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ABSTRACT
Recent researches have demonstrated the feasibility of detect-
ing smoking from wearable sensors, but their performance
on real-life smoking lapse detection is unknown. In this pa-
per, we propose a new model and evaluate its performance
on 61 newly abstinent smokers for detecting a first lapse. We
use two wearable sensors — breathing pattern from respira-
tion and arm movements from 6-axis inertial sensors worn
on wrists. In 10-fold cross-validation on 40 hours of training
data from 6 daily smokers, our model achieves a recall rate
of 96.9%, for a false positive rate of 1.1%. When our model
is applied to 3 days of post-quit data from 32 lapsers, it cor-
rectly pinpoints the timing of first lapse in 28 participants.
Only 2 false episodes are detected on 20 abstinent days of
these participants. When tested on 84 abstinent days from 28
abstainers, the false episode per day is limited to 1/6.
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INTRODUCTION
Smoking accounts for nearly one of every five deaths in the
United States [1, 14]. Smoking cessation rates are improving
with advances in treatments and interventions, but are still in
single digits. A primary hurdle in achieving a higher success
rate is a lack of methods that can intervene or deliver treat-
ment at the right moment when an abstinent smoker is most
vulnerable [25]. Advances in mobile technology have created
an opportunity to deliver an intervention anytime and any-
where if a potential smoking lapse event can be predicted in
advance. However, to find sensor-based predictors of a smok-
ing lapse [4, 8, 5, 7, 10, 13, 21, 22, 26, 27] (e.g., rapid rise in
stress [24] or proximity to a tobacco outlet), timing of a lapse
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event (especially the first lapse event, the most clinically rel-
evant event as it usually leads to full relapse [22]) needs to be
determined accurately. Then, data mining methods can be ap-
plied on the time series of mobile sensor data to identify the
antecedents and precipitants of a smoking lapse (in a smok-
ing cessation study). The traditional method of self-reporting
a smoking lapse event [3, 9, 22, 23] lacks the temporal pre-
cision needed to identify predictors in a continuous stream of
sensor data.

There have been several recent works on detecting a smok-
ing episode from wearable sensors. They include tracking
hand gestures during smoking by inertial sensors worn on the
wrist [17, 28] and tracking deep inhalation and exhalation in
the breathing pattern via Respiratory Inductive Plethysmogra-
phy (RIP) sensors [2, 11]. But, their performance is reported
mostly on training data collected in supervised settings, with
the exception of RisQ [17], which was tested on 4 smokers
who wore 9-axis inertial sensors for 4 hours a day over 3 days.
They report detection of 27 smoking episodes (out of 30) and
report a false positive rate of 2/3 per day (8 sessions out of 12
person days).

While RisQ is the most promising smoking detection method,
it uses a 9-axis wrist sensor, whereas most modern smart-
watches (e.g., Microsoft Band, Apple Watch) have only 6-
axis inertial sensors, for better energy-efficiency. Since RisQ
relies on quaternions that need all 9-axis, it is not clear how
to adapt this method to 6 axis. Most importantly, none of the
above described methods have been evaluated on data col-
lected in a smoking cessation study and hence their perfor-
mance for first lapse detection is not known.

In this paper, we propose a new method called puffMarker
to detect smoking puffs that is sufficiently robust for use in
smoking cessation studies. We adopt an explainable model-
ing approach so as to obtain better interpretability and gener-
alizability. puffMarker uses data collected from two wearable
sensors — breathing pattern captured from a RIP sensor and
hand gestures captured using 6-axis inertial sensors (3-axis
accelerometers and 3-axis gyroscopes) worn on wrists. Since
a participant may use both hands to smoke, they are provided
two wrist sensors to wear, one on each wrist. Both sensors
nicely complement each other and hence provide a better de-
tection accuracy. To provide an intuition of the benefit of
using these two diverse sensors, we show signals captured
during smoking, walking, and eating in Figure 1. We only
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Figure 1. Comparison of respiration and wrist accelerometer (y-axis)
signal between smoking, walking, and eating.

show y-axis for the inertial sensors since it has distinct pat-
tern for hand gesture. We observe that during smoking, the
hand comes to the mouth, and is immediately followed by a
deep inhalation. During walking, the hand is downwards with
a pendulum like movement and respiration is faster. During
eating (cereal), the hand comes at the mouth, however deep
inhalation, observed during smoking, is absent in such activ-
ities [16]. We later describe details of the puffMarker model
(see Figure 4 and its accompanying description).

We train the model on 40 hours of data from 6 regular smok-
ers, where each of the 470 puffs were carefully marked. In 10-
fold cross-validation on the training data, the model achieves
a recall rate of 96.9%, for a false positive rate of 1.1%. We
applied the puffMarker model to a smoking cessation study
with 61 participants, where each participant wore the sensors
for one day while smoking ad lib and for 3 days since quitting.
Among 61 participants, 33 lapsed within three days (verified
by a CO monitor) — 17 lapsed on the first day, 12 on the sec-
ond day, and 4 on the third day. We apply our model on these
data and report 7 key findings.

1. Recall: Among 33 lapsers, one is eliminated due to high
data loss; Of the remaining 32, first lapse is detected in 28.

2. False Positives: When tested on 20 abstinent days from
32 lapsers, only two false episodes are detected. When
tested on 84 abstinent days (946 hours) of data from 28
abstainers, false episode per day is limited to 1/6.

3. Lapse Progression: The average number of smoking
episodes is 1.1 on the lapse day, 2.75 on the day after lapse,
and 3.56 on 2 days after lapse.

