
mStress: Supporting Continuous Collection of Objective
and Subjective Measures of Psychosocial Stress on

Mobile Devices

Andrew Raij⋆, Patrick Blitz†, Amin Ahsan Ali⋆, Scott Fisk†, Brian French†, Somnath Mitra⋆

Motohiro Nakajima‡, Minh Hoai Nguyen†, Kurt Plarre⋆, Mahbubur Rahman⋆, Siddharth Shah⋄,
Yuan Shi†, Nathan Stohs⋄, Mustafa al’Absi‡, Emre Ertin⋄, Thomas Kamarck∨, Santosh Kumar⋆

Marcia Scott△, Daniel Siewiorek†, Asim Smailagic†

University of Memphis⋆, Carnegie Mellon University†, University of Minnesota‡,
The Ohio State University⋄, University of Pittsburgh∨, National Institutes of Health△

ABSTRACT
Excessive, chronic, and repeated exposure to psychological
stress can lead to significant health problems. However, new
methods for better coping with stress that could significantly
improve health and quality of life, cannot be developed and
evaluated without scientifically valid datasets describing the
experience of stress in everyday life. In prior research, sci-
entifically valid datasets have been difficult to capture from
natural environments. Sensors, which continuously capture
objective information about physiology and behavior, are
prone to noise and failure. In addition, aspects of every-
day life (e.g., conversation, exercise, etc.) interfere with
the physiological response to stress, making it difficult to
tease out the effect of stress from changes in physiology. To
overcome the challenges of assessing both exposures and re-
sponses to stressful events, new wireless sensing systems are
needed to capture scientifically valid datasets describing the
experience of stress in natural environments.
In this paper, we present the design and evaluation of

mStress, a smartphone (Android G1) based system that con-
tinuously collects and processes multi-modal measurements
from six body-worn wireless sensors to infer in real-time
whether the subject wearing the sensors is stressed. mStress
generates prompts for timely collection of self-reports, trig-
gered by real-time changes in stress level inferred by the
system, to collect the subjective experience of stress when it
is fresh in the participant’s mind. To improve the quality of
data, mStress incorporates several features including paying
micro-incentives for timely completion of self-reports, real-
time detection of and response to confounding factors that
affect physiological signals, and real-time detection of sen-
sor detachments so the participant can rectify themselves.
All of this functionality occurs entirely on the mobile phone
without any help from the back-end cloud.
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mStress was used by 23 human volunteers in a scientific
study, in which each participant wore the sensors and pro-
vided self-reports during their wake hours for one full day in
their natural environment. The phone lasted over 14 hours.
Over 200 million samples of sensor measurements were col-
lected, 19,000 stress predictions were made, and 803 prompts
for self-report were answered, 98% of which were completed
within 7 minutes of the prompt.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; C.5.3 [Computer System Implementation]: Portable
Devices

Keywords
wearable physiological sensors; stress inferencing; remote
health monitoring; deployment experiences

1. INTRODUCTION
In moderation, stress can be a positive force in everyday

life. It can motivate action (e.g., when in danger), improve
performance of tasks, and increase excitement [23, 41]. How-
ever, excessive, chronic, and repeated exposure to stress can
lead to significant negative health consequences [37, 28]. Ex-
cessive stress can lead to headaches, trouble sleeping, and fa-
tigue [29, 8, 2]. In the longer term, stress can be associated
with risk for several chronic diseases including cardiovascu-
lar diseases [36, 39]. Animal and human studies have shown
that stress can also play a role in psychological or behavioral
problems, such as depression, addiction, rage, and anxiety
[20, 1, 13, 14].

Identifying effective methods to manage or cope with stress
remains an open health challenge. Existing methods to mea-
sure stress rely on self-report or laboratory-based assess-
ment with multiple methodological and logistical challenges
related to their reliability, portability, burden on partici-
pants, susceptibility to multiple sources of errors and bias,
and requirement of extensive human involvement from the
participants and research staff. While the lab study lacks
ecological validity, measures collected from the field such as
self-report or biosamples (e.g., Cortisol from saliva or urine)
are burdensome, unreliable, biased, and episodic [44]. The
consequence is a lack of rich, scientifically valid data about



the experience of stress in everyday life. To capture such
rich datasets, technological advances in mobile computing
and wireless sensing are needed. Behavioral scientists and
clinicians need mobile, ubobtrusive, high-quality, wireless
sensing tools to robustly capture an individual’s experience
of stress in the field. With such data, behavioral scientists
and clinicians could develop effective interventions to moni-
tor and manage stress that lead to improved quality of life.
Collection of such rich data set from the natural environ-

ment involves several challenges. First, sensor noise, motion
artifacts, and sensor failure make it difficult to reliably cap-
ture high-quality physiological data in natural environments.
Second, numerous everyday physical activities (e.g., walk-
ing) confound the measurements because they overwhelm
the physiological signals and make it hard to filter out the
changes induced by psychological stress. Third, there are
wide between-person differences in the contextual, physio-
logical, behavioral, and subjective factors that define the ex-
perience of stress [7, 3]. This creates a challenge in building
a universal model that can be used to infer stress in real-time
from physiological measurements. Consequently, to the best
of our knowledge, there exists no smart phone based system
that, in real-time, is able to capture a variety of complex
contextual, physiological, and behavioral factors that define
the experience of stress. Doing so requires reliably inferring
stress from physiological measurements so that subjective
measures (self-report) and other contextual factors can be
collected close to the occurrence of stress event.
Motivated by these challenges, this paper proposes and

evaluatesmStress, a mobile phone (Android G1)-based sys-
tem that supports real-time detection of stress. mStress col-
lects continuous physiological measurements from six body-
worn wireless sensors — Galvanic Skin Response (GSR),
ECG, triaxial accelerometer, skin & ambient temperature,
and respiratory inductive plethysmograph (RIP), all located
on the chest. These measurements are processed to com-
pute 14 unique features (e.g., heart rate variability). These
features are fed to a support vector machine (SVM) to de-
tect stress events that is personalized to each individual.
mStress also collects self-reports on the subjective experi-
ence of stress and associated contextual factors. Reports
are solicited when a user transitions in or out of a period of
stress, as well as at fixed time intervals.
In addition, several measures are taken to maximize the

