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Abstract— The problem of sleep wakeup has been extensively
studied for the full coverage model, where every point in the
deployment region is covered by some sensor. Since the sleep-
wakeup problem is NP-Hard for this model, several heuristics ex-
ist. For the model of barrier coverage, however, where sensors are
deployed to form an impenetrable barrier for detecting moving
objects (a flagship application of wireless sensor networks), design
of an optimal sleep-wakeup algorithm is open. In this paper, we
solve this open problem by proposing optimal algorithms not
only for the often-used case of equal lifetime but also for the
much harder case when sensor lifetimes are different. We prove
the optimality of both algorithms. Our algorithms can be used to
maintain not just barrier coverage but fault tolerant connectivity,
as well, while maximizing the network lifetime.

We use simulation to show that for random deployments, even
when a minimal number of sensors have been deployed, our
optimal algorithms can increase the network lifetime by 500%
(from 10 weeks to more than a year). Finally, we show that
using our optimal algorithms increases the network lifetime six
times longer than that achievable using an existing sleep wake-up
algorithm called Randomized Independent Sleeping (RIS).

I. INTRODUCTION

Intrusion detection is an important application of wireless
sensor networks [1], [2]. Although prototype demonstrations
have so far been targeted at military deployments, as prices of
motes continue to fall, it will soon become attractive to deploy
sensors for intrusion detection in urban regions, as well (e.g.,
for securing private premises, corporate establishments, and
government buildings). When wireless sensors are deployed
as a barrier to detect moving objects of interest the sensor
network is said to provide barrier coverage [3]. In such cases,
the sensor network acts as a smart trip wire. In addition to
intrusion detection applications, barriers of sensors can also be
deployed around forests to detect the spread of fire or around
chemical factories to detect leakage of harmful chemicals.

When sensors are deployed outdoors where access to wall
power is unavailable or infeasible, ensuring long-term unat-
tended operation becomes quite challenging. Although this
is a major challenge for most applications, it is even more
so for security applications that require monitoring at every
instant. All applications where sensors are deployed as smart
trip wires fall into this category. Loss of monitoring even for
an instant could prove disastrous in some situations, such as
when sensors have been deployed to detect the spread of a fire
or the spread of lethal pollutants from a chemical plant.

A widely proposed technique to extend the lifetime of a
sensor network deployed for continuous monitoring applica-

tions is to use sleep-wakeup. Under this technique, a sleeping
schedule for sensors is computed such that at any given time
only a subset of sensors are active. The remaining sensors are
put to sleep. The challenge is to design a sleeping schedule that
maximizes the network lifetime while maintaining the desired
quality of monitoring. This problem is referred to as the sleep-
wakeup problem.

For the barrier coverage model, a randomized sleep-wakeup
algorithm called Randomized Independent Sleeping (RIS) is
proposed in [3]. In this algorithm, time is divided into intervals
and in each interval each sensor independently decides whether
to sleep or stay active using a predetermined probability
value p. The value of p is chosen such that the network is
guaranteed to provide weak barrier coverage (a weaker version
of barrier coverage) with high probability. An advantage of
this algorithm is that it is purely local (i.e. requires no central
coordination and no message exchange with any neighbors).
However, there are several shortcomings. First, it does not
provide deterministic guarantee of barrier coverage. Second,
if the deployment does not follow random uniform or Poisson
distribution, there is no guidance on how to choose a value
for p. Third, if the lifetimes of the sensor nodes are not the
same (as happens in real networks since different sensors have
different loads and hence different lifetimes even on the same
batteries), there is no guidance on how to choose a value of
p. Last, but not least, there is no guarantee of performance;
it is not even known how worse it performs as compared
with an optimal schedule. It may be possible (as we show in
simulations) that even when a network has sufficient resources
to provide a lifetime of more than one year by using an
optimal schedule, by using the RIS algorithm, the network
will last just 10 weeks. When sensors are deployed in remote
and unaccessible locations, such a loss in network lifetime can
be problematic.

In this paper, we propose polynomial time algorithms to
optimally solve the sleep-wakeup problem for the barrier
coverage model. We show that when sensors are deployed
randomly, the network lifetime can be increased by up to six
times (from 10 weeks to 60 weeks). This is true even when
the number of sensors deployed is the minimum necessary to
provide barrier coverage with high probability in randomized
deployments. The enhancement in lifetime comes by deter-
ministically exploiting the inherent statistical redundancy.

We not only propose an optimal sleep-wakeup algorithm for
the case when all sensors have equal lifetime (referred to as



the homogeneous lifetime case) but also for the harder case
when the sensors have distinct lifetimes (referred to as the
heterogeneous lifetime case). Solving the heterogeneous case
makes the sleep-wakeup method of extending network lifetime
more practical. We list below some reasons why sensors may
have different lifetimes:
• Uneven Load: Even when all sensors have the same

batteries to begin with, they are subject to different kinds
of loads (due to routing structure, cluster structure, etc.)
and hence will have different lifetimes.

• Different Recharging Rates: If sensors are using recharge-
able batteries, depending on the amount of light each
sensor receives over the same period of time, the lifetime
of each sensor may be different.

• Unanticipated Failures: When there are unanticipated sen-
sor failures, a new schedule may need to be computed. At
this time, the remaining lifetimes of operational sensors
may be distinct.

• Additional Deployment: When new sensors are deployed
in an existing network to compensate for the failed ones,
sensors may have distinct lifetimes.

We show that if the energy imbalance in the network is
evenly distributed, so that sensor lifetimes can be modeled
as a random uniform distribution, then network lifetime is
approximately the same as when the energy consumption is
perfectly balanced in the network (so that all sensors have
equal lifetime). According to our results, there is minimal or
no loss in the network lifetime if the energy imbalance is
sufficiently random.

