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ABSTRACT
Smoking has been conclusively proved to be the leading
cause of mortality that accounts for one in five deaths in the
United States. Extensive research is conducted on devel-
oping effective smoking cessation programs. Most smoking
cessation programs achieve low success rate because they are
unable to intervene at the right moment. Identification of
high-risk situations that may lead an abstinent smoker to
relapse involve discovering the associations among various
contexts that precede a smoking session or a smoking lapse.
In the absence of an automated method, detection of smok-
ing events still relies on subject self-report that is prone to
failure to report and involves subject burden. Automated
detection of smoking events in the natural environment can
revolutionize smoking research and lead to effective inter-
vention.

In this paper, we present mPuff, a novel system to au-
tomatically detect smoking puffs from respiration measure-
ments, using which a model can be developed to automat-
ically detect entire smoking episodes in the field. We in-
troduce several new features from respiration that can help
classify individual respiration cycles into smoking puffs or
non-puffs. We then propose supervised and semi-supervised
support vector models to detect smoking puffs. We train
our models on data collected from 10 daily smokers and
find that smoking puffs can be detected with an accuracy
of 91% within a smoking session. We then consider res-
piration measurements during confounding events such as
stress, speaking, and walking, and show that our model can
still identify smoking puffs with an accuracy of 86.7%. The
smoking detector presented here opens the opportunity to
develop effective interventions that can be delivered on a
mobile phone when and where smoking urges may occur,
thereby improving the abysmal low rate of success in smok-
ing cessation.
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1. INTRODUCTION
Since the first US Surgeon General’s report in 1964 there

has been overwhelming and conclusive evidence that use of
tobacco, especially in the form of cigarette smoking, causes
cancer in different organs throughout the body, leads to car-
diovascular and respiratory diseases, and harms reproduc-
tion [3]. Smoking induced diseases account for nearly one
of every five deaths in the United States [24]. Smokers die
13-14 years younger and cost $193 billion annually [1]. In
addition, almost 60% of children are still exposed to sec-
ondhand smoking which is also a known human carcinogen.
To reduce such harmful effects of smoking, there needs to
be substantial progress in tobacco control, health education
programs, and development of interventions to aid smoking
cessation.

Given the adverse impact of smoking on human health,
significant research is conducted on development of smoking
interventions. Eight (out of 27) divisions at National In-
stitutes of Health (NIH) award research grants for smoking
cessation. Of these, National Cancer Institute (NCI) alone
awards $100+ million annually in smoking research. De-
spite extensive efforts, smoking continues to be prevalent.
Seventy percent of adult smokers want to quit completely,
while 40% try to quit each year - but most quit efforts end in
relapse [7]. Each day about 3,000 people become new daily
smokers[5].

Most smoking cessation programs achieve low success
rate (i.e., less than 10%) because they are unable to in-
tervene at the right moment. Smokers who are trying to
quit need to avoid high-risk situations and if they get into a
high-risk situation, need an intervention to break their urge.
Given the ubiquity of smart phones, such a smoking cessa-
tion assistant app can be developed for smart phones that
intervenes if a quitter is found to be in a high-risk situation.
The challenge, however, is to automatically identify when
the quitter is in a high-risk situation. Considerable amount
of research work is focused on identifying the factors (called



Figure 1: Respiration signals captured during a typ-
ical smoking episode.

antecedents) that lead to high-risk situations (and, eventu-
ally relapse) to design effective interventions [30, 11, 23] .

Identifying antecedents and precipitants of smoking lapse
(i.e., an acute condition such as stress that causes a lapse)
requires conducting scientific user studies in the natural en-
vironment so as to observe the psychological, social, and
environmental factors that may be associated with smoking
instances [19, 15, 18, 21, 27, 32, 31]. This is done by observ-
ing and recording the user’s context when smoking occurs
for daily smokers or when a smoking lapse occurs in those
trying to quit [28]. These studies must have some mech-
anism of detecting when smoking occurs, so that physical,
physiological, psychological, behavioral, social, and environ-
mental contexts before, during, and after a smoking session
can be identified. Most current studies on smoking behavior
rely on various self-reporting techniques, where subjects are
asked to self-report each smoking episode. These methods
range from basic pen-paper methods and retrospective re-
calls, to electronic diary keeping and ecological momentary
assessments(EMA) [29, 28, 20, 9]. These methods, in addi-
tion to imposing a burden on the study participants, have
the limitation of introducing biases when recalling events,
forgetting to report, among several others.

Technological methods to detect smoking episodes in-
clude carbon monoxide (CO) monitors such as piCO+, CReSS
Pocket[8], Micro+[4], RespiTraceR©[13], and image process-
ing [34]. As discussed in more detail in Section 2, each of
these methods require manual intervention by subjects or
an observer. To the best of our knowledge, there does not
exist a method to automatically detect smoking events in
real-time, in the natural environment, that is operator inde-
pendent.

In this paper, we take the first step towards automati-
cally detecting smoking in the natural environment by devel-
oping mPuff, a model to automatically detect smoking puffs
from respiration measurements. mPuff uses respiration mea-
surements collected from a respiration band that the user
wears underneath their clothing. Detection of smoking puffs
from respiration is feasible because they are associated with
deep inhalation and deep exhalation (see Figure 1 for an ex-
ample). It should be noted that a puff lasts only for one
respiration cycle. Thus in order to detect puffs we need to
find appropriate features that can help discriminate a smok-
ing puff not only from usual respiration cycles, but also from
those respiration cycles that may represent speaking, stress,
or physical activity such as walking.

