorithm is, probe detached,
probe loose, or signal okay. We have observed that, if the
probe is inside the clothing, but not correctly attached to
the body, the TEMP signal presents oscillations, while, if the
probe is away from the body, the signal is zero. In a first
stage, the algorithm for the TEMP signal, determines if the
signal is either zero (probe detached), or above a threshold.
If this is not the case, in a second stage, the algorithm de-
termines if the signal is increasing or decreasing. Only if the
signal is below a threshold, and not increasing, probe loose

is flagged.

3. EVALUATION
We evaluated the algorithms on data that was collected as
part of a 22 subject user study. For each signal we de-
termined the percentage of the data that would have been
flagged as low quality by the algorithms. We found that
about 7 percent of the ECG data was flagged, while 9 and
18 percent of the RIP and TEMP data were flagged, respec-
tively.

4. DEMONSTRATION PLAN
In this demonstration the presenter will wear the complete
AutoSense system suit and show the measured signals on
the screen of the smartphone, as well as the output of the
data quality algorithms. The presenter will generate differ-
ent artifacts and noise in the signal, by moving or detaching
the sensors. The viewers will be able to observe the effect of
such anomalies in the signals, and the response of the data
quality algorithms on the smartphone, in real time.
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