quality of collected data and stress inferences. First, to moti-
vate users to complete self-reports in a timely manner, users
are paid micro-incentives for each completed self-report, and
micro-incentives double if participants complete self-reports
within seven minutes of a prompt for a report. Second, a de-
cision tree infers when the user is doing significant physical
activity. The physical activity inference is used to deacti-
vate stress inferencing until the effect of physical activity on
physiological signals is diminished. Third, inferencing algo-
rithms are used to detect if the user is wearing the sensors
properly. If a sensor is not worn properly (e.g., an ECG
electrode loosens from the skin), the system detects it in
real-time and guides the user to correct the problem by pre-
senting a series of instructions on the mobile phone. Fourth,
to account for dominant confounding factors, the posture of
the user and whether the user is speaking is detected using
decision trees. These inferences are used as additional fea-
tures to the SVM to contextualize the inference of stress.
All of this functionality occurs entirely on the mobile phone

without any help from the back-end cloud.
The primary reason for doing all computation on the mo-

bile phone is to reduce the cost of running the study by
eliminating the cost of cellular network communication and
to simplify the logistics of managing multiple SIM cards and
their plans. However, local computation has additional ben-
efits. It reduces energy use, removes the need to build and
maintain the backend, and reduces privacy risks to the par-
ticipant, since no data is transmitted from the mobile phone
to an off-site location outside the participant’s control. We
note that in future, mStress can be extended to have con-
nections to back end server and the cloud.

The mobile phone lasts 14 hours on a 2300mAh battery
when running the mStress application continuously. It takes
less than 2 minutes to produce a stress inference, majority
of which is spent in computing various features. mStress
was used to successfully conduct a real-life scientific study
in which 23 human volunteers wore the entire system for
one full day in their natural environment. Over 200 million
samples of sensory data were collected, 19,000 stress pre-
dictions were made, and 803 prompts for self-report were
answered, 98% of which were completed within 7 minutes of
the prompt.
Potential New Applications. Although mStress has pri-
marily been used in scientific field studies for assessment of
stress, it can be used to realize several new applications.
First, real-time inferences of stress could be used to trig-
ger timely interventions relevant to the user (e.g., a pic-
ture of a family member might appear on the phone, or
the phone could play a ”‘happy”’ song) when a user’s stress
level is too high. Second, reactivity to an intervention
- how it changes physiology and stress levels - could also be
measured in real-time. This would enable personalized se-
lection/evaluation of interventions in the field. Third, com-
mon, everyday interruptions - a significant source of stress
- could be managed by the phone based on the user’s cur-
rent stress level. For example, a call from one’s boss might
be routed to voice mail if previous measurements indicate
a call from the boss when at home leads to excessive stress
[11]. Last, but not least, stress measurements could also
be used as part of a system that extracts and uses subjec-
tive information about a person from her sensor data (sub-
jective sensing [26]). For example, real-time measurements
of stress could be linked to a subjective navigation system
which chooses a longer, but less stressful, route to work.
Organization. We discuss the requirements for the mStress
system and the associated design challenges in Section 2.
After briefly describing the wearable sensor system (in Sec-
tion 3), we describe the mStress system. We discuss the
mStress engine in Section 4, and the user interfaces in Sec-
tion 5. The evaluation of mStress and experience from its use
in a real-life scientific study appears in Section 6. The paper
concludes with a discussion of future work in Section 8.

2. REQUIREMENTS
To meet the needs of the scientific community that stud-

ies stress, mStress must support reliable and timely data
collection, data quality management, real-time context in-
ferencing, ecological momentary assessment, and participant
burden management.
Reliable and Timely Data Collection: The system must
receive and store frequent measurements (10-60Hz) captured
concurrently by multiple wireless sensors in real-time with-



out noticeable losses. Measurements need to propagate through
various layers in the system quickly so that timely inferences
can be made about whether the user is stressed and if so, to
collect other contextual information.
Data Quality Management: To meet the stringent data
quality requirements of scientific studies, the system must
provide the data quality controls of laboratory environments
in the natural environment. For example, speaking affects
some of the same physiological measurements that are af-
fected by stress. In a lab environment, a study organizer can
ask the user to remain quiet while measurements are taken.
This is not possible in the natural environment. Thus, the
system must infer when the user is speaking, and take this
information into account when making real-time stress in-
ferences to ensure its robustness.
Another problem which can be corrected easily in the lab

environment but not in the natural environment is a fail-
ing sensor. For example, over the course of a day, an ECG
electrode may gradually loosen from the user’s body. This
loosening results in a gradual degradation of ECG data qual-
ity over the course of day. In a controlled lab environment,
a study organizer would monitor the quality of the data
collected and correct any problems as they occur. Since
a study organizer will not be able to continuously monitor
and correct such sensor problems all day-long in the nat-
ural environment, the system must detect these problems
automatically. When a sensor problem is detected, the sys-
tem must inform and guide the user on how to correct it to
ensure restore the quality of sensory measurements.
Real-Time Context Inferencing: Given the high compu-
tational and energy cost of inferencing, an inference should
only be made in real-time on the mobile phone if the in-
ference is needed to trigger quick or timely action (by the
system or user) in the natural environment. Additional data
analysis or inferencing that is not needed in real-time in the
natural environment can be done off-line after the study.
To enable taking timely action in natural environments,