We also show that our algorithms can be used to not only
maintain barrier coverage at all times while maximizing the
network lifetime but also to maintain fault-tolerant connectiv-
ity with base station(s). Further, our algorithms are applicable
to not only omnidirectional sensors but also to directional
sensors such as cameras. This is because our algorithms rely
only on a graph structure a link exists between two sensors if
their sensing regions overlap.

Given a solution that maximizes network lifetime, a sec-
ondary criteria of interest is the minimization of the number
of times that sensors are turned on/off, called sensor switches.
Each time a sensor is turned on, neighbor discovery, route
computation, time synchronization, and other such activities
have to be performed. Minimizing the number of times such
tasks are executed reduces the energy consumption in the
network. It also makes the network more available to perform
the monitoring task, which is the primary reason for deploying
a sensor network.

Our sleep-wakeup algorithm for the homogeneous case
minimizes the total number of sensor switches. However, for
the heterogeneous lifetime case, we prove that minimizing the
number of sensor switches is NP-Hard.

Although our algorithms (for the homogeneous and hetero-
geneous lifetime cases) are centralized algorithms, they have
at least two advantages over a localized algorithm. First, since
it is not possible to design a deterministic local sleep-wakeup
algorithm because it can not be checked locally whether the

network provides barrier coverage [3], only heuristic local-
ized algorithms may be designed. Our optimal centralized
algorithms can provide a significant improvement in network
lifetime over such heuristics as we show in the case for the
RIS algorithm. Second, since sleep-wakeup algorithms need
to be executed only once or very rarely1, the total number of
messages exchanged to distribute the optimal schedule in the
network (which can be done using the same utility as used
in network reprogramming [4]) may be less than that used
in a distributed heuristic algorithm that involves significant
periodic message exchanges.

In summary, we make the following key contributions in
this paper:

1) Propose the Stint algorithm to optimally solve the sleep-
wakeup problem for barrier coverage when sensor life-
times are same. The Stint algorithm also minimizes the
number of sensor switches.

2) Propose the Prahari algorithm to optimally solve the
sleep-wakeup problem for barrier coverage when sensor
lifetimes are different.

3) Show that our algorithms can be used to maintain both
barrier coverage and fault-tolerant connectivity while
maximizing the network lifetime.

4) Use simulation to determine the extent of lifetime im-
provement achievable when sensors are deployed ran-
domly but non-redundantly.

The rest of the paper is organized as follows. In Sec-
tion II, we present some definitions and summarize known
related results. In Section III we discuss some related work.
In Sections IV and V, we present our algorithms for the
homogeneous and heterogeneous lifetime cases. In Section VI,
we describe how to use our algorithms to maintain fault-
tolerant connectivity. In Section VII, we present the results
of our simulations. We conclude the paper in Section VIII.

II. MODEL, DEFINITIONS, AND SOME EARLIER RESULTS

In this section, we introduce some definitions and state some
known related results.

Definition 2.1: Sensor Network, N. A sensor network,
N , is a collection of sensors with the locations of sensor
deployments.

We assume that a sensor network is deployed over a belt
region (see Figure 1). Intrusion is assumed to occur from top
to bottom. As in [3], a path is a crossing path if it crosses
from top to bottom. Further, a crossing path is k-covered if
it intersects the sensing region of at least k distinct sensors.
Finally, a sensor network N provides k-barrier coverage over
a deployment region R if all crossing paths through region R
are k-covered by sensors in N .

Definition 2.2: Coverage Graph, G(N) [3] A coverage
graph of a sensor network N is constructed as follows. Let
G(N) = (V, E). The set V consists of a vertex corresponding
to each sensor. In addition, it has two virtual nodes, s and t to

1Once a schedule has been distributed to the sensors, there is no need for
any further communication unless critical sensors fail.



correspond to the left and right boundaries. An edge exists
between two nodes if their sensing regions overlap in the
deployment region R. An edge exists between u and s (or
t) if the sensing region of u overlaps with the left boundary
(or right boundary) of the region.
The coverage graph for the sensor network deployment in
Figure 1 is shown in Figure 2.

Although we use a disk model for the sensing region, our
results hold for all other models for which a coverage graph
can be constructed.

Fig. 1. A sensor network deployment that provides 3-barrier coverage.
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Fig. 2. The coverage graph of sensor network deployment of Figure 1.

Theorem 2.1: [3] A network N provides k-barrier coverage
iff there exist k node-disjoint paths between the two virtual
nodes s and t in G(N).

Definition 2.3: Sensor Switch. Any time a sensor is turned
off and is turned on later, it is considered one sensor switch.
If a sensor is turned on once and is allowed to exhaust its
lifetime, then this sensor has no sensor switches.

Definition 2.4: Path Switch. Any time a group of sensors
that together provide 1-barrier coverage is turned off and is
later turned on as a group, it is considered a path switch. If
this group of sensors exhausts its lifetime once it is turned on,
then this group of sensors has no path switches.
Minimizing the number of path switches has the same effect as
minimizing the number of sensor switches in terms of reducing
the frequency of initialization operations such as neighbor
discovery, route computation, and time synchronization.

III. SOME RELATED WORK

The problem of sleep wakeup for the full coverage model
has been studied extensively. After the NP-Hardness was
proved in [5] for this model, several heuristic algorithms
appeared [6], [7], [8], [9], [10]. No guarantee on performance
is, however, made in any of these work.

The Randomized Independent Sleeping (RIS) algorithm
of [9] was proposed to be used for computing a sleeping
schedule for barrier coverage, as well in [3]. However, as
argued in Section I, this algorithm neither guarantees barrier
coverage nor provides any guarantee on performance.

The Stint and Prahari algorithms presented in this paper,
on the other hand, guarantee optimal performance. Given
the importance of energy-efficiency in ensuring long-term
unattended operation of wireless sensor networks, optimal
usage of available energy in the network is critical.

