Review of Linear Algebra

Prof. Santosh Kumar Dept. of Computer Science University of Memphis Fall 2008

Matrix

- Definition
- Elements of a matrix (a_{ij})
- Vector (in bold or with an overline)
 - Row vector
 - Column Vector
- Scalar multiplication of two vectors
- Zero matrix (0)
- Identity matrix (*I_m*)

Matrix Operations

- Scalar multiple (*cA*)
- Addition of two matrices (A+B)
- Transpose of a matrix (A^T)
- Matrix multiplication (AB)
 - Associative ((AB)C = A(BC))
 - Distributive ((A+B)C = AB+AC))
 - Not commutative (**AB**¹ **BA**)

Gauss-Jordan Method

- A system of linear equations has either
 - No solution, or
 - A unique solution, or
 - An infinite number of solutions
- This method specifies three basic operations on a matrix that can simplify solving a system of linear equations

Linear Independence

- Given a set of *m* row (or column vectors), they are all linearly independent if the only linear combination that equals *0* is their trivial combination,
- Otherwise, they are linearly dependent.

Rank

- Rank of a set of vectors is
 - the number of vectors in the largest linearly independent subset in the set.
- A matrix is a set of row vectors
- How to determine the rank of a matrix?
 - Apply the Gauss Jordan Method
 - The number of nonzero rows is its rank
- How to determine the rank of a set of vectors?