mStress needs to produce five different inferences, two of
which are described in the preceding (sensor detachment
and speaking). Third, significant, sudden increases or de-
creases in stress level need to be detected quickly so that
users can be prompted to complete self-reports on stress
and other contextual factors. The sooner a report is com-
pleted, the more accurate the report is likely to be. Fourth,
since the effect of physical activity overwhelms the effect of
stress on physiological measures, stress inferencing should
be deactivated when intense physical activity is present. By
suspending the computation of features and inferences as-
sociated with stress inferencing upon detection of physical
activity, valuable energy can be saved. Fifth, the system
must detect posture (sitting and standing) and whether the
user is speaking in real-time. Posture has a similar effect on
the physiological signals as speaking [19], and is used (sim-
ilar to speaking) as additional features to contextualize the
inference of stress.
Ecological Momentary Assessment: Ecological momen-
tary assessments (EMAs) are self-reports used to collect sub-
jective data from study participants in the natural environ-
ment [40]. To enable personalization of the stress inferencing
algorithm to each participant, the system must support col-
lection of perceived stress from participant via EMAs that
act as ground truth for the training and personalization of
stress inferencing. In addition, the EMAs gather informa-

tion about other contextual factors associated with stress
that cannot easily be inferred in software. This data is criti-
cal to contextualizing stress - understanding what contextual
factors trigger or are associated with stress. As described in
the previous section, EMAs should be requested soon after
a suspected stress event occurs to ensure high accuracy in
participant responses. In addition, EMAs should be also re-
quested on a timed interval, to enable capture of a baseline
to which stress and contextual measurements can be com-
pared.
Participant Burden Management: The burden of par-
ticipation in an ambulatory study is often high. Partici-
pants must wear potentially uncomfortable wireless sensors
on their body while going about their normal daily life.
They must also deal with frequent requests for EMAs, cor-
rect problems with sensors, and replace or charge batteries.
The system must take measures to reduce or mitigate this
burden. Specifically, incentives should be used to motivate
users to wear the sensors and complete EMAs. To further
reduce the burden of providing reports, users should also be
able to specify a time period when they do not wish to be
bothered by EMAs (e.g., during an exam or while sleeping).

Additionally, to allow conducting a study with untrained
users, the system must make participation as easy as possi-
ble. For example, participants should be able to easily and
quickly validate correct operation without need for complex
troubleshooting.

2.1 Design Challenges
Meeting the requirements presented above presents sev-

eral design challenges for mStress, some of which are dis-
cussed below.
Feasibility: Real-time inferencing on mobile devices has
been demonstrated in some cases, such as using accelerome-
ters to classify physical activity [10]. However, the real-time
detection of richer psychological events such as stress has
not been demonstrated previously on a mobile phone.
Energy Efficiency: To capture the data needed, mStress
must be able to run on the phone uninterrupted for the
length of a field study (at least several days). However, the
real-time inferencing pipeline requires significant energy re-
sources to buffer samples from multiple sensors, compute
features from the samples, and process and fuse features to
produce inferences. One could provide the participant with
additional batteries or chargers. However, frequent battery
changes or recharging sessions (e.g., once every 6-24 hours)
introduces gaps in data collection, as well as increases the
burden of participating in the study [12]. Thus, it is neces-
sary to optimize the system’s energy consumption. The sim-
plest solution is to reduce the frequency of sampling, feature
production, and inferencing. However, stressful events can
occur in an instant (e.g., sudden breaking while driving).
Important stress events may be missed if the frequency of
inferencing is too low.

3. WEARABLE SENSOR SYSTEM
The mStress system uses wearable sensors to monitor car-

diovascular, respiratory, and thermoregularity systems, sys-
tems known to respond to stress and other psychologically
and physically demanding conditions. Six sensors were cho-
sen: 1) an electrocardiogram (ECG) attached to the body
with two electrodes to measure electrical output of the heart,
2) a sensor measuring skin conductance between the two



ECG electrodes, 3) a skin temperature thermistor attached
to the skin, 4) an ambient temperature sensor, 5) a three-
axis acceloremeter, and 6) a respiratory inductive plethys-
mograph (RIP) band to measure relative lung volume and
breathing rate. The sensors are implemented on two wireless
(802.15.4) motes. One mote is dedicated for the RIP sen-
sor and the second mote implements the remaining modal-
ities, enabling the study coordinators to exclude the RIP
band if respiration features are not required in their par-
ticular study. Each mote is 2.5 square-inches and powered
by rechargeable 750 mAh batteries. The lifetime for the
streaming mode is up to 72 hours for moderate datarate
(60 samples/node/sec). The system also uses an 802.15.4-
to-Bluetooth bridge that captures packets of samples sent
by the sensor motes and sends them to the phone via Blue-
tooth. More details on the wearable sensor system will be
reported separately.

4. MSTRESS ENGINE
The mStress engine uses the pipe and filter architecture

concept [6, 35]. Data is passed through four system lay-
ers (filters) to produce inferences as can be seen in Figure
1. First, data from the sensor motes arrives at the engine’s
Network Layer, where it is packetized and demultiplexed.
Additional sensor data may also be read from the phone’s
internal sensors (e.g., GPS, accelerometer). Second, sensor
data is passed to the Abstract Sensor Layer, where data
from each sensor is added to a sensor buffer, an abstraction
of a sensor that buffers sensor data into windows. Third,
when a window is complete, the Features Layer computes
features from the window. Two separate components in the
Features Layer compute features, virtual sensors and the
feature statistics module. Virtual sensors process a win-
dow of sensor data to produce a new window of virtual sen-
sor data (e.g., a virtual sensor could produce a window of
R-peak locations from a window of ECG data). The feature
statistics modules computes statistics, such as mean, vari-
ance, heart rate, and respiration rate. Fourth, once features
are computed, they are then passed on to the Inferencing
Layer, where inferences are computed from the features.
Communication between these layers is provided by a se-

ries of buses (pipes) that follow the Observer design pat-
tern [17]: a Mote Bus that passes mote sensor data from
the Network Layer to the Sensor Layer; a Sensor Bus that
passes windows from sensor buffers (including virtual sensor
buffers) to the Features Layer; a Feature Bus that passes
feature statistics from the Features Layer to the Inferencing
Layer; and a Context Bus that passes context inferences to
the user interface. A logger listens on all the buses, and
logs all sensor, feature, and context data for offline post-
processing and validation.