IV. HOMOGENEOUS LIFETIME

In this Section, we begin by deriving an upper bound on the
network lifetime when the sensor lifetimes are homogeneous.
Next, we present our Stint algorithm to determine an optimal
sleeping schedule for individual sensors. Finally, we prove that
the Stint algorithm minimizes the number of path switches in
addition to maximizing the network lifetime.

A. Upper Bound on the Network Lifetime

Consider the sensor network shown in Figure 1. What is the
maximum time for which this network can provide 2-barrier
coverage, if all sensors have a lifetime of unity?

The next lemma enables us to compute the maximum
achievable network lifetime. If the maximum number of node
disjoint paths between s and t, m, is less than k, then the
sensor network cannot provide k-barrier coverage even if all
sensors are turned on. Therefore, the maximum lifetime of the
network is 0. In the following, we only consider the case when
m ≥ k.

Lemma 4.1: Consider a sensor network N. Let m ≥ k
be the maximum number of node-disjoint paths between the
virtual nodes s and t in the coverage graph G(N). Also, let
the lifetime of an individual sensor node be unity. Then, the
maximum time for which the network N can provide k-barrier
coverage is at most m/k.

Proof: By assumption, there exist m node-disjoint paths
in the coverage graph of N. From Menger’s Theorem [11],
there exists a set of m nodes (corresponding to m sensors),
which when removed disconnects virtual nodes s and t in the
coverage graph. Call these m sensors critical sensors. Every
path from s to t must contain at least one of these critical
sensors.

From Theorem 2.1, in order to provide k-barrier coverage,
a set of sensors must be activated such that they form k node-
disjoint paths between the two virtual nodes s and t in the
coverage graph. Each of these k paths must contain at least
one of the m critical nodes. Further, since these k paths are
node-disjoint, they can not share any node. Therefore, each
set of k node-disjoint paths must contain at least k of the m
critical nodes. Since at any time instant at least k of the m
critical nodes need to be active, the maximum time that these
m nodes can remain active is at most m/k. Once these m
critical nodes run out of energy, the network can no longer
provide k-barrier coverage. Hence, the network provides k-
barrier coverage for at most m/k units of time.

Applying Lemma 4.1 to the sensor network shown in
Figure 1, whose coverage graph appears in Figure 2, gives
a maximum lifetime of 3/2. This is because the value of m,
the maximum number of node disjoint paths between s and t,
is 3 and k = 2..



B. Achieving the Upper Bound

Having derived an upper bound on the network lifetime
that any sleep-wakeup algorithm can achieve for k-barrier
coverage in the homogeneous lifetime case in Section IV-A,
we present the Stint algorithm that achieves this upper bound.
The detailed Stint algorithm appears in Figure 4. We now
provide an informal description of this algorithm.

The Stint algorithm first computes m, the maximum number
of node disjoint paths between s and t. The algorithm then
checks if m is divisible by k. If it is, then m disjoint paths
are partitioned in ` groups of k paths each. These ` groups
of k disjoint paths each are activated in sequence. The first
group provides k-barrier coverage until it runs out of energy.
The second group is activated next. The process continues in
a similar fashion.

Conversely, if m is not divisible by k,, then ` is set to
bm/kc − 1,. Now, ` groups of k disjoint paths each exhaust
their lifetimes in sequence. Next, the remaining r = m −
` ∗ k disjoint paths are arranged in f = r/ gcd(r, k) sets of k
disjoint paths each. Each of these f sets of paths is kept active
for gcd(r, k)/k of the total lifetime of a sensor. In this way,
the network provides k-barrier coverage for ` + r/k = m/k
units of time, if each sensor has a lifetime of one unit. This
is the maximum possible according to Lemma 4.1.

We use the coverage graph shown in Figure 3 to illustrate
the Stint algorithm. For the coverage graph in Figure 3, the
value of m is 8. If k = 2, then k divides m. Therefore, ` = 4.
The eight disjoint paths are partitioned into four sets of two
paths each. These four sets are activated in sequence to provide
a lifetime of four units.

Conversely, if k = 3, then m is not divisible by k. Now,
` is set to b8/3c − 1 = 1. Let this one group be the set of
paths (1, 2, 3). These three paths are kept active for their entire
lifetime.

Next, the remaining r = 8 − 1 ∗ 3 = 5 disjoint paths are
arranged in f = 5/ gcd(5, 3) = 5 sets of 3 disjoint paths
each. The five sets in this case will be {(4, 5, 6), (5, 6, 7),
(6, 7, 8), (7, 8, 4), (8, 4, 5)}. Each of these five sets of paths is
kept active for gcd(5, 3)/3 = (1/3) of the total lifetime of a
sensor. In this way, the network provides 3-barrier coverage for
1+5/3 = 8/3 units of time, if each sensor has a lifetime of one
unit. This is the maximum possible according to Lemma 4.1.
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Fig. 3. The coverage graph of a sensor network used to illustrate the operation
of the Stint algorithm.

Input: A sensor network N deployed over an open belt
region and the desired degree of coverage k. Assume that
each sensor has the same lifetime, which is one unit of time.

Output: An optimal sleep-wakeup schedule for k-barrier
coverage.

The Stint Algorithm

1: Compute the Coverage Graph G(N).
2: Compute the maximum number of node-disjoint paths

between the two virtual nodes s and t in G(N). Denote
the number of paths by m.

3: if m > k then
4: Let Si, 1 ≤ i ≤ m be the sequence of sensors forming

the ith node-disjoint path.
5: if m mod k = 0 then
6: ` ← m/k
7: else
8: ` ← bm/kc − 1
9: end if

10: for j ← 0 to `− 1 do
11: Activate all the sensors in sequence

Sk∗j+1, . . . , Sk∗(j+1) for one unit of time.
12: end for
13: r ← m− ` ∗ k
14: if r 6= 0 then
15: x ← gcd(r, k)
16: f ← r/x
17: From the sequence of sensors Sm−r+1, . . . , Sm form

f sets of sequences, X0, X1, . . . , X(f−1), such that
set Xi consists of sequences Sm−r+1+x∗i through
Sm−r+x∗(i+1).