4. Puff Count: A regular smoking session contains an av-
erage of 15 puffs, but the first lapse episode contains an
average of only 6.5 puffs. Number of puffs in a smoking
episode increases to 9.5 puffs on the day after lapse and 11
puffs on 2 days after lapse.

5. Temporal Inaccuracy of Self-report: Out of 28 first lapse
events detected by puffMarker, 9 were not self-reported, 15
were reported (an average of 41 minutes) after lapse, and 4
were reported (an average of 12.7 minutes) before lapse.

6. Recall Inaccuracy: Nine lapsers who did not self-report,
recalled the lapse time upon CO verification in the lab
next day. Temporal inaccuracy for these recalls was larger,
ranging from 107 minutes before to 205 minutes after.

7. Hand Pattern: Among 61 smokers, 33 smoke using the
right hand, 18 use the left hand, and 10 use both hands.

In summary, ours is the first work to show that precise mo-
ment of first lapse can indeed be detected in a real-life smok-
ing cessation study. Given the critical nature of the first lapse
in smoking cessation (as it marks the first event in cessation
failure and usually leads to full relapse [22]), this work lays
the groundwork for development of mobile-based just in-time
intervention for smoking cessation.

RELATED WORK
We discuss related works that could be considered for detect-
ing first lapse in a smoking cessation study. There have been
several recent works on finding methods to detect smoking
episodes from sensor data. The E-cigarette can record the
timing of puffs and smart lighters can detect when it is lit [20].
Either one can detect the timing of the first lapse, but only
if participants remember to use these devices at the time of
their first lapse. Alternatively, if the smoking spot is under
video surveillance, then the timing of the first lapse can be
detected [29], but only if the participant is under surveillance
at the time of their first lapse.

For detecting smoking of regular cigarettes without any in-
strumentation of lighters or being under surveillance, several
wearable sensor-based methods have been proposed. They in-
clude tracking hand gestures during smoking by inertial sen-
sors worn on the wrist [17, 28] and tracking deep inhalation
and exhalation in the breathing pattern via respiratory induc-
tive plethysmography (RIP) sensors [2, 11].

In [2], 161 puffs were collected from 10 participants while
they wore a respiration sensor to capture breathing pattern.
A machine learning model obtained a precision of 0.91 and
recall of 0.81 in 10-fold cross validation. In [11], 20 partici-
pants wore a radio frequency sensor on the wrist and on the
collar to track hand reaching mouth. They also wore a res-
piration sensor to capture breathing pattern. They performed
12 activities, including smoking in different postures. An av-
erage precision of 0.87 and a recall of 0.81 was reported.

In [28], 6 participants wore 4 accelerometers (wrist and upper
arm of dominant hand, other wrist and ankle) and performed
smoking and other activities for a total of 11.8 hours (con-
sisting of 34 smoking episodes or 481 puffs). Recall and pre-
cision rates of upper seventies and lower eighties is obtained
for a machine learning model.

The above works demonstrate a potential for detection of
smoking events via experimentation in controlled setting. A
recent work, RisQ [17], reported evaluation of a smoking de-
tection model from wrist sensors in the field environment. In
this work, data from 15 volunteers were collected for a total
of 17 smoking episodes for training. The smoking episodes
included smoking alone, in a group while having a conversa-
tion and smoking while walking around. The volunteers wore
a 9-axis inertial measurement unit (IMU) on the wrist for an
average of 2 hours each. Out of 369 puffs and 5,228 other
gestures collected over 28 hours, their model achieves a pre-
cision of 0.91 and recall of 0.81. They applied their model
on 4 users who wore 9-axis inertial sensors for 4 hours each
on 3 days in the field. On this field dataset, they reported a
recall rate of 90% (27 out of 30 sessions detected) and a false
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Figure 2. Data Summary of Training and Smoking Cessation Study

positive rate or 2/3 episodes per day (8 false sessions in 12
person days).

Although our work builds upon [17] and [2], it makes sev-
eral novel contributions. First, RisQ [17] uses 9-axis wrist
sensor (3-axis accelerometer, 3-axis gyroscope, 3-axis mag-
netometer), whereas our method uses 6 axis IMU (supported
by many modern smartwatches such as Microsoft Band and
Apple Watch). Since gesture recognition is invariant to the
absolute orientation of the subject in the earths inertial frame,
6 axis IMU provides sufficient degrees of freedom. Second,
prior work [17] relies on generic gesture recognition algo-
rithms based on inertial tracking of the absolute orientation of
the wrist, we developed a lightweight recognition algorithm
tailored for the smoking gesture with much reduced compu-
tational complexity and sampling rate requirements. Third,
mPuff [2] classified respiration cycles into puff and non-puff,
but has a high false alarm rate; it falsely detects 150 out of
1,000 respiration cycles as puffs, making it ineffective for
use in the natural environment. In contrast, our puffMarker
model falsely detects only 1 out of 1,117 respiration cycles
as puffs. Fourth, ours is the first work that was applied to
data collected from a real-life smoking cessation study. All
other prior works reported their results on only regular smok-
ing training data. Fifth, our work is the first one to detect first
lapses, which is most challenging due to significantly smaller
number of puffs (45%). Sixth, RisQ and mPuff were both
evaluated on only 4 users in the field environment while we
evaluate on 61 users, making our work clearly the largest-ever
study for sensor-based detection of smoking. Seventh, ours
is the first work that combines respiration and wrist move-
ment data and shows how inclusion of wrist movement detec-
tion can increase the performance of respiration based detec-
tor [2]. Finally, performance of our system (recall of 96.9%
and false positive rate of 1.1%) is better than any previously
reported work even on training data.