A smoking puff tends to lengthen the duration of a res-
piration cycle relative to its neighboring cycles. It also am-
plifies the degree of inhalation and exhalation (i.e., both

directions on y-axis) as compared to the usual level of peak
and valley, as well as that compared to the neighboring cy-
cles. We build on these insights to identify 12 new features
in respiration measurements that together with 5 previously
known features are used in mPuff to detect smoking puffs.
A majority of these features are not person specific as they
measure relative changes of some basic characteristics of the
respiration cycles. For those features that depend on ab-
solute values such as inspiration duration, we normalize it
by computing the z-score of the feature values using the
person-specific mean and standard deviation, thus account-
ing for the between-person differences. Therefore, mPuff
self-calibrates to each person and does not need to be trained
on a person prior to its usage.

In order to develop the mPuff model from the above men-
tioned features, we use support vector machine (SVM) that
is trained over the respiration features. Given that various
smoking researchers may need different sensitivities to false
positive and false negative rate, the model we use can be
customized for a target false positive or false negative rate.
Given imperfection in automated models, the smoking re-
search studies may continue collecting self-reports. These
self reports, however, may not always be located before the
start of a smoking session. They in some cases may be lo-
cated during or after a smoking session. We propose a semi-
supervised support vector model that improves the accuracy
of detecting smoking puffs by making use of the self-report
markings. Our model can potentially be used as a building
block to develop a full-fledged smoking detector that can
identify those smoking episodes that may not have received
a self-report marking.

To train mPuff, we collected respiration data during smok-
ing from 10 volunteer daily smokers. During the collection
of labeled data, we carefully marked each puff in a smok-
ing session. To ensure generalizability of our model, we also
used data sets from major confounding events, e.g., physi-
cal activity, conversation, and stress, that may cause simi-
lar patterns in respiration as smoking puffs. All these data
sets constitute the training and testing data sets of the su-
pervised SVM. These data sets are supplemented by collec-
tion of respiration data from 4 volunteers (out of the orig-
inal 10 volunteers) who wore the sensors for 7 continuous
days in their natural environment and self-marked smoking
episodes. Together with the labeled data, this data set is
used for the training of the semi-supervised model. For ad-
ditional generalizability of our models, we divided the data
set into training and test set, where 10-fold cross-validation
was conducted on the training set, but the test set was re-
served purely for testing.
Results: We find that smoking puffs can be detected with
an accuracy of 91% within a smoking session. When apply-
ing the model to confounding events, we obtain an accuracy
of 84.5% for the supervised SVM model, which improves to
86.7% by using a semi-supervised model that is able to use
a much larger data set from the field. We also find that
the accuracy of the classifier increases by more than 10%
by using the newly proposed features. We applied mPuff to
our data set to observe patterns of smoking behavior. We
find that the average duration of a smoking session is 6.62
minutes, a smoking session contains an average of 12 puffs,
among several other interesting statistics.
Future Applications: Our model opens the opportunity
for automated detection of smoking episodes in the natural



environment. Since respiration measurements can be used
to detect stress [25] as well, which has been found to be a
leading predictor of smoking relapse, smoking research can
potentially be revolutionized. It has been found that stress
levels of abstinent smokers who relapsed rises hours before
a lapse [30]. Now, it can be found out what happens in
the minutes preceding a smoking lapse. Since several other
contexts such as location, commuting, physical activity, and
social interactions can also be detected on a smart phone,
rich contextual analysis can be conducted to find true pre-
dictors of smoking lapses. Such analysis can then be used
to design effective interventions which can be delivered on a
mobile phone, when and where smoking urges may occur.
Organization of the paper: Section 3 describes the Au-
toSense sensor suite and the data sets we use for the devel-
opment and evaluation of the mPuff puff detector. In sec-
tion 4, we present the features used to train mPuff. We also
describe the supervised and semi-supervised SVM models we
use for puff and non-puff detection. Section 5 describes the
performance of the classifiers and the effect of new features
on improving the accuracy of classification. Section 6 de-
scribes the smoking topology statistics that we obtain by ap-
plying mPuff to our data sets. Section 7 presents some chal-
lenges in developing a model for detecting an entire smoking
episode. It describes potential directions for research that
leverage the patterns of conversation in the natural environ-
ment. We also propose a method for computing the con-
fidence in detecting a smoking episode. Finally, section 8
concludes the paper.

2. RELATED WORKS
We discuss related works in two categories. We discuss

technological methods to detect smoking and their short-
comings in Section 2.1. In Section 2.2, we discuss existing
methods to analyze respiration measurements to make in-
ferences of human states and point out why these methods
are insufficient to detect smoking puffs from respiration.

2.1 Technological Methods to Detect Smoking
Technological methods to detect smoking episodes in-

clude carbon monoxide (CO) monitors such as piCO+, CReSS
Pocket [8], Micro+ [4], RespiTraceR© [13], and image pro-
cessing [34]. piCO+ and Micro+ are handheld devices de-
signed for use as motivational aid in smoking cessation pro-
grams. They display the amount of smoke inhalation and
carbon monoxide levels in a single breath exhaled, measured
through a mouthpiece attached to the devices. They also
calculate and display the percentage of carboxyhaemoglobin
in the blood, thereby providing visual motivation for the
smoker to stop smoking. These device are, however, not in-
tended to be used for automatically detecting smoking in an
operator independent fashion.