18: for j ← 0 to f − 1 do
19: g ← �

j + k
x
− 1
�

mod f
20: Activate all the sensors in sets Xj , . . . , Xg for x/k

units of time. Put all other sensors to sleep.
21: end for
22: end if
23: else
24: No schedule can achieve k-barrier coverage.
25: end if

Fig. 4. The Stint sleep-wakeup schedule assignment algorithm

Optimality and Complexity: The example considered
above gives an evidence of why the Stint algorithm will
always maximize the network lifetime. We omit the proof for
brevity and refer the readers to [12]. The complexity of the
Stint algorithm is dominated by the computation of maximum
number of disjoint paths. The maximum disjoint paths can
be computed with the max flow algorithm using the standard
transformation of replacing each vertex with a set of in and
out vertices, connecting all incoming arcs to the in vertex,
connecting all outgoing arcs to the out vertex and connecting
the in and out vertices with a directed arc of same capacity
as the node’s lifetime. The complexity of the Edmonds-Karp
algorithm that can determine a max flow independent of the
value of max flow and does not suffer from the count to infinity
problem, is O(V E2) [13]. Some optimizations can improve



the complexity to O(V 3/ log(V )).

C. Minimizing Path Switches

In this Section, we first illustrate why minimizing the
number of path switches is non-trivial. We then derive a
lower bound on the total number of path switches that has
to be performed in a network if the network lifetime is to be
maximized for k-barrier coverage. Finally, we prove that the
Stint algorithm achieves this lower bound.

Consider again the network whose coverage graph appears
in Figure 3. Let k = 3. Form 8 groups of 3 disjoint paths each,
e.g., {(1, 2, 3), (4, 5, 6), (7, 8, 1), (2, 3, 4), (5, 6, 7), (8, 1, 2),
(3, 4, 5), (6, 7, 8)}. Let each set of 3 disjoint paths be active for
1/3 units of time. This way we can achieve a network lifetime
of 8/3, while providing 3-barrier coverage. Notice that the total
number of path switches in this case is 16 since each path is
turned off twice before it exhausts its full energy.

The total number of path switches in the schedule computed
by the Stint algorithm is only 2. This is because, as described
in the operation of the Stint algorithm only paths 4 and 5 are
turned off once each before they run out of energy. All other
paths run out of energy once they are turned on. Notice that
achieving zero path switches is not possible in this case since
8 is not divisible by 3. The following lemma derives a lower
bound on the total number of path switches. This is equivalent
to the total number of preemptions in the domain of machine
(or processor) scheduling.

Lemma 4.2: Consider a sensor network N. Let m be the
maximum number of node-disjoint paths between the virtual
nodes s and t in the coverage graph G(N). Also, let the
lifetime of an individual sensor node be unity. If k < m < 2k,
then the total number of path switches needed by any optimal
sleep-wakeup algorithm for providing k-barrier coverage is at
least k − gcd(m, k).

Proof: From Theorem 2.1, for the entire duration of m/k,
there must be k node-disjoint paths active for the network to
provide k-barrier coverage. Out of the total m node disjoint
paths, no path can be active for m/k units of time since
m/k > 1.

Convert this problem to a machine scheduling problem
[14]. The k disjoint paths that are required for k-barrier
coverage correspond to k machines that process m jobs. Each
job has a processing time of 1 unit on any machine. Let
the k machines be numbered 1, 2, . . . , k. The objective of
achieving a lifetime of m/k becomes equivalent to minimizing
the makespan on k machines. The minimum value of the
makespan is m/k, which is achieved only when all machines
are busy for m/k units of time. Also, the number of path
switches is the same as the number of job preemptions.
Hence, the claim to be proved is that the minimum number of
preemptions needed to achieve a makespan of m/k is at least
k − gcd(m, k).

For any given optimal schedule, let a1 be an arbitrary
machine. At least one job is not finished on a1. Let the set of
unfinished jobs be J. Since J 6= φ, pick an arbitrary unfinished
job j1 ∈ J. Let a2 be the machine on which j1 is resumed. We

thus have one preemption (for job j1). Add all the unfinished
jobs from machine a2 into set J . Again pick an unfinished job
from J and let a3 be the machine on which it is resumed. We
have another preemption. We continue in this fashion until the
set J of unfinished jobs becomes empty. This way we construct
a sequence of machines a1, a2, . . . , aq1 such that each machine
ai, i 6= 1 has at least one preemption. Also, these q1 machines
together finish some number of jobs completely within m/k
time units with at least (q1−1) preemptions. This implies that
q1 ∗ m/k is an integer, which is possible only when q1 is a
multiple of k′ = k/ gcd(m, k).

If q1 6= k, we select a new machine and construct a new
sequence of q2 machines, which together finish some number
of jobs with at least (q2 − 1) preemptions, where q2 is a
multiple of k′. Let there be σ such qi’s such that

∑σ
i=1 qi = k,

where σ ≤ gcd(m, k). The total number of preemptions is at
least

∑σ
i=1 (qi − 1) = k−σ ≥ k−gcd(m, k). Since this holds

for any optimal schedule, the claim is proved.
The next theorem establishes that the Stint algorithm

achieves the lower bound of Lemma 4.2.
Theorem 4.1: Of all the optimal sleep-wakeup algorithms

for achieving k-barrier coverage, the Stint algorithm needs the
minimum number of path switches.

Proof: Observe that no path switches are needed up to
Line 13 in Figure 4, which is the minimum possible. Path
switches are required only when k < r < 2k. Therefore,
we only need to prove that for this case, the Stint algorithm
involves the minimum number of path switches.

Lemma 4.2 establishes that any optimal sleep-wakeup al-
gorithm for achieving k-barrier coverage requires at least
k − gcd(m, k) path switches, where k < m < 2k. To prove
the theorem, we only need to show that the Stint algorithm
involves a maximum of k − gcd(m, k) path switches.