DATA COLLECTION
We describe details of the user study for collecting training
data for the puffMarker model and the smoking cessation
study where the puffMarker model was applied.

Wearable Sensor Suite: Participants in both studies wore a
wireless physiological sensor suite (AutoSense [6]) under-
neath their clothes. The wearable sensor suite consisted
of two-lead electrocardiograph (ECG), 3-axis accelerometer,
and respiration sensors. Participants also wore an inertial sen-
sor on each wrist that includes a 3-axis accelerometer and a
3-axis gyroscope. Each sensor transmitted the sensor data
continuously to a mobile phone. AutoSense respiration sen-
sor has its own battery and it lasts for 10 days on a 750 mAh
battery. It uses a low powered ANT Radio to connect with
the phone. The phone (which collects GPS data continuously
and keeps its wireless radio on for data reception) lasts for
13 hours on a single charge. The smartwatch we use lasts 3
days on a 500 mAh battery. The sampling rate for the res-
piration sensor is 21.3 Hz and that for the accelerometer and
gyroscope on smartwatch are 16 Hz for each of the six axes.

Mobile Phone: Participants were given a smart phone to
carry. It receives and stores data from sensors on the body
and on the phone. It also collects self-reports in response to
random prompts which capture characteristics of situational
factors associated with smoking. These factors include stress,
physical activity levels, posture, places visited, and commut-
ing episodes. In the training study, an observer marks the
timing of each puff on the phone. In the smoking cessation
study, participants used the phone to report the beginning of
smoking episodes by pressing a button.

Data Collection for Model Training
We collected data from 6 daily smokers. They wore the sen-
sors for a total of 40.3 hours in field as they went about their
daily lives. Each time they smoked, they were accompanied
by an observer who who was instructed to mark (on study
phone) a puff when the participant held cigarette between
the lips and inhaled smoke. From the marking, we thus ob-
tained the timing when the hand is at the mouth during smok-
ing. This dataset contains 32 smoking episodes (that includes
smoking while standing, sitting, walking, and being in a con-
versation) with 470 puff markings. In 179 instances out of the
470 puff markings, there were wireless data losses and noise
due to physical movement or loosening of the respiration belt.
We use the remaining 291 puff instances for which we have
acceptable respiration and wrist sensor data.

Smoking Cessation Study
Participants: The participants were cigarette smokers who
reported smoking 10 or more cigarettes per day for at least
2 years, and who reported high motivation to quit. To qual-
ify, participants had to pass a screening session prior to be-
ing enrolled in the study. The screening includes assessment
of current medical and mental health status and history of
any major medical and psychiatric illness. Screening also in-
cludes assessment of smoking behavior, mood, and other be-
havioral health measures. Participants were excluded if they
had ongoing major medical or psychiatric problems and if
they had other comorbid psychiatric and substance use prob-
lems. Also, participants who were not entertained into the
normal day/light diurnal cycle were excluded to control for
variation in diurnal physiological activity and behaviors.
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Figure 3. Depiction of mounting of inertial sensors on the wrist and the
orientation of their axes.

Protocol: Once enrolled, the participants picked a smoking
quit date. Two weeks prior to their quit date, subjects wore
the sensor suite for 24 hours in their natural environment. Af-
ter completion of the 24 hour monitoring, which we call the
pre-quit session, subjects come back to the lab for their sec-
ond visit. Smoking cessation counseling is provided starting
at this second visit to the lab. Then the subjects come back
to the lab on the assigned quit date to attend a counseling
session and to begin the 72 hour of monitoring in the field;
this we refer to as the post-quit session. They come back to
the lab each day to confirm smoking status by capturing an
expired breath sample in a carbon monoxide (CO) monitor.
During each day of monitoring (24 hour pre-quit and 72 hour
post-quit), the participants wear the sensor suite during awake
hours, and on the mobile phone, complete 12 Ecological Mo-
mentary Assessments (EMAs) (i.e., self-reports) daily.

Data Collected: We collected data from 61 participants. The
participants wore the sensor suite for a total of 2,766 hours.
A summary of collected data is shown in Figure 2.

DATA PROCESSING AND MODEL DEVELOPMENT
Respiration, 3-axis accelerometers, and 3-axis gyroscopes
provide us with 7 concurrent time series of data that are all
time-stamped when they are received on the mobile phone1.
The x, y and z axes of the accelerometers and gyroscopes on
the wristband are aligned with each other. The directions of
the axes of the wristband sensors are shown in Figure 3.

Overview of puffMarker Model
Figure 4 presents an overview of all the data analysis steps.
First, we remove outliers and impute missing data. Second,
we describe a method to detect hand-at-mouth gestures that
segments (i.e., creates windows in) the time series of sensors
data. These windows are assessed for representing a puff.
Hand gesture during puffing a cigarette is typically composed

1We note that timestamping of sensor data upon receipt on the
phone does not adversely affect time snchronization needed for our
method. Data from sensors are transmitted to the phone tens of times
each second and therefore the delay from sampling to reception on
the phone is of the order of milliseconds. Our time granularity re-
quirements for classification (discussed later) is of the order of 3-7
seconds, duration of hand staying at the mouth. Each respiration
cycle is 3-6 seconds long. Hence, millisecond level errors in time
synchronization between respiration and inertial sensor data does
not adversely affect our model.
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Figure 4. An overview of key modeling steps for detecting smoking puffs
and constructing smoking episodes in the puffMarker model.

of three sub-gestures that usually occur in the following se-
quence — hand moving to the mouth, hand being at mouth
while taking a puff, and hand moving away from the mouth.

puffMarker locates puff events by detecting the segments in
the wrist sensor time series that contain hand-at-mouth ges-
tures. When an accelerometer is stationary, any accelerome-
ter axis aligned precisely with the earth’s downward gravita-
tional field will result in a measurement of −1g in that axis.
Due to the mounting of the sensor on the wrist (see Figure 3),
we observe a positive value on y-axis when the right hand is
held in an upward direction, whereas we get a negative value
on the y-axis of the left wrist accelerometer.