CReSS Pocket/CReSS Micro [8] is a portable device that
can be used to acquire the smoking behavioral information
in the smoker’s natural environment over weeks as they store
the data on the device’s memory. The subject is asked to
insert a cigarette into a holder of CReSS and smoke through
a mouthpiece attached to the device. The device then is
able to compute several measures of smoking behavior in-
cluding puffs per cigarette, puff volume, and puff duration
and also the timestamps of cigarette insertion and removal.
All this data can be downloaded later to a computer. Al-
though CReSS has been used in some studies outside of the

laboratory settings, it has been mostly in studies by tobacco
companies to establish brand differences [22, 17, 33] by ob-
serving the smoking pattern and the degree of tobacco in-
take. For example, it was observed that with light cigarettes,
smokers take more frequent puffs in order to inhale the same
amount of tobacco as in a heavy cigarette [17], negating the
purpose of making lighter cigarettes. CReSS requires sub-
ject’s compliance since each time they smoke, they need to
smoke through CreSS. Furthermore, it may be embarrassing
for the subjects to use it in the natural environment, since
the device on their mouth will be visible to others in the
vicinity.

RespitraceR© is a newer device that uses a respiration
sensor, such as RespiBand Plus, that measures the chest’s
expansion as the wearer breathes in and out. The timing
of each puff is marked manually by an observer who presses
a push button switch when the subject places the cigarette
on lips. Authors in [13] make use of these measurements to
analyze post-puff breathing patterns in smoking. The use
of RespitraceR© has been restricted to lab settings to study
smoking patterns since it requires manual marking of each
puff.

If the place of smoking is under the coverage of a video
camera, then movement of hands and presence of cigarette
in the mouth can be detected by image processing to auto-
matically detect smoking [34]. Use of this method, however,
requires installment of video cameras in all locations where a
subject may smoke. Alternatively, the subject may be asked
to have a portable video camera (e.g., on a smart phone)
pointed to them before they smoke, which again requires
the involvement of subject each time they smoke.

In summary, each of the above technological methods
require subject compliance and hence are not suited for
widespread usage in smoking research. Therefore, smok-
ing researchers continue to rely on self-report method to-
day. The prospect of having a method such as mPuff that
enables the development of models that can automatically
detect all smoking episodes in the field from an unobtru-
sively wearable respiration sensor measurement excites the
entire smoking research community given its potential to
revolutionize smoking research.

2.2 Analytical Methods to Infer Human States
from Respiration

There have been several recent works on detecting var-
ious human states from respiration measurements. In [25],
respiration measurements are processed to infer physiologi-
cal and perceived stress. Various features such as inhalation
duration, exhalation duration, minute ventilation, and res-
piration rate are computed from each minute of respiration
measurements. Machine learning models are then trained
over these features to infer whether the subject is stressed.
In [26], features used in [25] are supplemented with some
new features such as B-Duration, computed from 30 sec-
onds of respiration measurements to detect if the subject
is speaking, listening, or quiet. These states are then com-
posed together in a Hidden Markov Model (HMM) to iden-
tify conversation episodes.

While some features identified in the above works can
help in detecting smoking puffs, the features and models
used in these and other works are not directly applicable
to detecting puffs. First, robust statistics such as mean and
median of various features are used in the detection of stress



and conversation since there are several respiration cycles in
30 seconds or 1 minute. For smoking, each puff needs to be
identified reliably. Second, there is a pattern of transitions
among the speaking, listening, and quiet states that can be
leveraged in an HMM to detect conversation episodes, such
patterns are not observable in a smoking session. Third, the
timing or number of respiration cycles between successive
smoking puffs can vary widely among different subjects, and
among different smoking session for the same subject, for
instance, when smoking in a group or when smoking alone
during work hours.

Fourth, the accuracy of detecting a smoking puff may
need to be customizable for various use cases. A study on
observing smoking behavior may want good accuracy for de-
tecting an entire smoking session, whereas another study on
abstinent smokers may want to detect individual puffs, at
the cost of a higher false positive rate, since even a single
puff can lead to a full relapse. The first puff in such scenarios
constitutes the moment of lapse (also called first lapse) and
is the main event which is used in the analysis for identi-
fying antecedents and precipitants of smoking relapse. It is
critical to be able to obtain the timing of the first lapse, and
the entire subject data may need to be removed if the first
lapse is not detected [28]. False positives may be acceptable,
especially, if the analysis is to be done post-facto, where the
goal is to be able to pinpoint the timing of relapse. Each
puff may be presented to the subject to identify the one that
may correspond to the actual first lapse. None of the above
works present a way to customize the model to a given rate
of false positive or false negative.

Fifth, none of the above works use a semi-supervised
model to use the data collected from the field to improve
the accuracy of the model. In a smoking research study,
subjects are usually asked to mark each smoking episode in
the field. These marks, however, may be before, during, or
after the smoking episode. Some smoking episodes may have
no marks at all. Hence, the marks provide a label for smok-
ing episodes, but these labels are a noisy source. We develop
a semi-supervised approach to make use of these noisy labels
to improve the accuracy of our model. In summary, the re-
quirements for the development of mPuff are more stringent
than other works on detecting psychological and behavioral
states from respiration measurements and hence require a
new approach to model development.

3. DATA COLLECTION
In this section, we describe the AutoSense sensor suite

we used to capture respiration measurements and the data
collection procedure for collecting respiration measurements
for developing, training, and testing the mPuff model.

3.1 The AutoSense Sensor Suite
We use the Autosense sensor suite [16] that includes a

Respiratory Inductive Plethysmograph (RIP) band to mea-
sure relative lung volume and breathing rate. AutoSense
also includes ECG, galvanic skin response and 3-axis accele-
tometer sensors, but only respiration measurements are used
in this work. The sampling rate of RIP is 21.3 samples/sec.
RIP uses a conductive thread that is sewn in a zigzag fashion
to the elastic band. An alternating current source is applied
to the resulting loop of wire, which, in turn, generates a
magnetic field that opposes the current whose strength is
proportional to the area enclosed by the wire according to

Figure 2: Respiratory Inductive Plethysmograph
band (in blue color) is worn around the chest area
and the wearable AutoSense sensor unit clips to the
belt. A 3-axis Acceloerometer, ECG, and Galvanic
Skin Response sensors are also included in the same
sensor unit. Two coins (a quarter and a penny) are
also shown in the picture to indicate the form factor.