Notice that any path switch is performed only in the for
loop in Line 18 through Line 21. Consequently, we focus on
these lines only. Each time a sensor is turned off, every sensor
in its group is turned off. Since a group consists of x sequence
of sensors, each of which provides 1-barrier coverage, every
on/off involves xpath switches.

A set Si, 0 ≥ i ≥ f − 1 of sensors is turned off before
it exhausts its lifetime only when the index of the loop j <
k/x− 1. This is because every group Si runs out of energy if
it is active continuously for k/x iterations. Except for the first
k/x− 1 sets Si, 0 ≤ i < k/x− 1, each of which is turned off
once it is continuously active for i + 1 iterations, every other
set of sensors Si, k/x− 1 ≥ i ≥ f − 1 is active continuously
for k/x iterations. Further, the first k/x − 1 sets which are
turned off before running out of energy, are not turned off
again when they are turned on later. Since each of these sets
involves x path switches and they are turned off and on exactly
once, the Stint algorithm needs exactly x ∗ (k/x− 1) = k− x
path switches, where x = gcd(m, k).

V. HETEROGENEOUS LIFETIME

In this section, we begin by deriving an upper bound on the
network lifetime when the sensor lifetimes are heterogeneous.



Next, we present the Prahari2 algorithm to determine an
optimal sleeping schedule for individual sensors. Finally, we
consider the problem of minimizing the number of path
switches.

A. Upper Bound on Network Lifetime

The maximum lifetime can be determined using Lemma 4.1
when the sensor lifetimes are identical. When the sensor
lifetimes are not identical, the problem of determining the
maximum achievable lifetime becomes significantly more
challenging. For example, consider the network in Figure 5.
This is the same network as Figure 1, except that sensors have
distinct lifetimes. What is the maximum time for which this
network can provide 2-barrier coverage? This problem appears
to be NP-Hard. However, it is polynomially solvable using
multiroute network flows [15].

8
 8
 10

10
 10
 10
 10


10
 10


5
 5

5


5
 5
 5

5
 5


1
 1
 1


1
 1
 1


1
 1
1
1
1
1


5


Fig. 5. The sensor network deployment of Figure 1, with heterogeneous
sensor lifetimes. The integers next to the filled squares denote the lifetime of
the sensors located there. What is the maximum time for which this network
can provide 2-barrier coverage?

We begin with some assumptions and definitions. We as-
sume that it is possible to estimate the remaining lifetime
of a sensor node. With new mote hardware, it is possible to
measure the remaining battery level [16] and based on the
load observed so far, the remaining lifetime can be estimated.
Also, a profile of expected energy consumption of every node
may be built using analytical models or using simulators such
as PowerTOSSIM [17]. Sensor lifetimes do not have to be
integral; they can assume any real value.

Definition 5.1: Coverage Graph with Lifetime, GL(N). A
coverage graph with lifetime of a sensor network N, denoted
by GL(N), is a coverage graph where all nodes u ∈ V −
{s, t} are assigned a capacity, c(u), equal to their remaining
lifetimes. All the edges are assigned infinite capacities. The
vertex s is the source and t the sink.
The GL(N), corresponding to the network shown in Figure 5
appears in Figure 6. To convert a GL(N) = (V, E) to a
directed graph, we replace all the edges {u, v} with a pair
of directed edges (u, v) and (v, u). For the rest of Section V,
we assume that GL(N) is a directed graph.

Definition 5.2: s-t Flow. An s-t flow in GL(N) is defined
as f : E → R+ such that
1) ∀u ∈ V − {s, t}, ∑(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u),

2)
∑

(s,v)∈E f(s, v) =
∑

(v,t)∈E f(v, t), and
3) ∀u ∈ V − {s, t}, ∑(u,v)∈E f(u, v) ≤ c(u).

2The word ”Prahari” is a Sanskrit word for securityman who guards a
region for a fixed time interval.
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Fig. 6. The coverage graph with lifetime GL(N) of the sensor network N
shown in Figure 5. The integers next to the filled squares denote the lifetime
of the sensors located there.

Definition 5.3: s-t Path Flow. A s-t path flow in GL(N) is
a s-t flow with the property that the flow network is a single
path from s to t.
Three path flows (Path Flow 1, Path Flow 2, and Path Flow
3) from the coverage graph shown in Figure 6 are shown in
Figure 7.
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Fig. 7. A composite 2-flow of total value 4 for the sensor network N shown
in Figure 5. The edges are labeled with the flow value passing through them.
This composite 2-flow is of the maximum value possible for N.

Definition 5.4: Basic k-Flow of Value a. A basic k-flow
of value a in GL(N) is a set of k node-disjoint s-t path flows,
each of which has a value of a. The total value of the flow is
k ∗ a.
In Figure 7, Path Flow 1 and Path Flow 2 comprise a basic
2-flow of value 1. The total value of this basic 2-flow is 2.

Definition 5.5: Composite k-Flow. A set of flows in
GL(N) is called a composite k-flow if it can be expressed
as a sum of basic k-flows. The total value of this composite
k-flow is

∑m
i=1 λi ∗ k ∗ ai, for λi ∈ Z+, if m basic k-flows

each with a value of ai make up this composite k-flow.
A composite 2-flow of total value 4 from the coverage graph
shown in Figure 6 appears in Figure 7. Notice that Path Flow
1, which has value 2, can be decomposed in two path flows,
each with value 1.

We now state the key result of this Section, which makes
deriving an upper bound on the network lifetime tractable
when the sensor lifetimes are heterogeneous. The basic idea of
the Prahari algorithm comes from the proof of the following
theorem.

Theorem 5.1: Given a sensor network N, there exists a
sleep-wakeup schedule that achieves a lifetime of T time units
for k-barrier coverage iff there is a composite k-flow of value
k ∗ T in GL(N).

