

Coverage and Connectivity in Wireless Networks

Journey from Percolation to Reliable Density Estimates

Santosh Kumar University of Memphis

What is a Wireless Sensor?

- Extreme Scaling Mote (XSM)
 - CPU: 7.3827 MHz
 - Program Memory: 128 KB
 - RAM: 4 KB
 - Persistent storage: 4 MB
 - Radio: 30 m, 19.2 kbps
 - Sensors (range: 7 m 30 m)
 - Infrared (to detect motion)
 - Acoustic (to detect sound)
 - Magnetic (to detect metal), etc.
 - Runs on a pair of AA batteries

Applications

Santosh Kumar, Computer Science, University of Memphis

Current Projects in Our Lab

- AutoSense (Sponsor: NIH)
- AutoWitness (Sponsor: NSF)
- Barrier Coverage (Sponsor: NSF)

AutoSense

- A body area sensor network to measure alcohol and stress exposure from the field
- High potential
 - Can study interaction between stress and addiction
 - Can study other addictive substances
 - Can study health issues remotely
- Trans-disciplinary team
 - Disciplines: CS, ECE, Behav. Sc., Biochem, Mat. Sc.
 - Organizations: UoM, OSU, UMN, SpectRx Inc.

AutoWitness

- Detect and track burglars
- Make a difference to the local society
- A foundational approach
 - Optimal deployment
 - System based on optimal or approximation algorithms
- Collaboration between CS and Mathematics

Barrier Coverage

- Mostly theoretical
 - Goal is to put intrusion detection on firm foundations
- Proposed the barrier coverage concept
 - MobiCom 2005
- Developed optimal solutions for several fundamental problems
 - Sleep wakeup (Broadnets 2007)
 - Localized barrier coverage (MobiCom 2007)
 - Reliable density estimate (MobiCom 2007)
- Investigating quality of coverage, and effects of directional and mobile sensors

Collaborators

Rest of the talk is based on our MobiCom 2007 paper with

Dr. Paul Balister

Dr. Béla Bollobás

Dr. Amites Sarkar

Outline

- Defining coverage and connectivity
- Model
- Asymptotic probabilistic condition and its limitations
- Reliable density estimates introduction and its application to full connectivity
- Deriving reliable density estimate for barrier coverage in thin strips

Full Coverage

Crossing Paths

 A crossing path is a path that crosses the complete width of the belt region.

Crossing paths

Not crossing paths

k-Coverage of a Path

 A crossing path is said to be k-covered if it intersects the sensing disks of at least k distinct sensors.

Barrier Coverage

 A belt region is barrier covered if all crossing paths are covered.

Not barrier covered

s-t Connectivity

- Same as barrier coverage
 - Use communication range in place of 2*sensing range

Full Connectivity

All nodes need to be connected to each other

Coverage and Connectivity

- Full Coverage
 - Every point in the region is covered
- Barrier Coverage
 - No uncovered crossing paths exist
- s-t connectivity (connectivity along the strip)
- Full Connectivity
 - All nodes in the region are connected to each other (possibly via multiple hops)

Outline

- Defining coverage and connectivity
- Model
- Asymptotic probabilistic condition and its limitations
- Reliable density estimates introduction and its application to full connectivity
- Deriving reliable density estimate for barrier coverage in thin strips

Why consider random deployment

- Deployment errors
- Nature induced movements
- Unanticipated failures
- Poisson usually models worst case

The Parameters

- For a given network,
- S deployment region (rectangular)
 - $-\ell$ length
 - h height
- λ density of nodes
- r-2* sensing radius or communication radius
- If the region size is scaled appropriately so that λ
 - = 1, then r captures the variation in density

Outline

- Defining coverage and connectivity
- Model
- Asymptotic probabilistic condition and its limitations
- Reliable density estimates introduction and its application to full connectivity
- Deriving reliable density estimate for barrier coverage in thin strips

Asymptotic Probabilistic Conditions

- Critical conditions (Phase Transition)
 - A sufficient condition that guarantees coverage with high probability
 - And, a sufficient condition that guarantees noncoverage with high probability
 - Both conditions converge to the same value at infinity

Full Connectivity Example

- Full connectivity is asymptotically achieved
 - In a square (or disk) of area n (keeping r variable)
 - − When $\pi r^2 = \log n + c(n)$, iff $c(n) \rightarrow \infty$
- Observations
 - For a given finite region, what is an appropriate value of c(n)?
 - For a finite region and a given density (or radius), what is the probability of connectivity?
 - It is close to 1, but how close?