Lenz’s law. The ratio of the magnetic flux to the current
is called self-inductance. Therefore, changes to the chest
circumference can be measured by measuring the changes
to the self inductance of the band. The inductance mea-
surement purely depends on the geometry of the band and
is not related to the tension in the band. As a result, the
measurement is not prone to the trapping of the band and
associated artifacts due to changes in tension. The sensors
transmit data to an Android mobile phone in real-time over
a low-power wireless link. We use the FieldStream mobile
phone software available in [2]. Using the FieldStream soft-
ware, we obtained the raw data files collected in the phone.

3.2 Data Collection for Model Development
To develop a model for smoking detection, we collected

data from 10 volunteer participants over 13 individual smok-
ing sessions. Each participant was a daily smoker. They
wore the RIP sensor of the Autosense suite in their natu-
ral environment and were accompanied by an observer. The
observer marked each puff the participant took by press-
ing a button on the mobile phone that also received the
respiration measurements via wireless channel. The timing
of the button press was saved. Marking the puff times on
the same phone that received the measurements reduced the
time lapse between the markings and sample timestamps. In
order to get a more precise marking, the data from smok-
ing session was visualized with the markings. The markings
of puffs were then adjusted to match each puff, which is
visually distinctive due to deep inhalation and exhalation
associated with a puff.

Out of the 10 participants, 4 participants wore the sen-
sor suite for 7 days in their natural environment during their
awake hours. They were asked to self-report the each time
they smoked a cigarette. We modified the interface of data
collection software (FieldStream framework) on the phone to
facilitate self reporting. Though the participants were asked
to mark the smoking sessions as they light up a cigarette,
we do not expect that the self reported times exactly cor-
responds to the beginning of the sessions; they can be any-



where (before, during, or after) in the vicinity of the smok-
ing episode. Visual inspection confirmed this hypothesis.
In total, we have 136 self-reports of smoking from these 4
participants.

3.3 Data Sets for Model Evaluation
We expect a smoking session to be confused with acute

stress, conversation, and physical activity, since they all af-
fect respiration measurements in a similar pattern as smok-
ing. We call these events confounding events. In order to
evaluate the model’s performance on different confounding
events, we use the data collected in our previous user stud-
ies [25, 26] that also used the AutoSense sensor suite. The
first data set is from a study on 21 participants who were ex-
posed to three real-life stressors (e.g. public speaking, men-
tal arithmetic, and cold pressor tasks) in a lab setting [25];
successive stress periods were separated by rest periods. The
second data set consists of conversation episodes from 12
participants. Total amount of data collected for this set is
around 46 hours [26]. In both of these studies, the partici-
pants were suggested to behave naturally and not instructed
in anyway that would confine their movement or posture. In
addition to these two data sets, we also collected data from
5 participants that captured different levels of physical ac-
tivities ranging from running and walking to sitting quietly.
This data set consists of 1 hour worth of data.

4. PUFF IDENTIFICATION
In this section, we describe the development of the mPuff

model that classifies each respiration cycle into smoking puffs
and non-puffs. We first run a peak-valley detection algo-
rithm to find the peaks and valleys in each respiration cycle.
We use the peak-valley detection method proposed in [26].
Once peaks and valleys are located, features of interest can
be computed to use in a classification algorithm. In Sec-
tion 4.1, we describe the features we identify for use in puff
detection. We then describe (in Section 4.2) the develop-
ment of a supervised classifier that uses labeled data to de-
tect smoking puffs. This model can be configured for pre-
scribed target false positive or false negative rate. We next
describe (in Section 4.3) a semi-supervised model that uses
self-report labels obtained from field data to improve the
accuracy of puff detection.

4.1 Features
Other works that use respiration measurements to infer

human states such as [25, 26] make inferences on time win-
dows that are 30 seconds or longer. Hence, these works are
able to compute statistics over multiple respiration cycles
making them robust to noise and outliers. In contrast, in
this work, we need to make accurate decision at the level of
an individual cycle since a smoking puff lasts only one respi-
ration cycle. This makes the task of identifying appropriate
features more challenging.

We identify 17 distinct features that are computed from
the respiration signal. We identify 5 features from exist-
ing work and propose 12 new features. The new features
are selected through visual inspection of data collected dur-
ing smoking and other non-smoking episodes such as phys-
ical activity, stress and conversation. Computation of the
features involves the identification of the respiration cycles,
which are composed of an inhalation and an exhalation pe-
riod. We now define all features in the following and illus-

Figure 3: Illustration of three features extracted
from respiration cycles.

trate three of them in Figure 3.

Existing Features. We first describe five features that
have previously been proposed for identifying stress and
conversation events from respiration [25, 26]. Inhalation
Duration corresponds to the time elapsed from a valley
of a respiration cycle, to the subsequent peak. The ampli-
tude difference in signal values between these points is the
maximum expansion of the chest during a respiration cycle
(see Figure 3). Exhalation Duration corresponds to the
time duration between a peak and the subsequent valley in
a respiration cycle. IE Ratio is defined as the ratio of in-
halation duration to the exhalation duration in a respiration
cycle. Respiration Duration is the sum of inhalation and
exhalation duration. Stretch is defined to be the differ-
ence between the maximum (legitimate) amplitude, and the
minimum (legitimate) amplitude the signal attains within a
respiration cycle (see Figure 3). These features have been
shown to be effective in identification of stress and conver-
sation from respiration [25, 26]. As we show in Section 5,
using these features provides an accuracy of 73.55%, which
improves to 86.7% once the new features described below
are added.