4.1 Network Layer
The network layer receives data from the Bridge Mote

by Bluetooth and decodes it for distribution to the various
sensor buffers that drive the mStress Engine. In addition,
it also plays the role of a transport layer, where connections
are started, stopped and managed. The key tasks of the
network layer are connection management, data reception
and decoding, demultiplexing data from sensors.
Connection Manager: The Connection Manager estab-
lishes and tears down connections to the Bridge Mote, reads
and writes raw bytes to and from the Bridge, and monitors

Figure 1: The mStress system, including the physi-
cal sensors, engine (Network, Abstract Sensor, Fea-
tures, and Inferencing Layers), and user interfaces,
as well as the Mote, Sensor, Feature, and Context
communication buses. Dotted arrows represent the
flow of data through the system, and solid arrows
represent commands (e.g. activation/deactivation
and configuration). Some sensors are faded to de-
note that they were not used in the deployed system,
but could be used if needed.

connection and mote health. The Connection Manager can
notify the application of various error conditions such as if
the connection to the bridge is lost, if the bridge is mov-
ing out of range, or if it is not receiving data from a specific
mote. If the connection to the Bridge Mote has been lost, the
Connection Manager can search periodically for the Bridge
Mote and reconnect automatically when it is back in range.
Data Reception and Decoding: Raw bytes coming in
from the Bluetooth connection are locally buffered in a block-
ing queue. A Packetizer reads this buffer and organizes the
received bytes into valid tinyOS packets. The Bridge Mote
relays data from the Sensor Motes to the phone using the
tinyOS serial protocol, PPP in HDLC-like framing [21].
Thus, the Packetizer can use the standard PPP error and
synchronization checks such as CRC, FCS and Flag sequence
to check for errors in synchronization and data corruption.
Demultiplexing: The demultiplexing phase establishes a
link between a physical sensor on the body and an abstract
sensor, an abstraction of the sensor on phone. Once a packet
is produced by the Packetizer, it is demultiplexed and dis-
tributed to the appropriate abstract sensor via the Mote
Bus. Similar to the way TCP distributes data by a port
number and an IP address, packets from a specific ADC
channel on a specific mote are mapped to a corresponding
abstract sensor.

4.2 Abstract Sensor Layer
The Abstract Sensor Layer provides two functionalities to

the mStress engine. First, it facilitates code reuse by pro-



viding a common interface to all sensor data, independent
of the source or type of the sensor. Each physical sensor -
whether on a mote or on the phone - has a corresponding ab-
stract sensor in the engine, which abstracts away the source
of the data. Abstracting the source of the data enables using
one implementation of a feature computation algorithm on
windows from many different sensor types or sources.
Second, the Abstract Sensor Layer buffers sensor data into

windows which features can be computed from. Using a
Strategy design pattern [17], a different windowing strategy
can be selected based on the particular use case. For exam-
ple, all physiological sensors were implemented with a fixed
window size strategy, where a fixed number of samples is
aggregated into a window. However, a fixed window size
strategy would not be appropriate for event-driven sensors,
where new samples are only issued when specific events oc-
cur (e.g., accelerometer or GPS on a phone). If fixed window
sizes are used with event-driven sensor data, then the data
could potentially sit in an unsent window for a long time if
new events do not occur often. A timer-based windowing
strategy could be used to send a window at a reasonable fre-
quency. When a fixed-size window is full or a timer elapses
for timer-based windows, then the window of abstracted sen-
sor data is sent to the Features Layer via the Sensor Bus.

4.3 Features Layer
The Features Layer is responsible for computing features

that will be used to make inferences. Two types of feature
data are computed in the Features Layer, statistical features
and virtual sensor data.

4.3.1 Activation Manager and Feature Addressing
Given the limited computational and energy resources of

the mobile phone, the engine incorporates an activation man-
ager that ensures that a feature is computed only when
an active inferencing implementation requires that feature.
This requires an addressing scheme that allows inferencing
modules to specify which features they need. Our addressing
scheme was developed based on three observations. First, we
observed that several features used by the inferencing imple-
mentations are computed over more than one type of sensor
data. Second, each inferencing implementation needs differ-
ent features computed on different sensors. Third, the same
features were becing used by multiple inferencing algoriths.
Given these observations, a feature addressing scheme was
designed that uniquely encodes both the feature to be com-
puted and the sensor data the feature will be computed from
in a single five-digit integer address. The three higher-order
digits of the address correspond to the feature to be com-
puted and the remaining two lower-order digits correspond
to the sensor features should be computed from. Simple
helper functions and a set of human-readable constants are
used to simplify the process of coding and decoding feature-
sensor addresses. For example, if the classifier Model1 needs
the mean (ID 101) of the accelerometer magnitude (ID 14),
then Model1 would construct the address as follows:

Constants.getFeatureSensorID(

Constants.F_Mean,

Constants.S_Phone_Accel_Magnitude)

// return 10114

The activation manager ensures a feature and sensor are
only activated once when multiple requests for the same

feature-sensor pair occur, and only deactivated when none of
the active inferencing implementations require it. Combined
with the Feature Bus, this enables multiple inferencing algo-
rithms to share the computation of this feature rather than
compute it once for each inferencing implementation that
requires it. A Factory [17] is used to load the correct sensor
and feature objects at runtime, allowing for easy addition of
the features or sensors to the engine.

An alternative to this addressing scheme would directly
pass the feature and sensor object references rather than
integer addresses. However, this would require constant
lookup in object lists, an expensive operation in Android.