Proof: ⇒. Given a composite k-flow of T units in
GL(N), we construct a sleep-wakeup schedule to achieve a
lifetime of T time units. Let F be a composite k-flow of value
T. By definition, F can be decomposed into a set of m basic
k-flows (for some m > 0) such that

∑m
i=1 λi ∗ k ∗ ai = k ∗T



for λi ∈ Z+, where ai is the value of ith basic k-flow. In
every basic k-flow i, there are k node-disjoint flows each with
value ai (by the definition of basic k-flow). Consider the m
basic k-flows in order. Turn on the nodes in the basic k-flow i
at

∑i−1
j=1 λj ∗ k ∗ aj time units from the start of sleep-wakeup

schedule and keep them continuously active for a duration of
λi ∗ai time units. With this schedule, the network N provides
k-barrier coverage for T time units since each basic k-flow
i provides k-barrier coverage for λi ∗ ai units of time and∑m

i=1 λi ∗ ai = T.

⇐. Given a sleep-wakeup schedule that allows N to provide
k-barrier coverage for T units of time, we construct a k-flow
of value k ∗T in GL(N). Let t1 be the first time instant when
some sensor changes its state from off to on or vice versa. The
set of sensors that are on in the interval [0, t1] form a basic
k-flow of value t1 in GL(N) since by Theorem 2.1 there exist
k node-disjoint paths between s and t in GL(N) with these
sensors active. Denote this basic k-flow by F1. The total value
of Fi is k ∗ t1. Similarly, define Fi. Let there be m such time
instants when the sensors change state. Since N provides k-
barrier coverage for T units of time,

∑m
i=1 k ∗ ti = k ∗ T.

Hence, the set of basic k-flows together define a composite
k-flow of value k ∗ T.

Corollary 5.1: The maximum time for which the sensor
network N can provide k-barrier coverage is f̂/k, where f̂
is the maximum value of composite k-flow in GL(N).

Proof: The proof follows from Theorem 5.1.
If we can devise a method to determine the maximum

value of a composite k-flow in a GL(N), we can derive an
upper bound on the network lifetime achievable by N. For
this purpose, we make use of the MEM algorithm from [15].
Applying this algorithm, we determine that the maximum
value of composite 2-flow, f̂/k, for the coverage graph shown
in Figure 6 is 4. Hence, the maximum time for which
this network can provide 2-barrier coverage is 4/2=2 (from
Corollary 5.1).

B. Achieving the Upper Bound

Having derived an upper bound on the network lifetime that
any sleep-wakeup algorithm can achieve for k-barrier coverage
in the heterogeneous lifetime case in Section V-A, we present
our Prahari algorithm that achieves this upper bound.

The detailed Prahari algorithm appears in Figure 9. We now
provide an informal description of this algorithm.

The Prahari algorithm first invokes the MEM algorithm
from [15] to determine f̂ , the maximum value of composite k-
flow in GL(N). Let FMEM (N) be the flow network resulting
from this step.

If the flow network FMEM (N) is such that the indegree and
outdegree of every node other than s and t is 1, then the flow
network can be decomposed in m number of node-disjoint
path flows for some m > k. In this case, the Prahari algorithm
uses a machine scheduling algorithm proposed in [18] to
schedule the m paths to achieve a lifetime of f̂/k time units, as
is done in the scheduling of m jobs on k machines to achieve

a makespan of f̂/k. Thus, we achieve the maximum lifetime
in this case.

Conversely, if the flow network FMEM (N) is such that
some node in V −{s, t} has an indegree or outdegree of more
than 2, then the Prahari algorithm invokes the SEM algorithm
from [15] to decompose the flow network into α′ number of
basic k-flows for some α′ > k. It then merges identical basic
k-flows into a single aggregate basic k-flow. Let α be the
number of distinct basic k-flows resulting from the preceding
step. Since the set of nodes in each basic k flow provides
k-barrier coverage, the Prahari algorithm schedules these α
basic k-flows one by one. Since the sum of total flow values of
all basic k-flows is precisely f̂ , the maximum network lifetime
of f̂/k is achieved.

We use the coverage graph shown in Figure 6 to illustrate
the operation of the Prahari algorithm. Let k = 2. Figure 6
shows FMEM (N) for the network N shown in Figure 5. As
can be seen from this figure, the value of f̂ is 4. Since the
indegree and outdegree of every node other than s and t is 1 in
the flow network FMEM (N), the flow network is decomposed
in m = 3 node-disjoint path flows. Since k = 2, two machines
will be used for scheduling. Also, the minimum makespan,
which is equivalent to the maximum network lifetime, for
the jobs is 4/2=2. As shown in Figure 8, Path Flow 1 is
scheduled on Machine 1 for 2 time units, Path Flow 2 and
3 are scheduled on Machine 2 for 1 time unit each. This way
we have a schedule for the three paths. Path Flow 1 will be
active for 2 time units continuously. Path Flow 2 will be active
for 1 time unit starting at time t = 0. At t = 1, Path Flow 2
will run out of energy and Path Flow 3 will be activated. Thus,
we achieve a lifetime of 2 time units, which is the maximum
possible. We now formally prove the optimality of the Prahari
algorithm.

1
 2
t=0


Path Flow 2 (1)


Path Flow 1 (2)


Path Flow 3 (1)


Machine 1


Machine 2


Fig. 8. The machine scheduling approach followed by the Prahari algorithm
is illustrated for the flow network shown in Figure 7. The numbers in the
parantheses denote the lifetime of the individual paths.

Theorem 5.2: The Prahari algorithm is an optimal sleep-
wakeup algorithm for providing k-barrier coverage.

Proof: Consider a sensor network N. Let GL(N) =
(V, E) be its coverage graph with lifetime. Let fk(N) denote
the maximum value of its composite k-flow. Corollary 5.1
established that the maximum lifetime of N for providing k-
barrier coverage is fk(N)/k. Therefore, to prove the optimal-
ity of the Prahari algorithm, we only need to prove that the
algorithm allows the network N to provide k-barrier coverage
for fk(N)/k units of time.