However, when an accelerometer is moving, an axis will mea-
sure the combination of linear acceleration due to movement
and the component of gravity in the direction of that axis.
The gyroscope axes, on the other hand, measure the rate of
change of rotation or angular velocity about the axes. We use
the measurements obtained from both the accelerometers and
gyroscope to detect hand-at-mouth gestures.

As a third step, we develop criteria to screen out segments (or
windows) of data that do not correspond to smoking puffs.
Using the detected hand-at-mouth segments, we identify the
accompanying respiration cycles that potentially correspond
to smoking puffs.

Fourth, we compute features from those candidates’ respira-
tion cycles and hand-at-mouth segments that pass the preced-
ing criteria. For classification, we train a support vector ma-
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chine model that uses the input features to classify the quali-
fying candidate windows of data into puff and non-puff.

Fifth, we apply two simple post-processing steps to further re-
duce false alarms. Isolated puffs that do not fit within the dis-
tribution of inter-puff duration in a regular smoking episode
are filtered out. Also, the model is applied to data collected
from each wrist, but if a participant is observed to use only
one hand for smoking during the pre-quit phase, then smok-
ing puffs detected from non-dominant hand are filtered out.
Finally, a smoking episode is constructed if sufficient number
of smoking puffs (in a cluster) are detected in close vicinity.

Data Preprocessing
Sensor data are collected in the field environment where they
are subjected to various sources of noises, losses, and degra-
dation in quality. We develop a series of screening methods
to clean the sensor data.

Removing outliers: Windows of sensor data when a partic-
ipant is not wearing the sensors (determined using methods
presented in [19]) are removed from analysis.

Imputation of missing data: In a real-life environment,
some data packets are lost in wireless transmission. We in-
terpolate if sample loss is limited to one packet containing
5 samples as described in [19]. Any longer loss burst is not
imputed to maintain data quality. After outlier removal and
imputation, the data is ready for further processing.

Locating and Marking Windows of Interest
We observe that during cigarette smoke inhalation, the hand
must remain stationary at the mouth for few seconds. We
look for these stationary moments in the inertial sensor data
stream. We argue that for detecting hand-at-mouth gestures,
this method of locating puffs is more robust than tracking the
hand trajectory, which can vary widely depending on the body
posture (i.e., sitting, standing, walking) and hand position.

In order to detect hand-at-mouth gestures, we first segment
the sensor data from both wrists to find relatively stationary
segments and discard all non-stationary segments. To find the
body location when the hand is relatively stationary, we use
the magnitude of the gyroscope axes. Any movement of the
hand will manifest as a rotation about one of the gyroscope
axes and cause the magnitude value to increase independent
of the direction of rotation. When there is very little move-
ment of the hand, the gyroscope magnitude will be low since
it is not affected by gravity. Therefore, a hand-at-mouth ges-
ture can be detected by finding segments where the gyroscope
magnitude time series attains low values and is preceded and
followed by peaks. The first peak is due to the hand mov-
ing towards the mouth and the second one is due to the hand
moving away from the mouth.

It should, however, be noted that simple thresholding on the
magnitude values to locate hand-at-mouth segments may not
work well in practice. The average magnitude of a hand-at-
mouth segment during walking is usually higher than that of
stationary segments during standing or sitting. This is be-
cause, when a person is walking, the whole body is moving
and there will always be some movement of the hands. Even

Figure 5. Hand at mouth segment detection. (AX , AY , AZ ) and (GX ,
GY , GZ ) present the signals of accelerometers and gyroscopes. The
circled area 1 represents the effect of y-axis of accelerometer when hand
is at mouth and the circled area 2 represents the changes in gyroscope
when hand is reaching the mouth and hand is leaving the mouth.

when the hand is at mouth while taking a puff, there is some
movement of the wrists due to taking steps.

Therefore, for the hand-at-mouth gestures during walking, we
expect to find segments that attain low magnitude values com-
pared to the average magnitude during walking. Moreover, in
several instances, we observe that these relatively low ampli-
tude values are sometimes higher than the amplitude of peaks
corresponding to the hand movements before and after the
hand-at-mouth stationary segments. The amplitude of these
peaks depend on the rest position of the hand before and after
the puff.

While standing or walking, the hand usually hangs beside the
body and, therefore, we observe a larger peak amplitude. On
the other hand, while sitting, the hands may be resting on the
thighs, or on the armrest of a chair. In these cases, the hand
is moving a shorter distance to the mouth and hence the peak
amplitudes are lower. Also, sometimes, participants smoke
with their hand hanging near the mouth. In such instances,
the amount of movement is even lower, producing the low-
est peak amplitudes. Therefore, setting the threshold value
as high as the amplitude of hand-at-mouth segments during
walking does not correctly identify hand-at-mouth segments
in several other situations. This necessitates a segmentation
method that is adaptive to the current level of movement so
as to find segments that are relatively stationary.