4.3.2 Feature Statistics
The Feature Statistics Module computes over 30 features

from windows that are sent to it via the Sensor Bus. When
a new window arrives, the sensor associated with the win-
dow is checked against the Activation Manager’s list of ac-
tive sensor-feature pairs representing features that should
be computed. All matching sensor-feature pairs are then
added to a queue as pending feature computation jobs. A
separate thread removes jobs from the queue and processes
them. Using a separate thread prevents feature computa-
tion from blocking other computation from occurring in the
engine. However, we chose not to compute multiple features
concurrently as the repeated creation and destruction of 30
or more threads (1 per feature) significantly increased com-
putational delay on the mobile phone.

Features computed range from simple statistics such as
mean and variance to respiration amplitude and heart rate.
All features were implemented using known methods. Where
possible, lighter weight implementations were used to reduce
CPU usage and preserve battery life. For example, heart
rate variability was computed in the frequency domain us-
ing the Lomb periodogram [9]. Lomb periodogram is a less
expensive approach because, unlike a tachogram-based ap-
proach, the Lomb periodogram does not require interpola-
tion. It also does not require evenly sampled data, an im-
portant consideration given that some packets arriving from
the motes could be lost. When a job is completed, its result
is put on the Feature Bus.

4.3.3 Virtual Sensors
Some features are derived from a common set of inter-

mediate features which are expensive to compute. To avoid
repeatedly computing these expensive intermediate features,
we introduce the concept of Virtual Sensors. Virtual Sen-
sors compute intermediate features from windows of virtual
or abstract sensor data. They are called virtual sensors be-
cause, similar to abstract sensors, they produce windows
of virtual sensor data - features - and place these windows
on the Sensor Bus. For example, the detection of R-peaks
(beat-to-beat intervals) in the ECG signal is implemented
in a virtual sensor. Ten ECG-related features used by the
stress inferencing algorithm are derived from R-peaks. Thus,
implementing R-peak computation in a virtual sensor buffer
means that the R-peaks are only computed once in virtual
sensor rather than ten times (once per features), an order of
magnitude savings.

An alternative solution would be to require all feature
computation units store intermediate features they compute
in a Features Cache. Feature computation units could check
the cache for computationally expensive intermediate values



before computing them. Virtual sensors are a better solu-
tion because they do not require additional resources on the
phone. A caching solution would require additional mem-
ory for the cache and and additionally processing cycles for
the cache management (addressing, insertion, removal, colli-
sions, etc.). Management and addressing of cache elements,
especially considering multi-threaded feature computation
would be prohibitively expensive on the mobile phone.

4.4 Inferencing Layer
Using feature statistics that arrive over the feature bus,

the Inferencing Layer executes machine learning algorithms
to produce inferences about the state or context of the par-
ticipant. All inferencing implementations internally keep
track of the features they receive from the Feature Bus.
Once all needed features arrive, the inferencing implementa-
tions produce an inference and put the result on the context
bus. If an inferencing implementation uses online training,
then a context label manager passes new labels from the user
interface (mainly EMA) to the underlying machine learning
models for retraining.
Four types of inferences are made on the phone, personal-

ized stress, posture and activity, whether the user is speak-
ing, and sensor detachments.

4.4.1 Personalized Stress Inferencing
The personalized stress inferencing algorithm uses Sup-

port Vector Machines (SVMs) [38] to produce binary infer-
ences indicating whether the user is stressed (stressed/not
stressed). Although SVMs are state-of-the-art machine learn-
ing techniques and have been shown to yield excellent per-
formance in many applications, their generalization capabil-
ity might be limited if the inter-subject variation is large,
which is the case with physiological response to psycholog-
ical stress [19, 7]. We therefore incorporate person-specific
information into the stress detection model to overcome this
challenge. The SVM was trained both offline and online (on
the phone) from participant perceptions of their stress level
(provided via EMA). Offline training data was collected from
participants in a lab session and from a day in their natural
environment. The offline training data was used to boot-
strap an online training algorithm that was used during a
second day participants spent in their natural environment.
For implementation on the phone, the personalized stress

inferencing algorithm requests 14 unique features computed
over ECG and GSR from the state manager. Remaining
features were found to be too noisy or not discriminative
enough for stress. As ten of the ECG features were com-
puted from R-Peaks, an R-peak detector was implemented
in a virtual sensor. This reduced computation of R-Peaks
to once per window rather than once for each ECG feature.
Once all features arrive, they are passed to libsvm, a java-
based library for training and producing inferences from an
SVM.
When a participant responds to an EMA requesting infor-

mation about their stress level, the responses are passed to
the personalized stress implementation via the context label
manager. Once a new label arrives, the personalized stress
implementation retrains the model if needed. In general, re-
training an SVM is an expensive operation. Given the pro-
cessing and battery limitations of the smart phone, it was
necessary to restrict the initial model (computed offline) to
have 300 support vectors. With this smaller SVM, retrain-

ing currently takes only 20-30 seconds. Our results for 20
subjects indicate that the average recall for online learning
is 79% and precision is 84%. Details on the design of the
stress inferencing algorithm will be reported separately.

4.4.2 Posture and Activity Inferencing
Activity inferencing utilizes accelerometer data from the

wearable sensors to identify if the user is sitting, stand-
ing, and walking. Accelerometers have shown to be highly
effective in activity recognition when combined with ma-
chine learning algorithms [5, 34]. The inferencing was im-
plemented using a decision tree, as previous work indicates
that a decision tree provides a good balance between accu-
racy and computational complexity [27].

Implementing posture and activity inferencing in the mStress
engine involved requesting appropriate feature activation and
processing of incoming features with the decision tree. The
implementation uses two features, mean adjusted deviation
and mean crossing rate of the Z accelerometer (perpendic-
ular to the body, facing forward). These two features are
used to traverse a decision tree trained offline. The decision
tree had a 90% accuracy rate in leave one subject out cross
validation of training data.

