Optimal Sleep-Wakeup Algorithms for Barriers of Wireless Sensors

Santosh Kumar, Univ. of Memphis Ten H. Lai, Marc E. Posner, and Prasun Sinha, Ohio State Univ.

Outline

- A primer on Barrier Coverage
- The sleep-wakeup problem
- Homogeneous lifetime case
- Heterogeneous lifetime case
- Key learnings from simulation
- Conclusions

Intrusion Detection

Crossing Paths

A crossing path is a path that crosses the complete width of the belt region.

Crossing paths

Not crossing paths

k-Coverage of a Path

A crossing path is said to be k-covered if it intersects the sensing disks of at least k distinct sensors.

k-Barrier Coverage

A belt region is k-barrier covered if all crossing paths are k-covered.

Not barrier covered

How to check for *k*-barrier coverage?

- Given a belt region deployed with sensors
 - □ Is it *k*-barrier covered?
 - ☐ Find the maximum value of *k*

Reduce to a graph problem

- Given a sensor network over a belt region
- Construct a coverage graph G = (V, E)
 - \square V: sensor nodes, plus two virtual nodes L, R
 - \Box *E*: edge (*u*, *v*) if their sensing disks overlap

Reduction Theorem

■ <u>Theorem</u>: Region is *k*-barrier covered iff there are *k* node-disjoint paths between *L* and *R* in *G*.

Proof:

- □ If k node-disjoint paths exist, then k disjoint sets of sensors exist each providing 1-barrier coverage
- □ If not, there exists a set of (k-1) sensors, whose removal will disconnect L and R.
 - A crossing path through these sensors will be at most (k-1) covered.

Implications of the Reduction Theorem

- Standard max-flow algorithms can be used to check for the existence of k-barrier coverage.
- Further, the maximum value of *k* can also be determined using the same algorithm.

Outline

- Barrier Coverage
- The sleep-wakeup problem
- Homogeneous lifetime case
- Heterogeneous lifetime case
- Key learnings from simulation
- Conclusions

Exploiting redundancy

- Reasons for redundancy
 - Protect against unanticipated failures
 - Random deployment
- In unattended outdoor deployments
 - □ Battery energy is precious
- Can exploit redundancy to increase the network lifetime

Lifetime distribution

- Basic model
 - □ All sensors have homogeneous lifetime
- More practical
 - Sensors have distinct lifetimes due to
 - Uneven load
 - Sensor failures
 - Uneven recharging rates
 - Reinforcements Additional sensor deployments

The sleep-wakup problem

- Given a sensor network with
 - Sensor locations and
 - □ Lifetime distributions
- What is the maximum time for which the network can
 - □ Continuously provide k-barrier coverage?

An example

For how long can this network provide 2barrier coverage?

Outline

- Barrier Coverage
- The sleep-wakeup problem
- Homogeneous lifetime case
- Heterogeneous lifetime case
- Key learnings from simulation
- Conclusions

M

Homogeneous Lifetimes

What is the maximum lifetime for providing 2-barrier coverage?

Key Result

- *N* Given sensor network
- *m* maximum number of node disjoint paths in the coverage graph of *N*
- <u>Lemma 3.1</u>: The maximum time for which *N* can provide *k*-barrier coverage is *m/k*.
 - □ Proof using the Reduction Theorem and the Menger's Theorem

Outline

- Barrier Coverage
- The sleep-wakeup problem
- Homogeneous lifetime case
- Heterogeneous lifetime case
- Key learnings from simulation
- Conclusions

Heterogeneous Lifetime

For how long can this network provide 1barrier coverage or 2-barrier coverage?

The Flow Graph

- Maximum lifetime achievable for
 - □ 1-barrier coverage; 2-barrier coverage?

Multi-route Flow

- **Basic** *k*-flow: A set of node disjoint flows each of which has a value of *a*. The total value of the flow is *k***a*
- Composite *k*-flow: A set of flows that can be expressed as a linear combination of basic *k*-flows.

An Example

■ Which ones are basic 2-flows?

Reduction to Multi-route Flow

- Given a sensor network N, there exists a sleepwakeup schedule to achieve a lifetime of T time units for providing k-barrier coverage iff
 - □ There exists a composite k-flow of value k*T in the corresponding flow graph.
- Can now use existing algorithms for finding max multiroute flow to maximize network lifetime for k-barrier coverage.

Outline

- Barrier Coverage
- The sleep-wakeup problem
- Homogeneous lifetime case
- Heterogeneous lifetime case
- Key learnings from simulation
- Conclusions

Exploiting statistical redundancy

If sensors are deployed randomly but nonredundantly (i.e., optimally), then what level of lifetime increase may we get in practice?

Random deployment

Homogeneous vs. Heterogeneous

- If lifetime distribution is sufficiently random, then median lifetime achieved in both cases are approximately the same
 - Provided an optimal algorithm for heterogeneous case is used

Improvement over RIS

Conclusions

- Showed that optimal sleep-wakeup scheduling is possible for a coverage model
 - □ Even the heterogeneous lifetime case is tractable
- Significant enhancement in lifetime is possible in randomized deployments even if the deployment is optimal

What about localized sleepwakeup algorithms?

- Designing localized algorithms that provide deterministic guarantee is not possible (see our MobiCom 2005 paper)
- It is, however, possible with suitable relaxation of the barrier coverage concept
 - □ See our MobiCom 2007 paper
 - Ai Chen, Santosh Kumar, Ten H. Lai "Designing Localized Algorithms for Barrier Coverage"