[15] shows that the MEM algorithm computes the value of
fk(N). If the flows in the network resulting from applying
the MEM algorithm are node-disjoint (besides s and t), then
Lines 3 through 14 are executed. We establish that this
schedule achieves a lifetime of fk(N)/k.



Input: A coverage graph GL(N) = (V, E) for a sensor
network N, and k ∈ Z+. The capacity of a node u is denoted
by c(u).

Output: A sequence
�
t
(i)
w (v), t

(i)
s (v)

�
, the wakeup time and

sleep time for each node v ∈ V.

The Prahari Algorithm

1: Invoke the MEM algorithm on GL(N). Let f̂ be the value
of maximum composite k-flow. Each vertex v ∈ V −{s, t}
is assigned a flow, f(v).

2: Delete all vertices and associated edges from GL(N) with
f(v) = 0.

3: if ∀v ∈ V − {s, t}, the indegree and outdegree of v is 1
then

4: Decompose GL(N) into m disjoint path flows.
5: Sort these path flows in descending order of flow value.

Let the sequence of flows be F1, F2, . . . , Fm with flow
values f1, f2, . . . , fm.

6: t ← 0.
7: for i ← 1 to m do
8: if t + fi ≤ f̂/k then
9: ∀v ∈ Fi, set t

(1)
w (v) ← t and t

(1)
s (v) ← t + fi.

10: else
11: ∀v ∈ Fi, set t

(1)
w (v) ← 0, t

(1)
s (v) ← t+fi− f̂/k,

t
(2)
w (v) ← t, and t

(2)
s (v) ← f̂/k.

12: end if
13: t ← t

(1)
s (v).

14: end for
15: else
16: Invoke the SEM algorithm to decompose the k-flow into

α′ basic k-flows. Denote them by N1, N2, . . . , Nα′ .
17: Merge all the basic k-flows that have the same set of

vertices with positive flow into a single basic k-flow.
Let the distinct number of basic k-flows be α.

18: t ← 0.
19: for i ← 1 to α do
20: ∀v ∈ V−{s, t} such that f(v) > 0 in Ni, t

(i)
w (v) ← t

and t
(i)
s (v) ← f(Ni)/k.

21: t ← f(Ni)/k
22: end for
23: end if

Fig. 9. The Prahari algorithm to determine sleep-wakeup schedule for
optimizing the network lifetime.

Since
∑m

i=1 fi = fk(N), at every time instant in the
duration [0, fk(N)/k], k node-disjoint paths are active. Each
of these paths provides 1-barrier coverage. Further, as the value
of any individual flow (out of m flows) is at most fk(N)/k,
there is no schedule conflict for any node, i.e. no node is
assigned to provide more than 1-barrier coverage at any time
instant.

If the flows are not node-disjoint, the SEM algorithm is
invoked to decompose the k-flow computed by the MEM
algorithm in component basic k-flows. For a proof of the
correctness of the SEM algorithm, we refer the reader
to [19]. Since each basic flow Ni provides k-barrier cover-
age for f(Ni)/k time units and the sum of basic k-flows,∑α

i=1 f(Ni) = fk(N), the network N provides k-barrier

coverage for fk(N)/k time units.
Complexity: The complexity of the Prahari algorithm is

dominated by the SEM [15] algorithm, whose complexity is
O(kV 3/ log(V ))

C. Minimizing Path/Sensor Switches

For some special cases, the Prahari algorithm minimizes the
number of path switches. However, in general, the problem
of sensor switch minimization is NP-Hard. We prove the
decision version of this problem to be strongly NP-Complete
by reducing the 3-Partition [20] problem to it. The problem
continues to be NP-Hard even if the coverage graph of the
given network has only node disjoint paths between s and t,
and the objective is to minimize the number of path switches.
For details and for the proofs of NP-Completeness, we refer
the reader to [12].

VI. MAINTAINING COVERAGE AND CONNECTIVITY

In this section, we briefly discuss how our algorithms
can be used to maximize the network lifetime not only for
maintaining k-barrier coverage but also for maintaining k
node-disjoint paths.

We first observe that when sensors are deployed for barrier
coverage, the sensor network does not need to have every
sensor connected to each other. It is sufficient if all sensors
that participate in providing barrier coverage can communicate
with base station(s) via multi-hop routes. We assume that base
station(s) are located at the two extreme ends of the network
since this is the worst case with regards to providing con-
nectivity. Therefore, if the sensors providing barrier coverage
form a path in the Communication Graph3 between the two
extreme ends of the network, then all detection events will be
communicated to the base station(s).

Now, if the communication range is twice the sensing range,
then k-barrier coverage implies that all sensors that form
k-disjoint paths between the two virtual nodes s and t in
the coverage graph, also form k-node disjoint paths in the
communication graph between the two extreme ends of the
network. If, on the other hand, the communication range is
less than twice the sensing range, then our algorithms can be
applied to the communication graph (instead of the coverage
graph) to find k-node disjoint paths across the two extreme
ends of the network. Each of these disjoint paths provide 1-
barrier coverage, implying that the network provides k-barrier
coverage, as well. In both cases, our algorithms can be used
to provide both barrier coverage and fault-tolerant connectivity
with base station(s) while maximizing the network lifetime.

VII. SIMULATIONS

In this section, we present results of our simulations. We
consider a deployment scenario where a rectangular belt
region of dimension 2km× 100m is to be barrier-covered by
sensors, each of which has a sensing range of 30m. For the
homogeneous case, we assign a lifetime of 10 weeks for each

3Two sensors are neighbors in the Communication Graph if they can
communicate with each other directly.



sensor. For the heterogeneous case, we assign a lifetime of
between 5 and 15 weeks (chosen randomly and uniformly) to
each sensor. Notice that the average lifetime is still 10 weeks
in the latter case. Our goal in this section is to investigate four
key issues.