4.4.3 Detection of Speaking Events
We infer whether the subject is speaking using features de-

rived from the respiration signal (chest volume sampled at
60 Hz). Definition of the features are based on the proper
identification of a respiration cycle, which is composed of an
inhalation period followed by an exhalation period. Vari-
ous statistics (e.g., mean, median, and standard deviation)
across five respiratory cycles are computed for three fea-
tures — inhalation duration, exhalation duration, and their
ratio, called IE ratio [30]. We train a decision tree from
offline data (that selects 4 features) and obtain accuracies of
93.08%, with Kappa = 0.8612 using 10-fold cross validation.

Accurate identification of peaks and valleys in a respira-
tory cycle is required to compute all the features. To avoid
recomputing the peaks and valleys for each feature, we use
a virtual sensor implementation for this calculation. The
”real peak-valley virtual sensor” takes a window of 1800 raw
respiration samples as input, and produces a window of in-
dices of the real peaks and valleys in the input window. A
second stage of virtual sensors, the inhalation, exhalation,
and IE-ratio virtual sensors, listens on the sensor bus and
computes windows of inhalation duration, exhalation dura-
tion, and IE-ratio from the peak-valley pairs, and puts the
result back on the Sensor Bus. The Feature Statistics mod-
ules listens on the bus for these windows and computes the
appropriate statistics from these windows. These statistics
are then passed on to the inference module.

4.5 Detecting Sensor Detachments
Four sensors are attached to the body — ECG and GSR

via gel-filled electrodes, respiration via a band that goes
around the chest, and temperature via a probe affixed with
an adhesive. The detachment or drying of electrode may
produce excessive noise, low signal amplitude, or even sat-
uration of the signal [15]. The instruction in each case to
the participant is to replace the electrode. To detect exces-
sive noise and saturation, raw ADC measurements of ECG
electrode are used, whereas for detecting low signal ampli-
tude, the variation in R-to-R intervals (produced by a vir-



tual sensor) is used. Loosening of the RIP band produces
excessive noise, whereas detachment of the connector pro-
duces saturation. Raw ADC measurements are again used
to detect saturation, while the stretch (difference between
successive peak and valley in a respiratory cycle) produced
by a virtual sensor is used to detect loosening of the band.
For both cases, the action recommended to the participant
is to tighten the band. For temperature probe detachment,
raw measurements are checked for outside a dynamically
computed range. The recommended action is to press the
adhesive.

4.6 Implementation on Android G1
We implemented mStress on an Android G1 mobile phone.

Although newer, more powerful smart phones are currently
available, the challenges encountered on implementing the
software on the G1 will likely remain even with newer phones
since future mobile sensing and inferencing systems will re-
quire more power. The number of sensors will grow to more
than 10 and features to more than 100 and the number of
inferences will increase as well. In addition, we can expect
phone sensors to still require significant amounts of energy.
Challenges arose with peculiarities of the Android plat-

form. Object creation and garbage collection are expen-
sive on the Android platform. Following the advice in the
Android Designing for Performance guide [18], object cre-
ation was carefully limited throughout the engine. Wher-
ever possible, scalar primitive types are used. For example,
all abstract sensors buffer sensor data as primitive integers.
We also chose to implement the entire functionality of the
engine within a single service. This reduces the need for
inter-process communication, another expensive operation
on Android. Putting the engine within a single service also
allows the engine to run continuously without regards to the
user interface.
In almost all cases, we implemented functionality using

the Java API rather than native code. While this increases
memory use and computational delay, software development
spread across three universities was generally easier in Java
and we found that, with one exception, we could compute
over 30 features and make up to 4 inferences without over-
whelming the system. The one exception is the implemen-
tation of the respiration rate feature. An initial Java imple-
mentation took several minutes to complete but, on average,
took 30 seconds to complete after porting the code to native
C. Native code was also used for Bluetooth connection man-
agement code, but only because no Bluetooth API existed
for Android 1.6 when mStress was initially developed.

5. MSTRESS USER INTERFACE
mStress has user interfaces for both the study coordinator

and the participant. We discuss their details in the following.

5.1 Study Coordinator User Interfaces
The user interfaces for the coordinator enable them to

set the system up, personalize it to each participant, and
to verify that the sensors and the mStress program on the
phone are working.
SISetup: The study coordinator uses the SISetup inter-
face to set up the mStress system for use in the field. In
SISetup, the study coordinator can scan for and select the
bridge mStress will connect to, select the participant’s per-
sonalized stress detection model that will be used to trigger

EMAs, and select time periods when EMAs should not ap-
pear. SISetup is hidden from the participant so that they
do not change any settings during the study. The SIStudy
interface starts the mStress program and displays an infor-
mation screen confirming that data collection has started,
as well as a reminder of the dead periods.
Verification: The mStress system needs to collect data
from all sensors and EMAs. Since the mStress software is
updated for each participant (to use the stress inference en-
gine personalized to this subject), software errors may be
introduced inadvertently. LEDs on the Android G1 are used
as initial indicators of a problem with reception of sensory
measurements. The LEDs blink red and blue as samples
arrive at the phone from the sensors. Red blinks indicate
reception of a packet from the ECG mote and blue blinks
indicate reception from the RIP mote. Motes are replaced
if a problem is observed. Study coordinators, who are not
technical people, found this visual method of checking mote
problems very convenient.

In the middle of the study, the component that gener-
ates EMA prompts stopped generating prompts for several
hours. This compromised the data by reducing the number
of EMAs collected. The system now uses two feedbacks to
provide the study organizer with confidence that EMA col-
lection is working correctly. First, the EMA module emits
a tone and displays a prompt on the display once it is ac-
tivated. Second, an EMA is scheduled for one minute after
the system is started. This guarantees that the study coor-
dinator will be in the room when the first EMA appears. If
an EMA does not appear within a minute, there is a prob-
lem with the system, in which case technical member of the
team is contacted to correct the problem.