New Features. Figure 4 shows the respiration patterns
during smoking and three confounding events (stress, con-
versation and running). We observe that features such as
stretch and expiration duration are distinct during a respira-
tion cycle containing a puff as compared to respiration cycles
in speaking, stress, or activity, and hence have discrimina-
tory power. We further observe that the relative change in
stretch and exhalation duration from one respiration cycle
to the neighboring cycles are higher when there is a puff in-
volved during smoking. On the other hand, we do not see
such magnitude of change during running or conversation
events. This is because it is quite unusual to take two con-
secutive puffs without taking any breaths in between. We
define the first difference feature and ratio features in order
to capture these information concerning relative change.

We also observe that during a puff, the respiration sig-
nals stretch in both upward (called Upper Stretch) and down-
ward directions (called Lower Stretch), extending the peak
amplitude and reducing the valley amplitude respectively,
as compared to usual respiration cycles. This suggests that
the measurement of relative change in the upper stretch and
lower stretch as compared to the running mean of the val-
ley in respiration cycles, can further improve the accuracy
of identifying smoking puffs. We now describe the 12 new
features.

• Forward and Backward First Differences of a fea-



(a) Smoking (b) Stress

(c) Running (d) Conversation

Figure 4: The four figures above show the respiration signal during smoking and three confounding events.
We observe that the stretch of a respiration cycle is higher during running and puffs, as compared to speaking
and stress. We further observe that unlike during running events, during smoking sessions, the non-puff cycles
around the puff do not have as high of a stretch. This simple visual inspection suggests the use of change in
stretch relative to its neighboring cycles in discriminating puffs from conversation, stress, and running events.
Similar observations can be made for other new features such as relative change in exhalation duration, and
upper and lower stretch as described in Section 4.1.

ture is derived by computing the first order differences
of the feature values from their previous and next fea-
ture values respectively. We compute these first order
differences for inhalation, exhalation and respiration
durations and stretch and use them as features. Al-
together, this procedure creates a total of eight new
features.

• Stretch Ratio of a particular cycle c, is defined as
the ratio of its stretch to the average stretch value in
a window of five cycles, with the window centered on
Cycle c. When computing the average, we exclude
Cycle c. We use a window of five cycles because we
never see successive puffs occurring in a window of five
cycles, if the window is centered on a puff cycle.

• Exhalation Ratio of a particular cycle is similarly
computed from the average exhalation duration in a
window of five cycles.

• Upper and Lower Stretch values are the two fea-
tures computed from the stretch of each cycle, by split-
ting it into two parts. The upper stretch magnitude
is computed by taking the difference of peak ampli-
tude and running mean value of the valley amplitudes
of signal cycles (V alleyMean). Similarly, the lower
stretch magnitude is computed by taking the absolute
difference of minimum amplitude in a respiration cy-
cle and V alleyMean. During the computation of the
running mean, V alleyMean, any valley amplitude two
standard deviations away from the current mean value
is discarded in the computation.

In order to visualize the effectiveness of the features,
we use the Fisher’s Linear Discriminant method[10] to
project the 17-dimensional data vectors to a single dimen-
sion using y = wT x. The idea is to adjust the components

of w in such a way that the projection maximizes the class
separation. The discriminant method maximizes the differ-
ence between the projected class means while minimizing
the projected class scatter. This method can actually be
used as a classifier, albeit a weak one, as much of the infor-
mation inherent in the data gets lost in the projection. It,
however, provides an easy way to visualize the separation of
the classes and separation of the classes in the one dimen-
sion does hint to the fact that the features may be promising
for classification in the higher dimensional space. Figure 5
shows the projected data points and it can be readily ob-
served that there exists good enough separation of the puff
and non-puff classes.

4.2 Classifier: Supervised Learning Model
The supervised classifier we use to detect individual puffs

is learned using a supervised learning algorithm. The stan-
dard classification supervised learning framework is formu-
lated as follows. Given an example set of input observa-
tions X = xi ∈ Rn|i = 1 . . . N , e.g., matrix of n RIP fea-
tures by N inhalation cycles, with corresponding class la-
bels Y = yi ∈ +1,−1|i = 1 . . . N , e.g., puffs and not puffs,
the training algorithm learns a classification function fα(x),
which estimates the class label ŷ for a given unlabeled/novel
input observation x. The function f is parameterized by the
parameter vector α.

Our puff from non-puff classification function is learned
using the industry-standard Support Vector Machines (SVM)
algorithm, which has been demonstrated to be highly com-
petitive on a great number of problems and tasks, owing
to its combination of high learning capacity, i.e., ability to
learn highly complex classification functions, with a mathe-
matically rigorous handling of the overfitting/training error
trade-off via regularization in the space of kernel functions.
Formally, the SVM classification function is defined, using
the dual formulation, as



Figure 5: Projection of data on the Fisher’s Linear Discriminant Line. The y-axis is used to spread the data
points on the line for visual aid. The x-axis presents the value of the projection.

fα(x) = sign (gα(x)) .

gα(x) =
∑

i∈XSV

αiK(xi,x) + b. (1)

In the above formulation, αi’s and bias constant b are
the parameters learned in the course of training, and the set
XSV contains the training observations, called support vec-
tors, that define the boundary separating the two classes.