We use a procedure that makes use of two moving averages
to detect rise and fall in the gyroscope magnitude time series.
Such methods are commonly used by investors in stock mar-
kets to identify price rise and fall [15]. More specifically, we
perform the following steps.

1. We compute a fast (0.8 second window) and a slow (8 sec-
ond window) moving average of the gyroscope magnitude.
The fast moving average closely follows the dynamic na-
ture of the signal, while the slow moving average repre-
sents the level of movement in the neighborhood (see Fig-
ure 5). The window size of the slow moving average cor-
responds to the length of a smoking hand gesture length,
which usually lasts from 3-7 seconds [12]. Because of this
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Figure 6. Locating a candidate segment and identifying its boundaries.

window size, during smoking hand-at-mouth gestures, the
slow moving average is computed over windows that al-
ways contain the peaks due to the hand moving towards
and away from the mouth. Therefore, during these seg-
ments, the slow moving average attains higher values com-
pared to the fast moving average. The 0.8 second window
size for the fast moving average is empirically chosen so
that all segments that contain hand-at-mouth gestures dur-
ing puffs are detected.

2. We select segments where the fast moving average lies be-
low the slow moving average. These segments are demar-
cated by two consecutive crossing-over points of the two
moving averages. The first of them corresponds to the loca-
tion after which the fast moving average moves below the
slower one and the second crossing-over point corresponds
to the location after which the fast moving average rises
above the slower one. The selected segments are, there-
fore, the ones where the magnitude values are relatively
lower than the average magnitude of the neighborhood.

While segmenting data using the above method, we also
check whether at that time y-axis of accelerometer is in an
upward direction or not. Change in the magnitude of the gy-
roscope indicates that the hand is in motion. If, at that mo-
ment, the y-axis of the accelerometer changes from low to
high (for the right hand sensor), it indicates the hand is mov-
ing in an upward direction. An opposite change in the y-axis
of the accelerometer at the end of a gesture segment indicates
the hand is moving in a downward direction. Figure 6 shows
how segmentation is performed using both gyroscope and y-
axis of accelerometer. This method of segment identification
is designed to include all segments that are likely to contain a
hand-at-mouth gesture, but may be over-inclusive.

Data Reduction via Non-candidate Segment Exclusion
We narrow down our search space by excluding hand-to-
mouth segments in the inertial sensor data stream that are
unlikely to represent a puff. We employ three methods,
all of which are trained (i.e., determining parameters) using
training data where each puff was carefully marked. In this
dataset, we refer to inertial data segments that correspond to
hand-at-mouth gestures when taking a puff as puff segments.

Appropriate Degree of Movement? We compute the mean
difference between the fast and slow moving averages for

each of the puff segments. Using the minimum of these dis-
tances as a threshold we discard all segments for which the
mean distance is lower than this threshold (50 degree/second).

Appropriate Duration of Hand-to-mouth Gesture? We de-
termine the duration of each puff segments. Inertial data seg-
ments that have a duration more that 3 standard deviations
away from the mean duration (less than 0.8 seconds or greater
than 5 seconds) are excluded.

Proper Hand Orientation When The Hand At Mouth?
When the hand is at or near the mouth, it may not be for tak-
ing a puff, such as when touching the hair, fixing eyeglasses,
yawning, etc. To determine whether the hand is properly ori-
ented during a hand-to-mouth gesture (e.g., as it usually is
when taking a puff), we determine orientation of the hand by
computing the pitch and roll angles.

The pitch and roll angles at a particular orientation indicate
the amount of rotation about the x and y axis respectively
required to reach the particular orientation from an initial ori-
entation. We assume that in the initial orientation, the hand is
kept horizontal with the palm facing down (z-axis is aligned
with the gravitational field). Roll and pitch angles can be
computed from either accelerometer or gyroscope. However,
in the presence of linear acceleration, the orientation angles
computed from accelerometers are usually less accurate. On
the other hand, roll and pitch angles can be computed by in-
tegrating the angular velocity measurements obtained from
gyroscope. However, a small error in angular velocity mea-
surement may lead to large integration errors.

Since we are interested in computing the orientation at times
when the hand is relatively stationary, relying on only ac-
celerometer measurements is sufficiently accurate for our pur-
pose. For each segment, we compute the average of each
axis forming the vector (ax, ay, az). Following the method
proposed in [18], we compute pitch(θ) = (−ay)/(−az) and
roll(φ) = ax/

√
ay2 + az2.

We note that pitch and roll may suffer from gimbal lock,
which refers to the lack of bi-continuous map between the
spherical coordinates (pitch/roll) and the torus surface of the
rotations. As far as the classification of the static orientation
is concerned, the lack of continuous map is not an issue, the
pitch/roll still uniquely defines the orientation and therefore
each static orientation can be uniquely classified. The prob-
lem appears when dynamic measurements are averaged to get
an average orientation in a window of data. This could be
remedied going to an intermediate redundant representation
such as quaternions to implement the averaging. We have
chosen a simpler approach to address this problem. We use a
window of measurements for computing pitch and roll. From
the window, we only take those values that do not suffer from
Gimbal lock. Since our window consists of at least 0.8 sec-
onds worth of samples, most of our windows have valid mea-
surements for pitch and roll even if some values are momen-
tarily affected by Gimbal lock due to orientation alignment.