1) If sensors are deployed randomly but not redundantly
(i.e., deploying these many sensors is needed to achieve k-
barrier coverage with high probability), then what level of
lifetime increase can we expect in practice?

By using (44) in [21], we determine that 465 sensors are
needed to achieve 1-barrier coverage with high probability 4.
The probabilistic conditions such as (44) in [21] are designed
to protect against the rare worst cases when sensor locations
may be such that the network may have no redundancy.
However, in most instances of deployment, there may exist
redundancy if we examine each instance deterministically. By
executing the Stint algorithm on 10 instances5 of random
deployment of 465 sensors, where in each instance different
locations for each node is selected (using random uniform
distribution), we observe that in some instances, the network
lifetime may be increased by 6 times, from 10 weeks to 60
weeks (see Figure 10).
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Fig. 10. Sensors are deployed randomly but non-redundantly to provide
1-barrier coverage with high probability. The network is planned to last for
10 weeks. Lifetime increase by using the Stint algorithm is shown for 10
iterations of deployment.

2) If sensors are deployed randomly but not redundantly,
then what level of lifetime increase can we expect in practice
as the value of k is increased?

We again use (44) in [21] to determine the number of
sensors needed to achieve k-barrier coverage for k = 1, 2, 3, 4,
which are 465, 529, 596, and 663 respectively. As evident
from these numbers, statistical redundancy in the network
decreases as the value of k increases (e.g., 465 sensors are
required to provide 1-barrier coverage, but only 64 additional
sensors are needed to provide 2-barrier coverage, and so on).
Consequently, the enhancement in network lifetime by using

4Although using (44) in [21] only guarantees a weaker version of barrier
coverage, it is, nevertheless, a necessary condition for achieving barrier
coverage with high probability.

5Computation of node-disjoint paths is a compute intensive procedure and
therefore we limit our simulations to 10 instances.

an optimal sleep-wakeup algorithm decreases as the value of k
increases. In Figure 11, we show the median network lifetime6

achieved by the optimal algorithms. We see that, on average,
the network can be made to last 30-40 weeks when k = 1,
20-22 weeks when k = 2, 18 weeks when k = 3 and 16-17
weeks when k = 4.
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Fig. 11. Sensors are deployed randomly but non-redundantly to provide k-
barrier coverage with high probability for values of k from 1 to 4. For the
Stint and Prahari algorithms, median lifetimes (over 10 iterations) are plotted.

3) How is the optimal network lifetime affected if the
lifetimes of nodes are not all same?

By comparing the lifetimes achieved by the Stint and
Prahari algorithms in Figure 11, we conclude that the median
network lifetime enhancement achieved in both cases are
comparable. The key observation is that uneven distribution
of sensor lifetimes is not always harmful, provided their
distribution is uniform and provided that a heterogeneous
sleep-wakeup algorithm such as Prahari is used to compute
the sleeping schedule.

4) How much increase in network lifetime is possible
using an optimal sleep-wakeup algorithm as compared to that
achievable using a randomized algorithms such as RIS?

In Figure 12, we observe that the RIS algorithm provides a
network lifetime of close to 20 and 30 weeks when the number
of nodes deployed are 930 and 1395 respectively, as expected
from analysis in [21]. We provide two trajectories of lifetime
for RIS. In the basic case, the network lifetime is defined
as the number of weeks that the network provides 1-barrier
coverage continuously. In the RISExtended case, we relax the
requirement of continuity in counting the total number of
weeks that the network provides 1-barrier coverage for.

The lifetime enhancement provided by the Stint algorithm
is between 5-6 times better than that provided by using RIS.
We can predict analytically that the lifetime enhancement
provided by the optimal sleep-wakeup algorithms continues to
be similar as the number of sensors is increased. The extension
in the network lifetime using RIS requires a linear increase in
the number of nodes [21]. Extension in the network lifetime
using the optimal algorithms requires an increase in the value
of k of k-barrier coverage. The number of sensors needed

6We use median instead of mean to reduce the effect of extreme cases.



to achieve a desired value of k in k-barrier coverage can be
derived by using (44) in [21]. For 1-barrier coverage, we plot
the lifetime enhancement offered by the Stint algorithm versus
that offered by the RIS algorithm in Figure 13, which matches
the behavior observed in Figure 12.

400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180
 From Simulation

N
et

w
or

k 
Li

fe
tim

e 
A

ch
ie

ve
d 

(in
 w

ee
ks

)

Number of Nodes −−>

RIS
RIS

Extended

Stint

Fig. 12. Sensors are deployed randomly to provide 1-barrier coverage with
high probability. Median lifetimes achieved are shown for all sleep-wakeup
algorithms.
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Fig. 13. Analytical prediction of how the network lifetime achieved using the
Stint algorithm will compare against that achieved using the RIS algorithm.

VIII. CONCLUSIONS

In this paper, we propose optimal solutions to the sleep-
wakeup problems for the model of barrier coverage for both
the homogeneous and heterogeneous lifetime cases. We show
that using these algorithms can enable the network to last
upto six times longer even if a minimal number of sensors
have been deployed in a random deployment. We also show
that the network lifetime achieved in both homogeneous and
heterogeneous cases are comparable if the unevenness in indi-
vidual sensor lifetimes is distributed uniformly in the network.
Finally, we show that using our optimal algorithms increases
the network lifetime six times longer than that achievable by
using a previously known randomized algorithm.

Prior to our work, the problem of sleep-wakeup was usu-
ally considered to be NP-Hard. Now that the sleep-wakeup
problem has been solved optimally for the barrier coverage

model, new research is expected to investigate the tractability
of this problem for other coverage models. It will also be
interesting to design smart distributed heuristic algorithms for
sleep-wakeup in barrier coverage that perform close to the
optimal most of the time.
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