The function K(,̇)̇ is the special kernel function that allows
SVM to learn highly complex functions f , corresponding to
a highly non-linear separation boundaries. This so-called
kernel-trick makes it possible to implicitly transform all ob-
servations to a space of much higher dimensionality, called
kernel feature space, where difficult problems are simplified.
Formally, the kernel function K(u,v) corresponds to a dot
product between the original vectors u and v in the kernel
feature space, making the explicit transformation unneces-
sary. One powerful class of kernels is the Radial Basis Func-

tions class: K(u,v) = eγ‖u−v‖2 , leading to classification
functions capable of classifying very complex datasets.

The training formulation is based on regularized empiri-
cal risk minimization, whereby the algorithm minimizes the
error on the training observations, while minimizing the L2-
norm of the function f , which works to minimize its com-
plexity. The formal definition of the SVM primal learning
problem is

argmin
w,b

1

2
‖w‖2 + C

N∑
i

max(1− yi(w
T xi + b), 0), (2)

where the primal variables/parameters w and b represent
the linear decision boundary. Note that minimizing the L2-
norm of f is equivalent to maximizing The more useful for-
mulation, however, is the Wolfe dual, which also specifies
the implicit transformation of the problem into the kernel
feature space.

argmax
α

N∑
i

αi −
1

2

N∑
i,j

αiαjyiyjK(xi,xj)

0 ≤ αi ≤ C,
n∑

i=1

αiyi = 0.

(3)

The algorithm requires several user-defined parameters.
The two main ones are: 1) the C constant, which directly
penalizes the error on the train set, as per equation (2), by
which it indirectly manages the trade-off between overfiting
and training error, and 2) the choice of kernel function, along
with any constants in it. We use the RBF kernel, and vary
the γ hyper-parameter, in conjunction with the C constant,
in order to attain the best performing function f . As per
standard practice, we defined a set of candidate C’s and a
set of candidate γ’s, and tried all combinations of values
from these sets. For both C and γ, the candidate values
ranged from 2−10 to 210, increasing in steps of 20.5.

We follow the standard cross-validation approach to eval-
uate and fine-tune the learned model, with the number of
cross-validation partitions equal to 10. We use the Area
Under ROC Curve (AUC) metric to assess the performance
of the model, which is a valid metric to use with cross-
validation. The choice of AUC, as opposed to the accuracy
(number of correctly classified observations), is preferred in
our case because we have highly imbalanced class sizes. Af-
ter performing cross-validation on the data set of puffs and
non-puffs, we found the optimal C to be 4, and the opti-
mal γ to be 5.65685. These values could then be used to
train a single model for classifying puffs and non-puffs. In
the next section, we present the performance characteristics
of this fine-tuned model on the training set (evaluated via
cross-validation), as well as on a separately withheld test
set.

4.2.1 Optimal classification threshold selection
After we have fine-tuned the hyper-parameters C and

RBF γ by finding the highest cross-validated AUC, we can
introduce additional bias for one of the two classes in the
problem, and fine-tune it either to improve accuracy (espe-
cially in cases of imbalanced class sizes) or to reflect our



greater preference for minimizing the false positive rate or
the false negative rate. We can modify the original formula-
tion (1) by adding an additional bias constant λ to function
gα(x) =

∑
i∈XSV

αiK(xi,x) + b + λ. Intuitively, a positive λ
pushes the separating boundary closer to the negative class,
in which case it introduces bias for the positive class. Simi-
larly, a negative λ biases against the positive class.

In our problem, we assumed equivalent preference for low
false positive rate and low false negative rate. Therefore, we
fine-tuned λ to maximize the accuracy. We found that this
optimal λ is 0.103129, which gives preference to the positive
class. This means that while the trained classifier is able
to rank the cycles well, owing to high AUC, it is somewhat
skewed in the direction of the positive class, making us mis-
classify some negative (non-puffs) observations, but achiev-
ing a higher recall rate. Figure 6 contains the ROC curve
plots for the fine-tuned model on the training set (6(a)), as
well as on the withheld test set (6(b)). The filled square
and filled circle on each plot correspond to the default and
optimal choices for the additional bias, λ. Note that the
optimal choice in both cases leads to higher accuracy (ACC
in the plot) by means of higher recall.

4.3 Using Unlabeled Data: Semi-Supervised
Model

In this section, we describe a specific semi-supervised
model that makes use of unlabeled data obtained from the
field data collected from the four participants (see section
3.2). Semi-supervised learning has been shown to improve
the classification accuracy when there is a scarcity of labeled
data. We use the Semi-supervised Support Vector Machine
(S3VM) model [35] that extends the basic supervised SVM
to incorporate unlabeled data.

The basic intuition behind S3VMs is that if we have un-
labeled data together with labeled data the decision bound-
ary obtained by the learning algorithm should be such that
it separates the labeled data with a maximal margin, while
simultaneously maximizing its distance to unlabeled exam-
ples. The second part in the model formulation is motivated
by the notion that the model should have as little ambigu-
ity in classifying the unlabeled examples as possible, even
if there’s not assurance that these classifications are correct
(given that there are no labels for them). This intuition
is incorporated by modifying the objective function of the
basic SVM, and is given by

argmin
w,b

1

2
‖w‖2 + C

N∑
i

max(1− yi(w
T xi + b), 0)

+ C∗
M∑
j

max(1− |wT zj + b|, 0),

where, {zj ∈ Rn|j = 1 . . . M} is a set of unlabeled input
data. We essentially add penalty in the objective function
for the unlabeled data points that are too close to the deci-
sion boundary, specifically for which −1 < |wT zj + b| < 1,
thereby, forcing the decision boundary to go through a low
density area of the unlabeled instances. The S3VM experi-
ments were conducted with the SVMlin toolbox [6].