5.2 Participant User Interfaces
Participants primarily interact with the mStress system

via its user interfaces. There are four different interfaces that
participants use in mStress — 1.) EMA interface to provide
self-reports, 2.) microincentive feedback to encourage com-
pliance, 3.) visual inspection for sensory data reception, and
4.) instructions to rectify sensor detachments.
Ecological Momentary Assessment (EMA). EMA is
used to collect self-report data in a way that attempts to
avoid sources of error that are introduced in more tradi-
tional diary, or interview methods, such as recall bias [40].
mStress uses EMA to obtain additional information about
the users context that can aid in labeling of the physiolog-
ical measurements. The EMA questionnaire employed in
mStress contains around a dozen questions. The first set of
questions are ones that have been shown to be correlated
with stress level as measured by blood pressure and salivary
cortisol cite. The remaining questions allow us to collect
ground truth information on non-physiological context such
as location, and social interactions. The design of the EMA
interface is quite simple containing a question at top of the
screen, a list of responses to that question and two control
buttons at the bottom of the screen.

The user is prompted to complete an EMA questionnaire
under one of two conditions. Either a sufficient amount of
time has elapsed since the last completed EMA, in our case
around an hour, or there has been a change in the output
of the stress inference classifier. Timed EMAs are used to
ensure that we collect sufficient self-report data throughout
a participants day in order to label data for offline analysis.



The context-triggered EMAs are to ensure that we can ob-
tain labels for periods of interest. In order to avoid undue
burden on the participants and negatively impact their stress
level, the EMA scheduler inserts a dead period of 30 minutes
immediately after each EMA. This ensures that the partic-
ipant in not inundated with multiple EMA prompts within
a short period of time. Additionally, the EMA scheduler
ensures that the total number of EMAs (timed and stress-
triggered ones) does not exceed 20 per day.
Although event-triggered EMA have been envisioned and

used earlier, primarily in the context of physical activity
or GPS assessment [22, 44], to the best of our knowledge,
mStress is the first system to use rich psychological events
such as stress to trigger EMAs.
Microincentive Feedback. As described previously, the
incentives paid to the participant are based on timely re-
sponse to EMA prompts and on the amount of time the
participant wears the sensors. Before starting an EMA,
the participant is briefly shown a summary of the micro-
incentives earned so far. In addition to encouraging compli-
ance, visual display of EMA also introduces transparency,
so participants can verify that they are being compensated
appropriately. The microincentives are logged upon every
increment, so that if the mStress application crashes and
needs to be restarted, the microincentives earned are not
lost. Additionally, the microincentive unit must ensure that
the incentives earned do not exceed the maximum compen-
sation budgeted for each participant. This could occur if
the number of EMAs exceed 20 each day. The EMA mod-
ule ensures that this limit is not exceeded. An additional
challenge that needs to be addressed is the effect of sensor
detachments on microincentives since the incentives earned
are partially tied to having worn the sensors in the period
preceding an EMA.
Visual Inspection for Sensory Data Reception. A re-
quirement of the mStress system is to maximize collection of
physiological and self-report data that meets the stringent
data quality requirements of scientific studies. Meeting this
requirement is particularly difficult because the study co-
ordinator cannot monitor the sensors and correct problems
when the participant is in the natural environment. Sensory
measurements may be lost for several reasons such as sensor
detachments, bridge being out of range from sensors or from
the phone, and software issues on the phone. The same LED
blinking mechanism that is used by the study coordinator
to verify data reception at the time of setup is used by the
participants as well.
To minimize data loss, participants were instructed to

check the LEDs every time they were prompted for an EMA
(at least every 55 minutes), if not more frequently. If users
noticed a problem, they could then take several steps to
correct it. If both LEDs were not blinking, users were in-
structed to quit and restart the program. If the blinking
reappeared after restarting the program, then the data re-
ception problem was likely due to accidental disconnection
from the bridge. Otherwise, data reception was failing be-
cause the RIP and ECG motes were too far away from the
bridge, or the batteries on the motes were depleted. If only
one phone LED was blinking, this indicated the bridge was
working properly, but it was only receiving data from one
of the sensor motes. In this case, the mote for which data
was not arriving at the phone had depleted batteries or had
moved too far from the bridge. If the RIP and ECG motes

were far away from the bridge, the LEDs on the phone would
blink again when moved closer together. Motes with de-
pleted batteries were identified by checking if indicator LEDs
on the motes were blinking. Participants were given extra
mote batteries so they could change them in the field.
Rectifying Sensor Detachments. When a sensor de-
tachment was detected by the system (see Section 4.5), the
phone vibrated with a distinctive pattern to notify the user.
The system also displayed instructions so that the partici-
pant could correct the problem. When the participant com-
pleted the instructions, the system checked if the problem
had been corrected. If the problem had not been corrected,
the user could go through the instructions again, or call the
study coordinator for additional assistance, whose number
appeared on the screen.

6. EVALUATION
We evaluate the mStress system from three perspectives.

First, we measure the energy profile of the deployed sys-
tem, and compare it to other possible configurations of the
system that we chose not to use. Second, to characterize
the timeliness of the system’s stress inferences, we measure
the computational delay introduced at each stage in the in-
ferencing pipeline. Third, we discuss various statistics of
(physiological and EMA) data that was collected by mStress
in a real-life deployment in the natural environment of 23
participants.

6.1 Energy Profile
We characterize the energy profile of the deployed version

of mStress (condition SI). We measure the impact on the
lifetime of the phone, if network communication (WiFi) to a
backend server or cloud (condition SI+Network) were to be
used, and if GPS coordinates were to be logged (condition
SI+Network+GPS). Device lifetime is measured by running
mStress continuously, starting with a full 1150mAh phone
battery and ending when the battery reached 15% of its total
energy capacity1. The wearable sensors actively transmitted
samples throughout the test period, and a best effort was
made to complete EMAs when they appeared.