We next describe our method for handling change in hands
(left vs. right). Since the direction of the x-axis (and y-axis)
of the accelerometer on the left and right wrists are opposite

6



Figure 7. Scatter plot of roll and pitch angles for the puff segments and
non-puff segments.

to each other, we first negate the x and y axis measurements
of the left wrist sensor. In this way, the corresponding axes
point in the same directions in both wrist sensors. By con-
vention, the roll and pitch angles are positive when there is
clockwise rotation about the y-axis and x-axis respectively.
Therefore, when either arm is lifted from the horizontal posi-
tion, pitch angles will have the same negative sign. However,
inward (or outward) rotation of the left hand is in the oppo-
site direction for an inward (or outward) rotation of the right
hand. Therefore, in order to obtain the same sign for roll an-
gles in both hands (that are )mirror images of each other, we
negate the sign of the roll angles obtained for the left hand.

To determine proper values of pitch and roll, we compute
these values for each puff segments and for non-puff segments
(see Figure 7 for a scatter plot). We observe that the roll and
pitch angles are slightly correlated with each other. For each
segment, we compute the Mahalanabis distance2 from the dis-
tribution of roll and pitch angles of puff segments. Mahalan-
abis distance d is computed by d = (x − µ)S−1(x − µ)′,
where x = (xroll, xpitch) is the vector representing the roll
and pitch angles of a segment and µ and S are the mean vector
and co-variance matrix computed from roll and pitch angles
of puff segments. Since for puff segments, the distance should
be lower than other segments, we find a threshold td so that
all puff segments are below it. We set the value of td to the
largest value from all puff segments from training data and use
it as a threshold. We discard all segments that have distance
greater than td = 10.15 degree square.

Candidate Respiration Cycle Selection
After filtering out all non-candidate segments, we identify a
respiration cycle that corresponds to each candidate hand-to-
mouth gesture segment. We find the respiration cycles by
computing the peak and valley locations in the respiration
signal. Respiration signal reaches the peak once smoke is
completely inhaled and exhalation of smoke usually occurs

2An alternative measure could be Euclidean distance but the Eu-
clidean distance is blind to correlated variables while the Mahalan-
abis distance takes the co-variances into account, which lead to el-
liptic decision boundaries in the 2D case, as opposed to the circular
boundary in the Euclidean case.

once cigarette is removed from the mouth. For each candi-
date hand-at-mouth gesture segment detected, we, therefore,
select the first respiration cycle whose peak occurs after the
end of the segment. This respiration cycle is a candidate for
puff, if respiration signal is missing in that segment we use
the hand-at-mouth segment as candidate.

A respiration cycle, however, can be associated with two dif-
ferent candidate segments, one from each hand, whose end
times are close to each other. To avoid the situation where
the training data contains a puff and a non-puff instance that
are both associated with the same respiration cycle but differ-
ent candidate segments, we only consider the non-smoking
regions of the dataset as the source of non-puff instances.

Feature Computation
Respiration Features from [2]: From each respiration cy-
cle, we compute the 17 respiration features presented in [2].
These features capture the characteristics of a respiration cy-
cle and the relative changes in these characteristics. First,
Inhalation Duration, Exhalation Duration, which correspond
to the time required to breathe in and breathe out respectively
are used as features. The next two features, IE Ratio and Res-
piration Duration are defined as the ratio of inhalation du-
ration to the exhalation duration and their sum respectively.
Stretch is defined to be the difference between the maximum
(legitimate) amplitude and the minimum (legitimate) ampli-
tude the signal attains within a respiration cycle.

Forward and backward first differences of a feature are de-
fined as the difference between the value of this feature ob-
tained from current respiration cycle and that from the next
cycle and previous cycle, respectively. Since the smoking
puff is different than neighboring respiration cycles, the for-
ward and backward first differences of the values of the in-
halation duration, exhalation duration, respiration duration,
and stretch are also used as features to capture the relative
changes in breathing pattern. Ratio of exhalation duration and
stretch values to the average of the feature values of neighbor-
ing cycles are also used as features that capture the relative
change in respiration. Finally, stretch of a respiration cycle
is also divided into upper and lower parts with respect to the
running mean of the valley amplitude of the respiration signal
and these are used as features. The upper stretch magnitude
is computed by taking the difference of peak amplitude and
running mean value of the valley amplitudes of signal cycles
(ValleyAmplitudeMean), while the lower stretch magnitude is
computed by taking the absolute difference of minimum am-
plitude in a respiration cycle and ValleyAmplitudeMean.

New Respiration Features: In addition to the above features,
we propose two new features. These features are computed
from the rate of change signal obtained by taking the first
derivative of the respiration signal. The maximum and min-
imum values that the rate of change signal attains within a
respiration cycle are used as features.

Inertial Features: From the candidate hand-at-mouth ges-
ture segments, we compute the mean, median, standard de-
viation, and quartile deviation of magnitude of gyroscope,
pitch, and roll. This gives us a total of 12 features.
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Figure 8. Recall versus false episode per day for different value of mp

Model Development
We extract features from both the candidate segments and the
corresponding respiration cycle from the training data. We
train a two-class Support Vector Machine (SVM) classifier
using this training data to detect puffs.

Post Processing
After obtaining a classification from the SVM model, we con-
duct two post-processing steps. Our post-processing steps are
similar in purpose to the use of random forests and condi-
tional random field used in prior works [17, 28] to construct a
smoking episode from individual puffs. We opt for rule-based
methods for better explainability of the resulting model.