The challenge in developing the semi-supervised learning
model is to identify a feature that can connect the self-report
to the smoking puffs, knowing that the self-report can be
before, during, or after a smoking episode. The new fea-

ture we identify is the time distance of the respiration cycle
in consideration to the closest self-report timestamp in the
field data. As there should exist a marking before, during,
or after every smoking session reported, the time distance
from each cycle to the nearest self-report time should help
the learning algorithm. Note that we do not have actual
self-report time for the labeled data, but we can reasonably
assume the existence of a hypothetical accurate self-report
at the beginning of the carefully labeled smoking sessions
(see section 3.2).

5. TRAINING & EVALUATION OF PUFF DE-
TECTION MODELS

In this section, we present the performance of the clas-
sifiers for detecting smoking puffs. The training data set
for the supervised classifier is comprised of the instances of
puffs cycles and instances of non-puff cycles from the smok-
ing sessions. The other sources of non-puff instances are
data from the stress, conversation, and physical activity data
sets. These data sets do not include any smoking events. In-
clusion of these data sets are required in order to create a
robust classifier that should generalize to the natural field
environment better than a classifier that uses only the puff
and non-puff cycles from the smoking session. Moreover, as
stress, conversation and physical activity have been shown
to be inferrable from respiration, they form the set of plau-
sible confounding factors in smoking detection. In total, we
have 161 puff instances and the same number of non-puff in-
stances. The non-puff instances with equal proportion come
from smoking sessions and the 3 confounding data sets.

The training data set for the semi-supervised model set
includes the same labeled data set as described above and
a large amount of unlabeled data taken from the field data
sets obtained from 4 participants. However, not all data
from the field data is included as it amounts to 28 hours
worth of data. Such a large amount of data proved to be
infeasible to run on the SVMlin tool. Experimenting with
different amounts of data, we ended up including 10 times
the amount of cycles in the labeled data. We ensured that
data was included both from the neighborhood of self-report
times (±5 minutes) and far away of from any self reports,
thereby ensuring that the unlabeled data included both puffs
and non-puffs.

Training and Testing Performance: Tables 1 and 2
present the performance of the classifiers on labeled data set.
Also for greater generalizability, we split our labeled data set
into training and test sets — one subset contains 66% of the
whole data set and other subset contains the remaining 34%.
Table 1 shows the performance of the classifiers on whole
data set with 10-fold cross validation. As mentioned above
for supervised classification, we use Support Vector Machine
(SVM). We then split the labeled dataset into training and
testing sets. For this case, the classifier performance on
the test data is presented in Table 2. Data used in the
supervised classifier are carefully labeled. But, when we add
the noisy labeled data set from the field, we use the S3VM
classifier which is a semi-supervised support vector machine.
For the first experiment, when we use all the labeled data,
SVM provides 84.5% accuracy; S3VM is able to improve
this accuracy to 86.7%. In the second experiment, when
we apply these classifier models on the testing data set, we
observe the performances of the classifiers are also similar



(a) Cross-validation ROC curve (b) Test ROC curve

Figure 6: ROC curves for the fine-tuned model, with C, γ, λ = (4, 5.65685, 0.103129), plotted for, (a), the training
set (via cross-validation) and, (b), the test set.

Figure 7: Accuracy of the classifier on the datasets
for four confounding events.

to the training accuracies (as shown in Table 2). In both
of these experiments, we get high precision, high recall or
false positive rate, and high true positive rate. Moreover,
if the training set consists of only the non-puffs taken from
the smoking session the testing accuracy is 91.43% for the
SVM classifier. This indicates that the classifier is quite
efficient in detection of puffs and non-puffs in the absence of
confounding factors.

Figure 7 presents the accuracy incurred when the puff de-
tection model is run on the stress, conversation, and physical
activity datasets. We note that that these datasets do not
include any smoking sessions and therefore respiration cycles
not correctly identified implies it was detected as a puff. We
observe that conversation is the most confounding event for
the puff detection model. One reason is that during speak-
ing, we tend to take deep breaths at the beginning of the
speech and that is sometimes detected as puffs. To remedy
this problem, in the next section, we propose a technique
that can be applied on the data in the field when the con-
versation and smoking detection models are both available
on the phone.

Feature Analysis: The performance of the classifiers
presented in the Tables 1 and 2 uses all the 17 features. Here,
we present the effect of adding the 12 new features on the

performance of the classifier. We partition the set of all the
new features into 3 sets, namely, the set of first differences,
the set of the stretch and exhalation duration ratio, and the
set of Upper and Lower stretches. All the accuracy values
reported are for the SVM classifier. The basic set of features
comprising only the existing 5 features produces an accuracy
of 73.55% on the whole labeled data set. From Table 3, we
observe that among the three new sets of features, adding
the first differences to the basic set improves the accuracy
most, reaching up to 81.1% . With this set of features,
adding the stretch and exhalation duration ratios increases
the performance of the classifier most. With these 2 new
sets of features, we obtain an accuracy of 82.7%.

Table 3: Effect of new features on the classification
accuracy. The classification accuracy obtained using
only the existing features is 73.55%. They constitute
the basic set of features. Three different sets of fea-
tures are introduced in this paper. Let S1 = set of
forward and backward first differences of basic fea-
tures, S2 = {Stretch ratio, Exhalation ratio} and S3

= {Upper Stretch, Lower Stretch}. X denotes the
inclusion of the set to the basic set of features.

S1 S2 S3 Accuracy(%)

X 81.1

X 76.33

X 77.86

X X 82.7

X X 81.32

X X 75.79

6. SMOKING TOPOGRAPHY STATISTICS
Table 4 summarizes mean and standard deviation of var-

ious measures of interest, e.g., duration of smoking session,
puff duration, inter-puff interval, and frequency of puffs per
smoking session. These measurements are calculated from



Table 1: Performance of classifiers on training data with 10-fold cross-validation.