The results appear in Figure 2. We observe that with
the regular battery, the phone lasts only 8 hours (to deplete
85% of the battery) when running mStress. This was insuf-
ficient for capturing the wake hours of participants, which
span more than 12 hours. Consequently, we switched to
a larger 2300mAh battery. With this battery (condition
SI+LargeBattery), the phone lasted over 13 hours to reach
15%. This measurement is consistent with the lifetime re-
ported by the participants. On average, participants in the
field reported wearing the system for 14 hours, and logs in-
dicate approximately 12 hours of data from sensors was col-
lected from each participant. The two hour difference is due
to restarts and occasional disconnections.

We next observe that using the network connection re-
duces the lifetime by 26.5% (from 8.07 hours to 5.12 hours).
Consequently, even if we use the larger battery, the phone
would last only 8.36 hours to get to 15% level, which will
be insufficient. Finally, we observe that logging GPS coor-
dinates leads to an additional reduction of 13.7% in the life-
time. If the participants were to talk on the study phone and

1Note that Android warns the user about the battery dying
when it reaches 15%



use the phone for emails, browsing, games, etc. then signif-
icant extension to the lifetime would be needed. Strategies
proposed in [25, 43] for saving energy with GPS logging can
be used, but this still leaves significant deficit if connectiv-
ity to the back-end is to be used, and if the set of wearable
sensors and context inferences is expanded further. For ex-
ample, from our current measurements, we have found that
talking on the phone increases the current draw by 50mA
(as compared to an average current draw of 121mA for the
SI condition). Similarly, turning the display on increases the
current draw by 90mA.

Figure 2: The lifetime of the mobile phone under
various configurations of mStress.

6.2 Computation and Communication Delay
We analyze the computation and communication delay of

the system to verify that inferences are made in a timely
fashion. Since stress inferences are used to trigger EMAs, it
is important that EMAs appear near in time to the occur-
rence of the stress event being detected. The time between
capturing a sample from the participant and the making of
an inference is, on average, 118 seconds, or just under 2
minutes. The vast majority of this time (approximately 100
seconds) is spent in the Features Layer computing statisti-
cal features. This delay is mostly attributable to queueing
feature computation jobs and using a single thread to oper-
ate on them one-by-one. The Network and Abstract Sensor
Layer introduce less than one second of delay. The remain-
ing 18 seconds of delay comes from making stress inferences
in the Inferencing Layer. Using buses for communication be-
tween layers adds virtually no delay. We note that significant
delays can also be introduced at the Abstract Sensor Layer
if packets stop arriving from the motes (e.g., because of a
dead battery). If the system were to wait until a window of
physiological data was full, partially filled buffers may never
be sent. A timer-based window flush strategy as described
in Section 4.2 is applied to send partially filled windows of
physiological sensors, after sufficient time has elapsed since
this window was started.

6.3 Experience Report
Physiological and EMA data were successfully collected by

mStress from 23 participants who wore the system during
awake hours of one full day in their natural environment.
Approximately, 200,000,000 samples were collected across
all participants from six sensors, or 310 hours of data per
sensor. In this period, 19,000 stress level predictions were
made and 803 EMAs were answered. On average, partici-
pants received 25 EMAs per day. Fifty two percent of the

EMAs were triggered by stress inferences. Approximately,
78% of all EMAs were completed. Of those completed, 98%
were completed within 7 minutes. This indicates that bonus
microincentives awarded for completing EMAs within 7 min-
utes proved effective.

7. RELATED WORK
In comparison to existing inferencing systems for mobile

phones, mStress is most similar to the MyExperience sys-
tem. MyExperience [16] collects objective data about study
participants on a mobile phone and triggers collection of
subjective data from participants based on simple context.
The MyExperience architecture is built on 3 core compo-
nents, sensors, triggers, and actions. Triggers are sets of
conditional logic on multi-modal sensor data. When a trig-
ger is true, its corresponding action is taken (e.g., prompt
for EMA). mStress shares other characteristics with existing
mobile phone context inferencing systems. Two examples
include the use of a dynamic activation manager that only
enables sensors and features that are needed by active infer-
encing modules, and reducing resource usage (CPU, battery)
by doing a computation once and sharing the result with all
modules that need it [24, 43].

However, mStress differs from previous systems in four
ways. First, mStress is capable of more sophisticated in-
ferencing than has been demonstrated in previous mobile-
phone-based systems (Section 4.4). It uses sophisticated sig-
nal processing of samples to compute features and an SVM
to infer if a person is stressed from those features. Sophisti-
cated signal processing is also used in the detection of speak-
ing. Second, mStress uses hierarchical buses to share data
and computation among system entities (Section 4). Third,
to reduce the delay to produce inferences, feature compu-
tation jobs are queued and then processed one-by-one in a
single thread (Section 4.3.2). Fourth, mStress detects sensor
detachments (Section 4.5) and provides instructions to the
user on how to correct the problem in the field (Section 5.2).

8. CONCLUSIONS AND FUTURE WORK
To the best of our knowledge, mStress is the first sys-

tem that produces inferences of stress from physiological
measurements in real-time on a mobile phone that is per-
sonalized to each participant. It enables collection of self-
report close to the occurrence of a stress event. Real-time
detection of stress can be used to develop and evaluate per-
sonalized coping methods to reduce the adverse impact of
ever-increasing stress in people’s lives.

Although mStress was successfully used by stress researchers
in a one day study in the natural environment of tens of
subjects, several improvements are needed to make it suit-
able and robust for widespread adoption in scientific studies.
The lifetime of the phone needs to be extended further so
it can last wake hours of a day, while supporting network
connection to the cloud, active use of other expensive sen-
sors on the phone (e.g., GPS, microphone, etc.) to collect
contextual factors, and active usage of the phone for tradi-
tional purposes (making calls, browsing, etc.). Systematic
approaches for optimizing energy such as event filtering [31,
4] and sampling policy optimization [33, 42] can be inves-
tigated. Also, recently developed methods for online learn-
ing [32] can be investigated for real-time personalization of
stress inferences.
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