Remove Isolated Puffs: We call a detected puff an isolated
puff if no other puff is within two standard deviations of the
mean inter-puff duration (i.e., 28 (±18.6) seconds). An iso-
lated puff is unlikely to be part of a smoking episode.

Discard Puffs from the Non-dominant Hand: We observe
that among 61 participants, 33 always smoke using their right
hand, 18 smoke using left hand, and only 10 switch hands,
sometimes switching hands even within a smoking episode.
This points to the utility of using wrist sensors on both hands
in a smoking cessation study. But, since majority of the par-
ticipants smoke using only their dominant hand, puffs de-
tected from their non-dominant hand can be discarded.

Constructing a smoking episode: After removing isolated
puffs, we are left with clusters of (2 or more) puffs in the
data stream. We use a simple rule-based method to declare a
cluster of puffs as a smoking episode, i.e., if it contains at least
mp (minimum puff count) puffs. To find an appropriate value
for mp, we analyze the recall rate for detecting first lapses in
lapsers and false episode detection rate in abstinent smokers
in our smoking cessation study data. Figure 8 presents the
recall and false episode per day rates for different values of
mp. We observe that the best result is achieved when mp = 4.

EVALUATION AND APPLICATION
We now describe the performance of puffMarker on both
training data and on the smoking cessation data.

Performance on Training Data
In addition to the puffMarker model that uses both respiration
and wrist sensors, we also construct a wrist-only model to
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Figure 9. True Positive (recall) Rate vs. False Positive Rate of three clas-
sifiers for respiration-only model, wrist-only model, and for the com-
bined model.

Classified as puffs Classified as
non-puffs

puffs 282 9
non-puffs 40 3505

Table 1. Confusion Matrix for training data using 10-fold cross valida-
tion; Recall=96.9%, Precision=87.5%, Accuracy=98.7%, False Positive
Rate=1.1%, Kappa=0.91

understand the performance expected if only wrist sensors are
used due to its greater convenience and ease of wearing. To
understand the improvement in accuracy due to each of the
two sensor types, we also analyze the performance if only
respiration sensor were used.

Training data for the puff classifier consists of 291 puffs and
44,696 respiration cycles that reduces to 3,545 non-puff cy-
cles after applying our preprocessing steps. We build three
different classifiers based on i) respiration-only features, ii)
wrist-only features, and iii) features from both sensors.

Figure 9 presents the true positive rate of puffs detected
versus true positive rate for the classifiers in 10-fold cross-
validation. We observe that the performance of wrist-only
model is better than that of respiration only. Combining
both sensors results into significant improvement and makes
it suitable for robust performance in the field setting. We pick
an operating point on the ROC curve that is closest to the top
left corner. It corresponds to a recall rate of 96.9% and false
positive rate of 1.1%. A confusion matrix with various met-
rics for this operating point is presented in Table 1.
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Figure 10. Leave one subject out cross validation on training data.
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puffMarker Wrist-only
False episode per day 1

6
1

1.71
# detected lapses 28

32 (87.5%) 24
32 (75%)

Table 2. Comparison between puffMarker and Wrist-only model

We further investigate the generalizability of our combined
model by performing leave-one-subject-out cross-validation.
In this experiment, the model is learned from five partici-
pants’ data and evaluated on the sixth. In each experiment,
threshold on the score of the SVM classifier is set to a value
so that it achieves at least 95% recall rate on the training data.
From Figure 10, we observe that recall and precision are usu-
ally high with a minimum value of 0.7. It indicates that our
method can generalize to new users. The difference in recall
or precision can be attributed to difference in the proportion
of confounding activities (e.g., conversation and physical ac-
tivity) present in each participant’s data.

Performance on Smoking Abstinence Data
We collected data on 61 participants in a smoking cessation
study in which 33 lapsed within three days (verified by a CO
monitor) — 17 lapsed on the first day, 12 on the second day,
and 4 on the third day. We apply our model on these data
and report several findings that include recall rate for detect-
ing first lapse, false episode per day on abstinence data, lapse
progression in lapsers, puff count in first lapse episodes, and
temporal inaccuracy in self-report or recall of first lapses.

Detection of First Lapses
The CO report ascertained that among the 61 participants, 33
lapsed during their post quit session; 22 of them self-reported
their lapse and 11 mentioned it in their next day interview.
One participant is excluded from analysis because of high
(> 80%) sensor data loss around the neighborhood of lapse
self-report. Of the 32 lapsers for whom data is available, puff-
Marker detects 28 lapse episodes. We can now derive various
novel results on the nature of first lapse that has previously
not been known. We report them in the following.

False Episode Detection
To analyze the false positive rate of puffMarker, we apply it
to the data collected from 28 participants who did not lapse
(confirmed by CO testing) during three days of post quit ses-
sion. From each of these participants, we obtained an average
of 11.2 hours of data per day for 3 days, for a total of 946
hours of data. Since the participants did not smoke on these
days, all episodes detected by puffMarker are false positives.
Out of these 28 participants, we get zero false positives for 22
participants, one episode for 2 participants, one episode each
on two days for 2 participants, two episodes on two days for
1 participant, and four false episodes in one day for the final
participant. We get a total of 14 falsely detected episodes in
84 days, for a false episode per day of 1 every six days.

We also analyze the false episode per day on abstinent days
of lapsed smokers. Since 12 participants lapsed on the sec-
ond day and 4 lapsed on the third day, we have a total of
12+8=20 abstinent days on these participants. We get false
positive on only one participant who lapsed on the third day.
puffMarker detects one episode on the first post-quit day and
another episode on the second day.
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Figure 12. Progression of the lapse process. Number of smoking episodes
per day and number of puffs per episode following a lapse are shown for
the lapse day, day after lapse, and 2 days after lapse.