Outline

- Defining coverage and connectivity
- Model
- Asymptotic probabilistic condition and its limitations
- Reliable density estimates introduction and its application to full connectivity
- Deriving reliable density estimate for barrier coverage in thin strips

The new paradigm

- Derive reliable probabilistic estimates
- Key steps/challenges
 - What is the key obstructing event?
 - Carefully define the event so its probability distribution can be derived
 - Ideal if the distribution is Poisson
 - Finally, estimate its parameters
 - Only intensity if the distribution is Poisson

How to find/guess the obstruction

- Characterizing the main excluded area
 - The smaller the region, higher the probability
 - More ways that this particular excluded area can occur, higher its probability
 - Can then observe using simulation the quality of approximation

Obstruction to Connectivity

- Several possible obstructions
- Which one dominates?

Deriving probability distribution

- Ideal if can prove Poisson distribution
- Need to show
 - The events (spatially) further apart are independent
 - The dependent event sets are negligible
 - Such dependent sets would occur even if the event was distributed according to a perfect Poisson distribution
- Formalize it by using the Stein –Chen Method for Poisson approximation

The Case of Connectivity Again

- Isolated nodes in spatially disjoint regions are independent (Poisson distributed nodes)
- The only dependent ones are those at most 2r apart
 - whose probability of occurrence is much smaller as compared with that of isolated nodes

Estimating the parameter(s)

- If Poisson, then only the intensity (or expected number of excluded events) need to be derived
 - It is about the same as the probability of one such event occurring

Parameter Estimation for Connectivity

- Probability of an arbitrary node being isolated
 - Or, a disk of radius r around this node being empty

$$e^{-\pi r^2}$$

The probability of no isolated nodes occurring in area n

$$\approx e^{-ne^{-\pi r^2}}$$

Outline

- Defining coverage and connectivity
- Model
- Percolation, critical density and their limitations
- Reliable density estimates introduction and its application to full connectivity
- Deriving reliable density estimate for barrier coverage in thin strips

A More Challenging Case

• Barrier coverage (or *s-t* connectivity) in thin strips

Key Challenges

- What is the main obstructing event?
 - Breaks
- How to characterize breaks so that we can
 - Prove their near independence
 - And, derive the probability of their occurrence

A Novel Definition

- Define a Good Component to be a graph component that has
 - Sensors within $\frac{r\sqrt{3}}{2}$ of both top and bottom
- Break is now the gap between consecutive good components

Implications

- No good component can sneak over or under another one
 - Good components are always separated by one and only one break
- Break ⇔ Barrier Coverage

University of Memphis

Why are Breaks Poisson Distributed

- Breaks are usually thin
 - If r > 6, then the average width of a break is at most $max\{5h, 1/h+2h\}$
- Good components are usually wide
 - If r > 6, then the proportion of good components with width less than w > 0 is at most $(w+7)e^{-h}$
- Hence, breaks are few and far between
- Can now apply Stein-Chen method to prove Poisson distribution of breaks

Estimating Break Intensity

- How do we identify a break so we can derive the probability of it occurring?
 - One-to-one mapping between breaks and good components
 - A good component can be identified by its right most node

Characterizing Break Shapes

 How does a break look like so we can estimate the vacant region following a good component?

The Final Estimate

$$I_{h,r,\lambda} = \sqrt{\lambda} \exp \left(-\alpha_{r\sqrt{\lambda}} h \sqrt{\lambda} - \beta_{r\sqrt{\lambda}} + o(1)\right)$$
 where

$$\alpha_x = x - 1.12794x^{-1/3} - 0.2x^{-5/3}$$

$$\beta_x = -\frac{1}{3}\log x + 1.05116 + 0.27x^{-4/3}$$

How Good is Our Estimate

Probability of Break in a Finite Region

Estimate

$$1 - \exp(-\ell I_{h,r,\lambda})$$

- *ℓ* = 10
- h = 2
- r = 1

Conclusion

- Critical density (and percolation) has limited use in practice due to asymptotic nature
- Reliable probabilistic estimate can be derived in a systematic fashion
 - Need to carefully define the main obstruction
 - Derive its probability distribution
 - Estimate the intensity
- Showed that this approach is feasible even for a complex event, i.e., barrier coverage in thin strips

Looking Forward

 Can now envision theoretical results (in this area) being used in real deployments

Want to dig deeper

- Please refer to our paper
 - Paul Balister, Béla Bollobás, Amites Sarkar, and Santosh Kumar, "Reliable Density Estimates for Coverage and Connectivity in Thin Strips of Finite Length" in ACM MobiCom 2007
 - There is a draft of the journal version also available online that has detailed proofs