Classifier
Performance Matrices

Accuracy(%) Precision TP rate FP rate

SVM 84.5 0.85 0.84 0.15

S3VM 86.7 0.91 0.81 0.08

Table 2: Performance of classifiers on testing data when data is split into training and test sets.

Classifier
Performance Matrices

Accuracy(%) Precision TP rate FP rate

SVM 85.98 0.88 0.83 0.11

S3VM 87.27 0.91 0.83 0.08

the data collected from the smoking sessions where puffs are
marked carefully using a cell phone. As described in 3.2
there were 13 smoking session from 10 individuals in the
data set.

Our observations are generally consistent with previous
lab-based and field-based research on smoking topography
and puff-analysis [17, 12, 14], thereby validating the use
of respiration bands to collect respiration measurements of
smoking in the field.

7. DISCUSSION
In this section, we consider two issues on detection of en-

tire smoking episodes. We first discuss how the accuracy of
detecting smoking episodes may be improved further by us-
ing insights from conversation patterns since conversation
appears to be a frequent daily human activity that con-
founds detection of smoking. Next, we describe how the
results of puff detection accuracy can be used with an ex-
tensive real-life data set to obtain confidence level in the
detection of an entire smoking episode depending on the
number of puffs contained in a smoking session.
Leveraging Patterns of Natural Conversations. Re-
sults on the confounding data sets indicate that during con-
versations, the puff detector may raise false positives. Upon
running the conversation detector on smoking sessions, we
find that the entire smoking session is detected as a long
conversation. According to the findings in [26], most natu-
ral conversations are short, with an average duration of 3.8
minutes. Less than 20% of conversations are 6 minutes or
longer. The average duration of a smoking session (M), on
the other hand, is 6.62 minutes. We can use this difference
in durations to eliminate a major source of false alarm in
the detection of smoking events. One approach is to apply
a conversation detector on the respiration measurements af-
ter applying the puff detector and then clear puff markings
during those intervals that are detected as conversation, but
have a duration less than M − 2 ∗SD minutes, where SD is
the standard deviation of a smoking session duration. This
approach will be useful only in those scenarios where the
objective is to detect entire smoking episodes, and not sin-
gle puffs (such as in a smoking cessation study). We plan to
evaluate such approaches on data sets collected from real-life
to evaluate its impact on both false positive rate and false
negative rate.
Confidence in Detecting an Entire Smoking Episode.
Since a smoking session usually consists of multiple puffs, the

confidence in detecting a smoking session should increase
with increasing number of puffs contained in it. We can
compute the confidence of detecting of a smoking session
using the following procedure. Let X be a binary random
variable, where X = 1 indicates that a puff detected by
the smoking detector is in a smoking session, and X = 0,
otherwise. Also, in a sequence of output produced by the
puff detector, when applied on a times series of respiration
measurements, let Y (i) denote the number of puffs detected

in N respiration cycles preceding and including the ith cycle.
A good choice for N is the average number of respiration
cycles in a smoking session, which from our data set is equal
to 72. Then, Pr [X = 1|Y (i) = y] is the probability of a the

ith cycle which is detected to be a puff being in a smoking
session, given that in the last N cycles y puffs were observed.
We can use the Bayes’ rule to obtain this probability. More
specifically,

Pr [X = 1|Y = y] =
Pr [Y = y|X = 1]Pr [X = 1]

Σi∈{0,1}Pr [Y = y|X = i] Pr [X = i]

This enables the computation of Pr [X = 1|Y = y] if we
have estimates for Pr [Y = y|X = i] and Pr [X = i], for i ∈
{0, 1}. These probabilities represent the behavior of the
smoking detector on data set obtained from real-life of vari-
ous subjects, if the subjects self-mark each smoking session
in their mobile environment while wearing a respiration sen-
sor. Any puff within the neighborhood of a smoking self-
report can be used to estimate Pr [Y = y|X = 1] and puff
instances that are not in the neighborhood of a self-report
can be used to estimate Pr [Y = y|X = 0]. Pr [X = i] can
be estimated using the true positive rate and false positive
rates of the puff detector. This approach can be applied
to real-life data sets to obtain the corresponding confidence
levels in detecting entire smoking episodes when using our
smoking detector.

8. CONCLUSION
Extensive research in smoking literature is aimed to-

wards the development of efficient smoking interventions.
However, the absence of a real time smoking event detector
hampers the development of interventions that work well.
Consequently, the success rate of smoking cessation pro-
grams is abysmally low. As a first step towards building a
reliable smoking episode detector, in this work we presented
a model to automatically detect smoking puffs in the natu-



Table 4: Statistics of smoking topography obtained from the labeled data set (average value and standard
deviation).

Statistic Avg. ± St.Dev.

Duration of smoking session (minutes) 6.62 ± 1.66

Puff duration (seconds) 1.09 ± 0.53

Inter-puff interval (seconds) 28.38 ± 14.57

Number of puff per smoking session 12.38 ± 0.92

ral environment from respiration measurement. We achieve
86.7% accuracy on the detection of puffs even when there ex-
ists potential confounding events in the collected data. For
the purpose of building the model, we identified 12 new res-
piration features that are found to be effective compared to
the use of only the existing respiration features available in
the literature. We also presented a semisupervised moded
that improves the accuracy of the model when we provide
unlabeled data with self reports that is also collected in the
natural environment from participants who are daily smok-
ers. Since other contextual factors such as stress, location,
social activity can also be detected on a mobile phone, our
work opens the opportunity for effective smoking research by
allowing the collection of different contextual factors, that
are potential predictors of smoking, in the natural environ-
ment of smokers.
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