Performance of Wrist-only Model
In future, it may be desirable to use only wrist sensors in
smoking cessation studies due to its convenience. We, there-
fore, also apply the wrist-only model on the smoking cessa-
tion data. Table 2 presents the performance of wrist-sensor-
only model. We observe that the wrist-only model detects
24 of the 32 lapse events and the number of false episodes
detected is 49 (or 1/1.71 per day).

Characterizing the Lapse process
Now that we have a model to detect the first lapse and subse-
quent lapses in a smoking cessation study, we can get some
new insights into the lapse process that were not observable
earlier. We report three novel findings. First, we analyze the
number of puffs taken during the first lapse smoking event
(see Figure 11). We find that the number of puffs in the first
lapse event after quitting is significantly lower than that dur-
ing regular smoking episodes. The average number of puffs
in first lapse events is 6.67 (±2.5), whereas the average num-
ber of puffs in regular smoking episodes is 14.75 (±1). This
has been suspected by smoking researchers as smokers are
trying to resist smoking in the post-quit period, but our data
now provides the first objective evidence.

Second, we analyze the number of smoking episodes per day
on the lapse day, the day after lapse day, and 2 days after the
lapse day. Third, we analyze the number of puffs per episode
on these three days. Figure 12 shows data for both of these
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Figure 13. Temporal inaccuracy of self-report

metrics. Lapsers smoke an average of 1.18 times on the lapse
day, an average of 2.75 times on the day after lapse day, and
an average of 3.56 times on the second day after lapse day.
For the number of puffs per smoking episode, we observe that
the number of puffs per smoking episode is 6.5 on the lapse
day, 9.5 on the day after lapse day, and 11 on 2 days after the
lapse day.

The above objective data support prior observations (based
on self-reports) that once a participant lapses, they gradually
increase smoking frequency and eventually relapse fully. It
is interesting to observe that not only the smoking frequency
increases every day after lapse, but the number of puffs per
episode also increases. Consequently, the total number of
puffs per day increases rapidly; it is 7.7 on lapse day, 26.1 on
day after lapse, and 39.2 on 2 days after lapse. This study only
observed abstinent smokers for only 3 post-quit days; longer
studies in future may reveal the entire progression process.

Temporal Precision in Self-report or Recall of First Lapse
Accurately locating the timing of the first lapse has been con-
sidered critical for the development of interventions. Smok-
ing researchers have suspected that lapsers do not report their
first lapse event promptly, partly due to being overwhelmed at
the moment of this first failure in their cessation attempt. Now
that we can pinpoint the timing of first lapse for 28 lapsers at
the granularity of a respiration cycle (i.e., second-level accu-
racy), we can analyze the temporal imprecision in self-report
or recall of the first lapse episodes (see Figure 13).

Of the 28, 9 did not self-report, 15 reported after the lapse,
and 4 reported before they lapsed. The average delay for post-
report was 41.4 minutes and that for a pre-report was 12.7
minutes. The temporal inaccuracy was even greater for those
9 who recalled the timing of lapse event next day in the lab.
This is the first time that temporal inaccuracy in self-report of
a smoking lapse has been reported.

CONCLUSION, LIMITATIONS, AND FUTURE WORK
This is the first work to show that timing of first lapse in
smoking cessation can indeed be detected using wearable
sensors in real-life environment. It is also the first to show
the temporal inaccuracy in self-report or recall of first smok-
ing lapse. From a computational modeling perspective, it
presents an explainable model for gesture recognition from 6-
axis inertial sensors worn on wrist. It also presents a reusable
approach for combining the inertial sensor data with respira-
tion data for better detection accuracy by leveraging the di-
versity of these two sensor types.

But, this work has several limitations that present numerous
opportunities for future works. First, the model itself can
be improved in multiple ways. For example, we use a sim-
ple rule for episode construction. More sophisticated mod-
els can potentially improve the detection accuracy for smok-
ing episodes. Personalized models that use pre-quit data of
each participant to calibrate the model may provide an even
better accuracy. Second, detection of other related behaviors
(e.g., eating, drinking, brushing, driving) using our modeling
approach from wrist-mounted inertial sensors and respiration
sensor is an interesting opportunity for future work. Third, we
use wrist sensors on both wrists as the smoking activity can
be performed with either hand. The same is true for other ac-
tivities such as eating, typing, etc. But, wearing wrist sensors
on both wrists may not be as prevalent outside of scientific
studies. Obtaining similar accuracy of detection with only
one sensor worn on the dominant (or non-dominant) hand is
another interesting future work opportunity.

Fourth, our model was developed using data collected for
cigarette smoking and hence may not directly work for cigars,
e-cigarettes, hookah, etc. Fifth, since our model filters out
isolated puffs and does not consider puffs to constitute a
smoking episode unless there are 4 puffs in close vicin-
ity.Hence, it may not work for detecting first lapses that con-
sists of 3 or fewer puffs. Sixth, it also may not work when
several people share a cigarette. In such a case, the time be-
tween successive puffs becomes longer than usual. Seventh,
replication of our method in other populations can further im-
prove its validity and utility. Finally, our work opens up a very
rich area of research for discovering efficacious just-in-time
interventions that can be triggered from predictors detected
by sensors such as GPS, smart eyeglasses, electronic and so-
cial media, and physiological sensors.
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